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Abstract: Myc is a crucial regulator of growth and proliferation during animal development. Many signals and transcription factors lead 
to changes in the expression levels of Drosophila myc, yet no clear model exists to explain the complexity of its regulation at the level of 
transcription. In this study we used Drosophila genetic tools to track the dmyc cis-regulatory elements. Bioinformatics analyses identi-
fied conserved sequence blocks in the noncoding regions of the dmyc gene. Investigation of lacZ reporter activity driven by upstream, 
downstream, and intronic sequences of the dmyc gene in embryonic, larval imaginal discs, larval brain, and adult ovaries, revealed that it 
is likely to be transcribed from multiple transcription initiation units including a far upstream regulatory region, a TATA box containing 
proximal complex and a TATA-less downstream promoter element in conjunction with an initiator within the intron 2 region. Our data 
provide evidence for a modular organization of dmyc regulatory sequences; these modules will most likely be required to generate the 
tissue-specific patterns of dmyc transcripts. The far upstream region is active in late embryogenesis, while activity of other cis elements 
is evident during embryogenesis, in specific larval imaginal tissues and during oogenesis. These data provide a framework for further 
investigation of the transcriptional regulatory mechanisms of dmyc.
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Introduction
In the early stages of organ development, the expres-
sion patterns of genes must be tightly spatiotemporally 
controlled. This function requires a set of complex 
interactions between the cis regulatory modules of 
each gene and the gene’s regulatory proteins, which 
bind to these elements to modulate  transcription. 
Indeed, the interactions between cis elements and 
their binding factors is well established as a key 
mechanism controlling expression of the develop-
mental genes required for establishing the anteropos-
terior and dorsoventral axes in Drosophila.1,2

Myc is an important developmental gene requiring 
tight transcriptional regulation.3–6 As an evolutionarily 

conserved bHLHZ (basic-helix-loop-helix leucine 
zipper) transcription factor, Myc is a master regulator 
of cell growth and proliferation.7 Upon dimerization 
with Max, another bHLH protein, Myc binds to the 
E-box sequences of target genes to activate cellular 
growth and cell cycle progression.8–10 Conversely, 
heterodimers of Myc and other Myc-associated zinc 
finger proteins, such as Miz1, can act negatively to 
regulate transcription of genes responsible for cell 
cycle arrest11–13 (Fig. 1).

Myc proteins can link growth with cell cycle pro-
gression via activation of the S phase cyclins, which 
are required for DNA replication.6,8,14  Regulation 
of cell growth and division is critical for animal 
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Figure 1. Simplified schematic interaction of Myc/Myc-associated bHLH proteins at the promoters of target genes. Upon binding to E-box sequences in 
the promoter region of target genes, heterodimers of Myc/Max can recruit chromatin remodeling complex TRAPP/Histone acetyl-transferase (HAT) and 
interact with the bound basal transcription machinery at the TATA region of target genes to activate transcription. Conversely, heterodimers of Mad/Max 
transcription factors recruit mSin3/histone deacetylases to counteract Myc activity and repress Myc target genes by regulating differentiation and cell cycle 
arrest. The binding of Myc/Max dimers can interfere with the function of transcription activator Miz-1 to inhibit the recruitment of cofactor proteins like p300 
to the promoters of genes responsible for cell cycle regulation.
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 development because too little growth leads to small 
organs and small body size, whilst excessive growth 
can lead to tissue overgrowth and initiation of  cancer. 
For Myc, its misexpression during development per-
turbs normal growth; too much Myc can facilitate 
malignant transformation and too little Myc leads to 
retarded growth.12,15–29

Functional conservation between Drosophila dMyc 
and human c-Myc has been demonstrated in a variety 
of biological activities, such as the ability of dMyc 
to drive the cell cycle in c-myc null fibroblasts and to 
transform primary mammalian cells.30,31  Conversely, 
c-Myc can rescue lethal mutations of dmyc.32

The evolutionarily conserved structure and func-
tion between dMyc and c-Myc7 has prompted the 
use of Drosophila as a model to gain insight into 
many aspects of mammalian Myc biology. In partic-
ular, Drosophila genetic models have demonstrated 
that dMyc controls cell growth and cell division by 
regulating its direct targets involved in protein bio-
genesis and metabolism.8,33–38 In response to devel-
opmental signals and mitogenic stimuli, patterned 
dmyc expression is required for a developing organ 
to reach its appropriate size and shape. For example, 
Wingless, Dpp, and Notch signaling pathways are 
key regulators of dmyc expression that are required 
to keep the balance between cell growth/division and 
differentiation.35,37 A variety of tumor suppressor fac-
tors, including Half pint and Lethal giant larvae, nega-
tively regulate dmyc transcription to achieve cell cycle 
inhibition and promote differentiation.39,40 In addition, 
dmyc target genes can influence the transcription of 
dmyc in a regulatory feedback manner. For instance, 
the Hippo pathway transcriptional coactivator, Yorkie 
(yki), upregulates dmyc, and high levels of dMyc in 
turn repress yki.36

However, despite a growing list of pathways lead-
ing to altered dmyc transcription, we are far from 
unraveling the many complex interactions required at 
the dmyc promoter for patterning of myc transcription 
throughout development. Here we dissected the dmyc 
promoter and other potential regulatory regions and 
have drawn connections between certain domains 
and spatial and temporal patterning of dmyc expres-
sion throughout development of Drosophila. We find 
that its high expression in early embryos, larval discs 
and brain, and ovary is achieved through initiation 
of transcription at multiple sites. Additionally, dmyc 

utilizes multiple polyadenylation signals to terminate 
transcription and promote 3′-end formation. These 
findings raise the possibility that modularly struc-
tured regulatory elements of the dmyc gene play a key 
role in controlling both its high expression in growing 
and dividing cells as well as its downregulation dur-
ing differentiation.

Our computational analyses of the dmyc locus 
reveal multiple conserved sequence blocks within 
the noncoding regions that show reporter activity 
in the tested tissues. This work will provide a basis 
for understanding the regulatory clusters likely to be 
important downstream of the developmental signals 
previously implicated in myc regulation.

Materials and Methods
Cloning and sequencing of the dmyc 
gene
The RP98-2A13 BAC clone containing the dmyc 
locus (obtained from the Children’s Hospital  Oakland 
Research Institute, Oakland, CA) was triple digested 
with NotI/Asp718/DraIII. The resulting genomic frag-
ment RP27, a 27-kb insert harboring the dmyc locus of 
12.83-kb, was cloned into the 5′ NotI and 3′ ASP718 
sites in the fly transforming vector pCaSpeR4 (Dros-
ophila Genomic Resources Center, DGRC) to obtain 
pC-RP27. The genomic fragment in the BAC clone 
RP98–2A13 harboring the dmyc gene was sequenced 
at the beginning and at the end of the dmyc gene, each 
time towards the end of the dmyc gene with prim-
ers BAC-F and BAC-R. The 27-kb genomic frag-
ment in the pC-RP27, including the dmyc gene, was 
sequenced at its distal site with the primer pcaF and 
at its proximal end with the primer pcaR, each time 
towards the dmyc gene. Sequences for all the poly-
merase chain reaction and sequencing primers are 
listed in Supplemental Table 1.

Generation of LacZ reporter strains
For random P-element transformation, the ready-to-use 
transforming vector pCaSpeR-NLSlacZ (Droso-
phila Genomic Resources, originally from Tummel’s 
laboratory) was used. The pCaSpeR4-NLSlacZ vec-
tor, free from hsp70 promoter or any other regula-
tory elements, contains the eye marker white gene, 
the reporter NLSlacZ, SV40 poly (A) tail, and the 
ampicillin resistance gene. Inserts for the reporter 
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constructs, J2.1–J7, J1–J1.5, J8, J8.2, J9 (Figs. 5–8), 
J8.1, and J10 (Supplemental Figs. 3 and 4), are 
derived from the genomic sequences in pC-RP27 and 
were subcloned either into pCaSpeR-NLSlacZ and/or 
into the site-specific pattB-temp del LoxP reporter 
plasmid (Rainbow Transgenic Flies, original pUAST-
attB vector was a gift from Basler’s laboratory). 
The original vector pUAST-attB was engineered to 
remove the 5 × UAS-hsp70 and LoxP site sequences, 
followed by self-ligation to obtain the ready-to-use 
pattB-temp del LoxP transforming vector. pC-RP27 
was digested with BamHI and run on 0.5% agarose 
gel to isolate the 7.9-kb BamHI-BamHI dmyc 5′ and 
8.9-kb BamHI-BamHI dmyc large intron  fragments. 
Each fragment was subcloned into pBS-SKII 
(+) (which was a generous gift from Oleg Georgiev, 
Walter Schaffner’s laboratory) to obtain SKII-dmyc5 
and SKII-dmIn2 intermediate plasmids. For subclon-
ing the dmyc 5′ promoter/enhancer into pCaspeR4-
NLSlacZ, the 7.9-kb BamHI-BamHI fragment 
in SKII-dmyc5 was first mutated by polymerase 
chain reaction to remove the approximately 800 bp 
open reading frame sequence and to introduce an 
Acc65I restriction site at the 3′ end of the fragment. 
 Polymerase chain reaction amplification of the dmyc 
promoter/enhancer, the BAC clone RP98–2A13 served  
as the template, the amplified fragment was 2601 
bp in size, and the amplifying primers had the  
names dm5E2F and dm5E2R (primers 17 and 18 in  
 Supplemental Table 1). Polymerase chain reaction 
conditions in the thermal cycler were one cycle of 
initial denaturation at 98 °C for 30 seconds; 30 cycles 
of denaturation at 98 °C for 10 seconds, annealing 
at 60 °C for 30 seconds, and extension at 72 °C for 
60 seconds; and one final extension cycle at 72 °C for 
5 minutes, held at 4 °C. Plasmids SKII-dmyc5 and 
the polymerase chain reaction fragment were each 
separately digested with AatII and Acc65I (AatII is 
located 1550 bp downstream of the transcription start 
and Acc65I is in the SKII-dmyc5, 60 bp downstream 
of the dmyc fragment in the multiple cloning site). The 
vector SKII-dmyc5 was digested to excise an approx-
imately 1150 bp AatII/Acc65I fragment. The poly-
merase chain reaction fragment was digested to isolate 
the approximately 296 bp AatII/Acc65I fragment. 
After isolation on 1.5% agarose gel, the vector and 
insert were ligated overnight to create plasmid SKII-
dmyc5, free from open reading frame (10,035 bp in 

size). The 5′ NotI-Acc65I 3′ dmyc 5′ fragment in the 
plasmid SKII-dmyc5, free from open reading frame, 
was excised and subcloned in 5′ NotI-Acc65I 3′ lin-
earized/dephosphorylated pCaspeR4-NLSlacZ in 
front of reporter lacZ to obtain the transgene J2.1. 
Constructs J3–J7 contain successive restriction dele-
tions of the J2.1 insert, using either J2.1 or pC-RP27 
as templates and digesting with NotI and another suit-
able enzyme. For the creation of J1, the 5′ BamHI-
XbaI 3′ SV40 trailer in transgene J2.1 was replaced 
with an approximately 10.5-kb fragment from the 3′ 
end of dmyc in pC-RP27. The genomic fragment for 
JD was obtained by polymerase chain reaction ampli-
fication of the RP98–34B12 BAC clone (obtained 
from the Children’s Hospital Oakland Research 
Institute) in two steps to create products D1 and D2 
(using a high fidelity polymerase chain reaction kit, 
Finnzymes Inc, Lafayette, CO). The two polymerase 
chain reaction fragments were combined by blunt 
ligation (CIAP, Roche Diagnostics, Indianapolis, IN) 
into BlueScript, then removed and exchanged for the 
J2.1 insert by 5′ NotI and 3′ Acc65I digestion. For the 
creation of J8, SKII-dmIn2 served as the template. 
As for the creation of J2.1, the open reading frame 
sequences flanking the intron 2 sequence were first 
removed by the polymerase chain reaction, for which 
plasmid pC-RP27 served as a template. The resulting 
5′ NotI and 3′ ASP718 full length intron 2 sequence, 
free from open reading frames, was exchanged for 
the J2.1 insert by 5′ NotI and 3′ ASP718 restriction 
 digestion. The insert of J5 transgene was either fused 
proximal to distal relative to the 5′ end of the J8 frag-
ment to obtain the J9 reporter construct, or it was 
combined distal to proximal with the 5′ end of the 
J8 construct to generate the J10 transgene.  Reporters 
J1–J1.5 terminate transcription by full length or trun-
cated forms of dmyc 3′ sequences; all the other con-
structs contain the SV40 poly (A) signal.

All BAC clones, intermediate plasmid  constructs, 
engineered transforming vectors, and transgenes 
were sequenced by Microsynth AG, Balgach, 
 Switzerland. Except for the standard primers (pro-
vided by Microsynth), all other oligonucleotides and 
sequencing primers were designed using the software 
tool DNASTAR Lasergene 9.1 module PrimerSelect 
and synthesized at Microsynth AG. Sequences for all 
the polymerase chain reaction and sequencing prim-
ers are listed in Supplemental Table 1.
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Each reporter transgene was transfected into 
 electrocompetent Max DH10B Escherichia coli cells 
(Invitrogen). Plasmid DNA for injection was isolated 
using a Qiagen large construct kit. Each plasmid was 
sequenced at the distal and proximal sites of the dmyc 
promoter sequences before injection. For the reporter 
studies based on random P-element insertion, embryos 
from genotype y[1] w[1118] were used and for the stud-
ies with the phage ΦC31 integrase transgenesis system 
we used embryos from fly lines carrying different attP 
attachment sites (both strains were from Bloomington 
Stock Center, Bloomington, IN). The attP fly stocks 
used in this study are listed in Supplemental Table 2.

X-Gal Staining Assays
For each construct, 4–15 independent transgenic lines 
(except the largest construct [J1] for which only two 
independent lines were obtained) were dissected and 
X-Gal staining was performed at standardized reaction 
conditions.41 The incubation temperature for different 
tissues was as follows: discs 29 °C, embryos 37 °C, 
and ovaries at room temperature. For each construct, 
a representative disc, brain, embryo, and ovary was 
chosen for presentation. dpp-lacZ fly stocks (gifted 
by Dragan Gligorov, Karch’s laboratory) were used 
as a positive control, while y[1] w[1118] and attP-fly 
stocks were used as negative controls.

Reverse Transcriptase Polymerase Chain 
Reaction Analysis
Total RNA was isolated from the sample discs 
(Fig. 4, c–e; Fig. 5B, b; 5C, k, l; Supplement Fig. 5g) 
using an aMResco phenol-free total RNA purifica-
tion kit (Code N788 kit) with RNase-free DNase 
treatment (Promega, Basel, Switzerland) follow-
ing the manufacturer’s protocol. Total RNA 1 µg 
was reverse transcribed into cDNA in a reaction 
volume of 30 µL using SuperScript™ III reverse 
transcriptase oligo(dT) 20 primers and reverse tran-
scription reagents from Invitrogen (Carlsbad, CA). 
 Semiquantitative polymerase chain reactions were 
performed on the resulting cDNA using a high fidelity 
Phusion DNA polymerase kit (Finnzymes, Biocon-
cept,  Switzerland).  Polymerase chain reaction primers 
were designed for the lacZ reporter gene and Droso-
phila actin gene using PrimerSelect from the Lasergene 
 software suite  (DNASTAR, Madison, WI). All prim-
ers were synthesized at Microsynth. Primer sequences 

are  indicated from 5′ to 3′ in Supplemental data, 
Table 1. The polymerase chain reaction conditions 
in the thermal cycler were one cycle of initial dena-
turation at 98 °C for 20 seconds; 30 cycles denatur-
ation at 98 °C for 10 seconds, annealing at 61.3 °C for 
30 seconds, and extension at 72 °C for 50 seconds; 
one cycle final extension at 72 °C for 2 minutes, held 
at 4 °C. The polymerase chain reactions, 5 µL per 
lane, were run on 1% agarose gel for 90 minutes at a 
voltage of 120.

Bioinformatics Analyses of Regulatory 
elements
For defining the genomic organization of the dmyc 
gene in twelve sequenced Drosophila species, the bio-
informatics tool DNASTAR Lasergene 9.1 MegAlign 
module was used to edit the sequences taken from Fly-
Base. We used the Lasergene 9.1 MegAlign module 
with the settings “Multiple Alignment, ClustalW”.42 
The dmyc 5′ end was searched with the DNASTAR 
Lasergene 9.1 GeneQuest module for prediction of 
TATA box-Inr elements, the intron 2 region for the 
existence of an Inr-downstream core promoter ele-
ment and the 3′ end was searched for the prediction of 
polyadenylation sequence motifs. The phylogenetic 
footprinting tools, EvoPrinter and cis-Decoder43,44 
were used to detect E-boxes, bHLH binding sites, 
and multiple conserved sequence blocks in the dmyc 
region common to most Drosophila species. The neu-
ral network genetic algorithm PROMOTER 2.0 was 
used to predict promoter regions using CCAAT or 
bHLH recognition motifs.

Results
Developmental expression patterns of 
dmyc
dmyc is synthesized in a dynamic spatial and tem-
poral pattern during development of Drosophila, as 
determined by in situ hybridization and Northern blot 
analysis.7,35 We first sought to compare the pattern of 
dmyc promoter activity from our different dmyc dele-
tion constructs generated from upstream, intronic, 
and downstream regions, with both the endogenous 
pattern of dmyc transcription previously reported and 
with the pattern resulting from the dmyc-lacZ enhancer 
trap line w67c23 P{lacW}dmG0354/FM7c (Fig. 2A). The 
enhancer trap line w67c23 P{lacW}dmG0354/FM7c has 
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Figure 2. The dmyc-lacZ enhancer trap line w67c23 P{lacW}dmG0354/FM7c reflects the endogenous expression of dmyc mRnA in larval brain and  imaginal 
tissues. (A) Insertion site of the P-element containing reporter lacZ at the dmyc locus is shown. Breakpoints of the insertion are as follows: 3D2, 
X:3267141..3267197, which maps to the region 213 nucleotides upstream of dmyc exon 1 start site. (Bloomington Stock number and donor of the Stock: 
11981, Ulrich Schaefer and herbert Jackle). (B) Third instar larval brain and discs were assayed with β-gal reaction for lacZ expression. In all the tested 
imaginal discs and larval brain, lacZ patterning reflects the pattern reported for dmyc endogenous mRnA distribution (a–c: brain, d–f: wing discs, g–i: eye 
discs, j–l: leg discs). Details on dmyc patterning are explained in Discussion section.
Note: Yellow arrow indicates lacZ expression and white arrow indicates lack of lacZ activity. Staining time is indicated above the scale bar. Scale bar in 
(a–l) indicates 50 µm.

been established to give patterns of endogenous dmyc 
expression (Figs. 2B and 3) and is known to be respon-
sive to dmyc regulators.6,39,45,46 Beta-gal assays for 
this dmyc-lacZ enhancer trap line revealed ubiquitous 
dmyc promoter activity in the larval brain, with an 
increased level of expression in the distal and  middle 

parts of the lobes and within dividing neuroblasts 
in the middle parts of the ventral ganglion (Fig. 2B, 
a, b, yellow arrows). Additionally, lacZ activity is 
restricted to a limited number of cells distributed in 
the two proximal halves of the hemispheres and along 
the ventral ganglion (Fig. 2B, c, yellow arrows). 
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Figure 3. The dmyc-lacZ enhancer trap line w67c23 P{lacW}dmG0354/FM7c produces the endogenous dmyc mRnA pattern during embryogenesis and in adult 
ovaries. in the developing embryonic tissues the dmyc-lacZ enhancer trap expresses lacZ with high similarities to dmyc mRnA distribution, predominantly 
in midgut, hindgut, pharynx, anal pad and partly in mesodermal tissues. a–l: embryos (embryo stages are as follows: a, b, stage 1–4, c, d, stage 6–8, e, 
f, stage 9–12, g–l stage 13–16). The staining in the ovaries (m, n) reflects dmyc mRnA localization, which has been reported in nurse cells, but is weakly 
expressed at the tip of germarium.
Note: Yellow arrow indicates lacZ expression and white arrow indicates lack of lacZ activity. Staining time for ovaries is indicated above the scale bar, 
embryo staining took place over-night. Scale bar in (a–n) indicates 50 µm.

The enhancer trap line detected lacZ activity around 
the wing pouch and in the notum region (Fig. 2B, d–f), 
anterior and posterior to the morphogenetic furrow 
in the eye disc and around the center of the antennal 
disc (Fig. 2B, g–i) , and in the center of the leg disc 
(Fig. 2B, j–l). dMyc antibody staining of the tissues 
taken from the above enhancer trap line results in the 
same pattern as observed for the endogenous reporter 
(L Quinn, personal communication). 

Multiple conserved cis-regulatory 
sequences within the 40 kb dmyc locus
The occurrence of conserved regions and repeti-
tive sequence motifs in noncoding DNA has been of 

great value for the identification and characteriza-
tion of cis-regulatory elements. The phylogenetic 
footprinting tools EvoPrinter43 and cis-Decoder44 
can be used to identify conserved sequence blocks in 
developmental genes. EvoPrinter facilitates the mul-
tialignment and rapid identification of evolutionarily 
conserved sequence blocks as they exist in the spe-
cies of interest. The cis-Decoder then characterizes 
repeat motifs within the conserved sequence blocks 
and detects conserved elements among functionally 
related enhancers. It is important to mention that 
EvoPrinter and cis-Decoder do not detect polyade-
nylation signals or core promoter elements, such as 
TATA boxes.
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To identify cis-regulatory regions for dmyc, a 
40-kb fragment on the X chromosome harboring the 
dmyc gene of Drosophila melanogaster (Fig. 4A) 
was used as the reference DNA to align orthologous 
sequences from 12 sequenced Drosophilids to test 
for the existence of multispecies-conserved sequence 
blocks in the noncoding regions. We identified several 
putative enhancer regions with conserved sequences, 
including several conserved E-boxes, which are pre-
ferred Myc binding sites47–49 of both the CACGTG 
and CACTTG type (Supplemental Figs. 1 and 2). 
Like the c-myc promoter,50,51 dmyc has previously 
been shown to undergo autoregulation.52 The identi-
fied E-box sequences may represent the basis for the 
previously demonstrated ability of dMyc to undergo 
autoregulation.53

Comparison between the sequences from intron  
2 identified multiple clusters of conserved sequence 
blocks upstream of the predicted intronic promoter 
(Supplemental Fig. 2). In addition to two conserved 
E-box sequences (CACGTG and CACTTG), we iden-
tified a repeat sequence element (ATGTTGCCA) 
where the core TGTTGC is repeated three times (Sup-
plemental Fig. 2). In the large, approximately 10-kb 
3′-UTR region, we identified clusters of conserved 
sequence blocks, but no E-boxes as was the case for 
the intronic region (Supplemental Fig. 2).

Far upstream region determines activity 
of dmyc in late embryogenesis
As noted above, we have identified a diverse array 
of potential promoter regions and enhancer ele-
ments, which represent sequences that are likely to be 
required to achieve the patterning of  dmyc transcription 
throughout development. To determine which of these 
domains participate in the regulation of dmyc expres-
sion, we generated overlapping deletion constructs 
spanning the dmyc gene and examined the activity of 
each fragment throughout development. The creation 
of overlapping deletions was based on the sequence 
conservation and the existence of suitable exonuclease 
recognition sites in the region. We decided to first test 
the 8-kb far upstream fragment (JD, Fig. 4B) for its 
ability to self-initiate transcription, as reported for the 
far upstream P0 promoter in human c-myc.51,54,55

No activity was detected in the tissues known to 
normally express dmyc, including larval brain and 

imaginal tissues (Fig. 4C, a–e), the earlier embryonic 
stages (Fig. 4D, f, g), and adult ovaries (Fig. 4E, k, l). 
Reverse transcription polymerase chain reaction on 
the discs shown in Figure 4C (c–e), did not detect any 
lacZ transcripts beyond background level in these 
tissues that were negative for lacZ staining (Fig. 4F, 
lanes –RT-e). Activity of the JD-lacZ reporter was 
confined to presumptive mesodermal tissues in body 
segments and the head regions of embryos during late 
development (Fig. 4D, h–j, arrow heads). Previous 
studies have reported dmyc activity in putative neuro-
muscular tissues by in situ hybridization experiments 
on dmyc endogenous mRNA. However, the enhancer 
trap line used as the control in this study shows only 
partial expression in these tissues (Fig. 3, k, l). This 
result suggests that the regulatory sequences in this 
far upstream region are only sufficient for activation 
of dmyc expression during late embryogenesis. Due to 
its far upstream position, we have dubbed the remote 
cis-regulatory elements in this region “P0 (putative)”, 
analogous to the human c-myc P0 promoter.

Proximal upstream region controls dmyc 
expression in larval and adult female 
tissues
The two main promoters required for activation of 
mammalian c-myc transcription, P1 and P2, are located 
in the 5′-UTR, where the majority of transcripts are 
initiated.51,56–58 Thus, our first efforts were directed 
toward identifying regulatory elements in the dmyc 
5′-UTR, capable of activating endogenous patterns of 
dmyc gene expression during development. Analysis 
of the 7.2-kb region between the dmyc translation unit 
and the 3′ end of the JD transgene (Fig. 5A) revealed 
that when most of the conserved sequences were 
removed by successive distal to proximal deletions 
of the J2.1 fragment, a loss of reporter expression 
in both the brain and imaginal discs was observed 
(Fig. 5B and C). Interestingly, by staining embryonic 
and ovarian tissues taken from the largest construct 
(J2.1) and the smallest deletion (J7), we identified 
a proximal promoter region within the 5′-UTR, 
which recapitulated almost all aspects of early 
embryonic and ovarian dmyc expression (Fig. 5D). 
This observation suggests that the 2-kb 5′-UTR and a 
further 100 bp upstream of the 5′-UTR region contain 
regulatory elements important for embryogenesis and 
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oogenesis, but insufficient for patterning in the larval 
brain or imaginal tissues. It further suggests that 
the sequences 5.1-kb upstream of 5′-UTR contain 
tissue-specific enhancer regions responsible for the 
endogenous pattern of dmyc expression in the brain 
and larval imaginal tissues (Fig. 5B).

Full length intron 2 with downstream core 
promoter element activated in dmyc 
pattern
In most protein-coding genes of Drosophila, there 
is a downstream core promoter element that func-
tions cooperatively with an initiator to facilitate the 
binding of transcription factors in the absence of a 
TATA box.59 The high throughput expression data 
for the D. melanogaster transcriptome, generated 
by tilling arrays, has shown that most of introns 
are transcriptionally active within the early hours 
of development at specific time points.60 Scanning 
of the intron 2 region with cis-Decoder initially 
revealed clusters of multiple conserved sequence 
blocks common to most Drosophila species. 
A search using the Lasergene GeneQuest module 
identified a downstream promoter region with no 
TATA box, comparable with the Drosophila con-
sensus sequence (Supplemental Fig. 2).

To analyze the intragenic region of dmyc, we 
generated transgenic animals carrying the 8-kb intron 
2 full length fragment (J8), or the subfragment (J8.2) 
lacking the 2-kb distal sequences (Fig. 6A). The J8 and 
the J8.2 transgenes both showed dmyc-like expression 
in imaginal discs and brain tissues (Fig. 6B, a–h). 
During embryogenesis, both transgenes are active in 
the early and later stages (Fig. 6B, i–n). However, 
only the J8.2 transgenic animals, which lack the 2-kb 
upstream sequences, showed strong patterning of dmyc 
in mesodermal tissues (Fig. 6B, o, p). This suggests 
that the upstream sequences might contain elements 
that influence dmyc expression in presumptive 
mesodermal tissues. Unlike the difference observed 
in embryonic activity, the expression of LacZ in 
ovarian tissues remains unchanged for both transgenes 
(Fig. 6B, q). The reversed full length intron 2 fragment 
fused with its 5′ end to the 5′ end of the reporter gene 
(subfragment J8.1 in Supplemental Fig. 3A), causes 
the abolition of reporter activity in virtually all tested 
tissues (Supplemental Fig. 3B, a–g). This observation 

suggests that the core promoter element only functions 
unidirectionally. The experimental identification 
of binding sites for transcriptional regulators in this 
region remains unresolved.

Analysis of 3′ dmyc sequences reveals 
multiple poly (A) sites
In addition to understanding transcriptional activation 
of dmyc, we are interested in deciphering the 
mechanism of transcript termination. In animal cells, 
there is a hexanucleotide-sequence of AAUAAA 
(occasionally AUUAAA) that is located 10–35 
nucleotides upstream of the polyadenylation signal.61,62 
In addition, there is a U/GU-rich region (cleavage 
stimulation factor binding site) 14–70 nucleotides 
downstream of the polyadenylation signal.63 We 
searched for polyadenylation signals in the dmyc 3′ 
end comparable with the consensus sequence using 
the Lasergene GeneQuest module with a threshold of 
100% (no errors allowed). The threshold for the T-rich 
region was set at 80%. Analysis with the AATAAA 
sequence identified two potential polyadenylation 
signals, highly similar to the polyadenylation 
consensus sequence found in animal cells.61 The first 
A at the 5′ end of the polyadenylation signal, poly 
(A)1, corresponds to nucleotide +3761 downstream 
of the 3′-UTR and the first A at the 5′ end of poly 
(A)3 corresponds to nucleotide +5952 relative to the 
3′-UTR. A search for ATTAAA sequences on the DNA 
sense strand detected poly (A)2, with a high degree of 
homology to the consensus sequence. The first A at the 
5′ end corresponds to nucleotide +5245 downstream 
of the 3′-UTR. In order from proximal to distal relative 
to the transcription start, we named them poly (A)1, 
poly (A)2, and poly (A)3 (Fig. 7A). To test the detected 
polyadenylation signals separately, we performed 
successive deletions from distal towards proximal on 
the 10.3-kb full length construct (J1, Fig. 7A). The 
activity of each transgene was invariably high in all 
the examined tissues (Fig. 7B and C), suggesting that 
more than the three predicted polyadenylation signals 
are involved in the formation of the 3′ end of the dmyc 
gene. This finding is consistent with the observation 
that most developmentally active genes use more 
than one poly (A) signal to terminate transcription.64 
Direct determination of the efficiency of utilization 
of polyadenylation signals on the 3′ end of dmyc 
transcripts remains to be resolved.
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Effect of Upstream Promoter Region on 
Downstream Core Promoter Element
It has been shown that parameters such as stoichiometry, 
affinity, spacing, and arrangement of binding sites 
within the cis-regulatory regions influence the output 
of the transcriptional regulatory sequences.65 For 
example, depending on the total number of  binding 

sites for a certain regulator in the same promoter 
region, stage-specific and tissue-specific expression 
patterns can be achieved for the same gene during 
development.65

Here we have shown that truncations of conserved 
sequence blocks and putative regulatory protein bind-
ing sites at the dmyc proximal 5′ promoter resulted 
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in a loss of expression in larval brain and different 
imaginal discs (Fig. 5C). Conversely, removal of 
upstream sequences in the intron 2 region intensified 
expression in embryonic mesodermal tissues 
(Fig. 6B, o, p).

We tested the effect of the combination of 
these two regulatory regions on reporter activity. 

Fusion of the fully functional 5′ deletion (J5) inframe 
to the full length intron 2 transgene (J8) to gener-
ate the fusion promoter (J9, Fig. 8A), had no effect 
on the activity of the reporter in the tested tissues 
(Fig. 8B). However, the reversed (J5) transgene, 
fused with its 5′ end to the 5′ end of the (J8) fragment 
(Supplemental Fig. 4A), caused partial attenuation 

e

A

B C

N

−10 kb −5

dmyc

J2.1
J1.1

J1.3

J1.4

Poly(A)1
Poly(A)2

Poly(A)3

J1.5

J1

J1-J1.5: Brains/Discs J1-J1.5: Embryos/Ovaries

J5

B B BS S X

+25

1 kb

N: Notl
B: BamHI
S: Sacll
X: Xbal

+20+15+10+5
+1

a

i

k

j

l

nm

o

p

c

f

g h

d

b5 h

4 h

3 h

6 h

3 h

3 h

3 h

5 h

5 h

5 h

Figure 7. Analysis of the dmyc 3´ region reveals multiple functional polyadenylation sites. (A) The dmyc gene and its location in the genomic region, the 
10.3-kb full length construct (J1) and different deletions are shown. In the J1 fragment three potential Poly (A) signals with a high degree of homology to 
the consensus polyadenylation signal were detected computationally. The transgenes J1, J1.1 and J1.3 are under the control of the full length 5´-promoter 
(see also Fig. 5 part A). The constructs J1.4 and J1.5 contain the promoter of J5 in Figure 5. J1.1 only contain Poly (A)1, J1.3 does not include the predicted 
Poly (A) sites, J1.4 contains Poly (A)2 and J1.5 contains Poly (A)3. (B) All the constructs J1-J1.5 are capable of mediating regulated expression of the 
reporter in a manner similar to dmyc expression in the third instar larval brain (a, b) and discs (c, d: wing; e, f: eye; g, h: leg). (c) All the transgenes are 
active during different stages of embryogenesis (i–n; embryo stages: i: 2–5; j–l: 9–11; m, n: 12–15) and in ovaries (o, p).
Notes: Yellow arrow indicates lacZ expression and white arrow indicates lack of lacZ activity. Staining times for discs and ovaries are indicated above the 
scale bar, and embryos were stained over-night. Scale bar in (a–p) indicates 50 µm.

Gene Regulation and Systems Biology 2012:6 27

http://www.la-press.com


Kharazmi et al

of dmyc embryonic activity (Supplemental Fig. 4B). 
The mode of action of enhancer elements respon-
sible for embryonic development was dependent on 
the spacing and arrangement of binding sites, with 
the activity in imaginal tissues and ovaries remaining 
unaffected.

Discussion
The dynamic expression of dmyc is initiated from 
multiple transcription start sites, as summarized in 
Figures 9 and 10. Tight regulation of dMyc is crucial 
for cell growth and division during the early phases of 
development and cell fate specification. In third instar 
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larvae, dmyc mRNA is detected around the wing 
pouch and in the notum.66 dmyc activity is absent from 
the cell cycle-arrested nonproliferating cells that sur-
round the dorsoventral boundary in the wing pouch.66 
In the eye disc, dmyc is synthesized in the proliferat-
ing cells posterior and anterior to the morphogenetic 

furrow, but not in the cell cycle-delayed cells of the 
morphogenetic furrow.7,35 In antennal discs, dmyc 
mRNA is mainly detected in the central ring of pro-
liferating cells.7 In the leg disc, endogenous dmyc is 
expressed around the middle of the disc, with the cen-
tral cells lacking dmyc  activity.35 Maternal transcripts 
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are detected in the nurse cell cytoplasm of the adult 
ovary, and are subsequently dumped into the oocyte, 
and can be detected in early embryos.7 Zygotically 
derived transcripts can be detected during preblasto-
derm, with the highest level of dmyc mRNA in the 
anterior and posterior termini. At later stages, dmyc 
mRNA can be detected in the presumptive meso-
derm along the ventral midline. During germ band 
extension, dmyc expression intensifies in the meso-
derm and endoreplicating cells of the midgut, where 
expression continues until mid-embryogenesis.7 The 
majority of developmental genes achieve patterning 
via large noncoding regulatory regions containing 
numerous cis-regulatory elements and other diverse 
regulatory sequences.67,68 Thus, we set out to deter-
mine whether the pattern of dmyc expression might 
be similarly regulated. First, using computational 
comparative searches of the 40-kb region spanning 

the dmyc gene, we detected multiple conserved 
sequence blocks. Our subsequent analysis of the dmyc-
lacZ reporter constructs, containing all of the con-
served sequence blocks, suggested that they were 
transcriptionally active and generated similar patterns 
of reporter activity as that described for the endog-
enous dmyc-lacZ enhancer trap.6,39,45,46

Dissection of the dmyc promoter using constructs 
spanning defined domains of the dmyc gene revealed 
the regions likely required for tissue-specific patterning 
of dmyc transcription. For instance, the lacZ reporter 
for the far upstream 8-kb fragment produced an expres-
sion pattern restricted to late embryogenesis in body 
segments and in presumptive neuromuscular tissues 
(Fig. 4D). In silico analysis revealed possible regulatory 
motifs in this region, including core promoter elements 
and conserved sequence blocks. Regulation by these 
cis elements may be required during embryogenesis,  

5' - gagaGCGCGGCagtctggtacgatagAAATTTTATTTAAgccacagacaacatgaaacgggcaCTATTTCtgtggcgtcgCGTGTTCAGTTCACCGCGGGtaattcagagaatcgcttgtggattggatttttgcc - 3'
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where dMyc is required to specify neuronal fate and 
facilitate neuroblast proliferation69 and in control of 
mesodermal fate determination.70 In light of this find-
ing, further analysis of dmyc transcriptional regulation 
in this region in response to developmental signals 
will be of great interest.

Analysis of the 5′ dmyc-lacZ deletion construct, 
containing intron 1, the 5′-UTR, and 100 bp upstream 
of the predicted transcription start site (J7), revealed 
that this minimal region was sufficient to give 
reporter activity in a dmyc-like pattern in both ovar-
ian nurse cells and in the embryo, but not in larval 
tissues (Fig. 5C and D). Therefore, we inspected the 
region extending from nucleotide 100 upstream of 
the 5′-UTR to nucleotide +187 for initiator consensus 
sequences. In most mammalian protein-coding genes, 
there is a TATA box located 25–30 bp upstream of 
the transcription start site, an initiator element (Inr) 
overlapping the start site,71–74 and/or a GC-box (SP1 
binding site) 60–100 nucleotides upstream of the 
transcription start site.75–77 Experiments with verte-
brate cell lines and Drosophila embryonic extracts 
have revealed strict conservation of the Inr consensus 
sequence, Py Py A+1 N T/A Py Py among vertebrates 
and invertebrates.73,78

Analysis of J7 (the region 1914 bp upstream of 
the predicted translation start site) and the expressed 
sequence tag (ESTGM01143; beginning at 1812 bp 
upstream of the translation start) revealed that the 
102 bp sequence between the 5′ end of the expressed 
sequence tag and the 5′ end of the J7 genomic 
sequence contains a perfect Inr consensus sequence, 
a TATA box and a GC box (Fig. 10B). We named 
it the GC box/TATA box/Inr promoter 1 (P1, Fig. 
10B). The TATA box is located 39 bp upstream of 
A+1 in the initiator element. Previous reports have 
shown that occurrence of a TATA box 25–30 bp 
upstream of the Inr in the same core promoter leads 
to cooperation between the two elements to enhance 
promoter strength.73 Although the distance of 39 bp 
in the dmyc promoter is on the edge of  this optimum, 
cooperation between the TATA box and the Inr 
element has been shown to extend up to 90 bp in yeast 
promoters (W Schaffner, personal communication). 
Together, this suggests that the predicted regulatory 
elements (TATA box, Inr, and GC box) correspond to 
the cis-regulatory elements that may be responsible 
for correct developmental dmyc expression in larval 

tissue, the embryo, and the ovary. In addition to the 
TATA box, Inr, and GC box, two putative TATA boxes 
(TATA2, TATA3), two GC boxes (GC2, GC3), and 
two Inr elements (Inr2, Inr3), as shown in Figure 10B, 
were identified 180 bp downstream of the expressed 
sequence tag start site. The putative Inr2 element 
shows one deviation from the Inr consensus sequence 
at position +4, but the critical positions for Inr 
activity are +1 and +3, and single bp substitutions at 
the -2, -1, +4, and +5 positions can still produce an 
active Inr,79 suggesting the second Inr element might 
be functional. The putative Inr3 element shows no 
deviation from the Inr consensus sequence, suggesting 
that Inr3 might be as functional as Inr1. TATA box 2 
is located 57 bp upstream of A+1 in the Inr2 element 
and TATA box 3 is located 55 bp upstream of A+1 in 
the Inr 3 element, both distances less than 90 bp in 
yeast promoters.

Most developmentally expressed genes contain 
separable cis regulatory units, which allow patterned 
expression for tissue-specific roles.68,80 Indeed, 
previous work has suggested that both Drosophila36 
and mammalian51 myc transcription is also regulated 
via intronic promoter sequences. In support of these 
findings, we demonstrated that the J8 transgene, 
which contains just the intron 2 sequence of the dmyc 
gene, results in lacZ reporter activity in all tissues 
examined (Fig. 6B). Thus we searched for Inr and 
downstream promoter elements, a sequence motif 
common to all Drosophila downstream promoters in 
this region. Most protein-coding genes of Drosophila 
contain a downstream core promoter element that 
functions cooperatively with an initiator to facilitate 
the binding of transcription factors in the absence of a 
TATA box.59,81 A search for consensus Drosophila Inr 
(T-C-A+1-G/T-T-T/C) and downstream core promoter 
elements (G-A/T-C-G) using DNASTAR Lasergene 
9.1, GeneQuest module, revealed the presence of 
downstream promoter sequence motifs comparable 
with the Drosophila consensus Inr/downstream core 
promoter element.59 Sequence motifs were typed in 
GeneQuest “type in pattern function” and searched 
for with a threshold of 100% (no errors allowed). The 
Inr and downstream promoter element motifs at the 
3′ end of the intron 2 DNA sequence (Fig. 10B) met 
all the strict criteria for such elements, in that the Inr 
sequence motif (T-C-A+1-T-T-C) does not deviate from 
the consensus, the downstream core promoter element 
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(G-G-T-C-G) is identical to the core consensus, the 
spacing between the downstream core promoter 
element and the Inr (34 nucleotides) is appropriate, 
and a G nucleotide is correctly positioned between 
the Inr and the downstream core promoter element 
(Fig. 10B).

Post-transcriptional 3′ end formation or polyadeny-
lation of the mRNA precursor is a crucial step in mRNA 
maturation, in which most eukaryotic mRNAs acquire 
a poly (A) tail at their 3′ ends to promote transcription 
termination,62 transport of the mature mRNA from the 
nucleus,82 and to enhance the translation and stabil-
ity of mRNA.83 Analysis of the entire dmyc 3′-UTR 
for polyadenylation signals and polyadenylation sites 
revealed three potential consensus sequences, i.e., poly 
(A)1, poly (A)2, and poly (A)3, which are all capable 
of terminating transgene transcription. In addition, 
the 4.362-kb DNA sequence upstream of poly (A)1 
at the dmyc 3′ end leads to reporter activity in the pat-
tern predicted for dmyc expression. Therefore, the 
dmyc gene would be predicted to produce different 
transcripts with shorter and longer lengths, consistent 
with the previous analysis of dmyc mRNA in which 
genomic probes derived from this region revealed 
three alternative transcripts.7 Comparative analysis of 
the 3′ end of dmyc across 12 sequenced Drosophila 
species revealed multiple conserved sequence blocks 
in this region. Given that c-myc is regulated at the 
level of mRNA stability84 via conserved sequences 
in its 3′-UTR,85 it will be of interest in the future to 
determine whether the stability of dmyc transcripts 
depends upon the presence of regulatory domains in 
its 3′-UTR. The conserved sequence blocks may con-
tain potential microRNA target sites to serve for post-
transcriptional modifications, as is the case for the 
majority of developmental control genes.86,87 Indeed, 
dMyc has an active role in microRNA biology,87,88 
although regulation of c-myc by microRNAs has 
been reported,89–92 the evidence for direct regulation 
of dmyc requires investigation. This work provides a 
starting point for investigating the putative microRNA 
binding sites and the mechanisms for the interactions 
between these motifs and their targets.

Because c-Myc is a potent mitogen, the level of 
c-myc transcription must be tightly regulated. Myc 
transcription responds to developmental signaling 
molecules,33,93,94 which are likely to modulate the 
complement of a wide variety of transcription factors 

at the myc promoter.95,96 The evidence presented in 
this work reinforces the idea that dmyc represents 
a tightly and dynamically regulated gene. Further 
genetic studies combined with genomic approaches 
will be required to identify the molecular mechanism 
controlling dmyc transcription via the regulatory ele-
ments identified here.
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Supplementary Materials
Table S1. Analytical primer pairs. 

No. Name Primer sequence (5′ → 3′) bp Usage

 1 PX1 AcG GTT GGc ATT GTT GAc Tc 20 
19

BAC clone RP98- 
2A13 sequencing primers 2 PN1 AAT TcG TTT Tcc ATA GAT A

 3 BAc-F cTT cGc GTc cAA cAG ATG 18 
21

pC-RP27 sequencing  
primers 4 BAc-R GcG ccA AAG cAA GAG GGA ATG

 5 pZpA-F ccA AAA AAG GGT TTc ATT AAc TTG TAc AcA TAc 33 
30

Sequence pLacZ-SV40  
polyA 6 pZpA-R TTG GGG ATT TTA ATA GcG GGc ccT GTG TGT

 7 SV40 GTT cAG GGG GAG GTG TGG G 19 
 
20

SV40 P(A) sequencing  
primer 
pJ8 reverse sequencing  
primer

 
 8

 
pZR

 
cGG Gcc TcT TcG cTA TTA cG

 9 pcaF GAc GGc GAT ATT TcT GTG GAc 21 
24

pCaSpeR4 sequencing  
primers10 pcaR ccT TAG cAT GTc cGT GGG GTT TGA

11 PolyA0-F ccc ccT TGc TAT AAc ccG TAT AT 23 
31

PCR – pJ1.3
12 PolyA0-R AAA cGG TTT cTA TAT ATAGGccTG  

TGT GTG T                          Stui
13 pA2-F-04 TTT GcT Gcc AcT TcT GTGGATccT cAT  

AcA TT                                   Bamhi
32 
 
38

PCR – pJ1.4

14 pA2-R-05 GGT TTT AGc GGc TTT GAT cGG TcTAGA AAT AAT ATT TT  
                                                              Xbai

15 pA3-F AAG GGG AAA cTG ATT GGATcc AAA AAG cAc A  
                                            Bamhi

31 
 
32

PCR – pJ1.5

16 pA3-R cGc cTc GcT TTc ATA cAA TcTAGA TAA TGT Tc  
                                                    Xbai

17 dm5e2F GcG ccA AAG cAA GAG GGA ATG AAc 24 
43

PCR – pJ2.1
18 dm5e2R cGG GAG AG GGTAcc TGc GAT TAT GTT GTc T 

GGG TTT TTT TTT c Acc651
19 in2-5F GAc ccc cTGcGGccGcGG TGA GTc AAA TTT ATA TAc TTT T  

                             noti
40 
 
37

PCR – In2.5′

20 in2-5R ccc cGT cGcGGccGc TcA cGT AAG cTT TTA TAc TAA T  
                          noti

21 in2-3F GcA AcA GGTAcc GGc TTG TGT GcA TTT TAT TT  
                  Acc65i

32 
 
35

PCR – In2.3′

22 in2-3R TcG ATT GGTAcc TcT GcA cAG cGA TAG TAA AAA AA  
                  Acc65i

23 P9-F2 TGT AGGGccccA AAG cAA GAG GGA ATG AAc AA  
            PspOMI

32 
 
32

PCR pJ9

24 P9-R2 TTG TGT GTGcGGccGcTG cGA TTA TGT TGT cT  
                            noti

25 P1-3-F GTT GGA cGA cGc GAA GAT GAA AGA GAA 27 
32

pJ1.3 sequencing primer 
pJ9 sequencing primer26 P9-R TTG TGT GTG AGG Gcc cTG cGA TTA TGT TGT cT

27 pJ8.1-F TGA GcG cGc GTGGGcccA cTc AcT ATA 
                                PspOMI

27 PCR pJ8.1

28 pJ8.1-R cATGTAcAT GGcGGccGc TcA AGA cAc c 
       BsrGi                noti

28

29 cDS3-F TTA cTA TcG cGG TcTAGA TGA GGA AAT cG 
                                   Xbai

29 PCR dmyc cDS3′

(Continued)
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Table S2. List of the Fly Stocks used in the study. 

No. Bloomington  
stock #

Name Genotype with FlyBase links

 1 6598 y w y1 w1118

 2 23648 attp-86F P{hsp70-flp}1, y1 w*; M{3xP3-RFP.attP}ZH-86Fb; M{vas-int.B}ZH-102D
 3 24480 attp-2A y1 M{3xP3-RFP.attP}ZH-2A w*; M{vas-int.Dm}ZH-102D
 4 24482 attp-51c y1 M{vas-int.Dm}ZH-2A w*; M{3xP3-RFP.attP′}ZH-51C
 5 24485 attp-68e y1 M{vas-int.Dm}ZH-2A w*; M{3xP3-RFP.attP′}ZH-68E
 6 24871 attp-VK00033 y1 M{vas-int.Dm}ZH-2A w*; PBac{y+-attP-3B}VK00033
 7 24872 attp-VK00037 y1 M{vas-int.Dm}ZH-2A w*; PBac{y+-attP-3B}hafVK00037

 8 2376 Oregon Oregon-R-P2
 9 2475 double balancer w*; T(2;3)apXa, apXa/cyO; TM3, Sb1

10 11108 blue balancer Cyo, P{lArB}A66.2F2/b1 Adh* cn* l(2)**; ry506

11 8412 dpp-lacZ y1 w1118; P{dpp-lacZ.Exel.2}3
Notes: The attp-lines, 86F, 2A, VK00033 and VK000037 show strong activity of the reporter lacZ. The expression of transgene in the attp-strains 51C 
and 68E is weak. For random P-element mediated transgenesis embryos were taken from the y w (6598) flies. Oregon flies were used for dmyc in situ 
hybridization in different imaginal tissues. The fly stock “blue balancer” that expresses lacZ in embryos and ovaries, was used as a source for positive 
control in the embryos and ovaries staining. The dpp-lacZ line was used as positive control for the imaginal discs staining.

Table S1. (Continued)

No. Name Primer sequence (5′ → 3′) bp Usage
30 cDS3-R TAA Gcc GGGccc ATG AGA cAA cAc TAT 

                  PspOMI
27

31 cDS5-F AcA AcA TGGTAccAA TGG ccc TTT Acc GcT cTG  
                    Acc65i

33 
 
35

PCR dmyc cDS5′

32 cDS5-R TAA ATTcTAGAc Acc GGA ATc TGA GGG GGT cTc cA  
               Xbai

33 AcT-F01 cGc Tcc ccG TGc TGT cTT cc 20 
20

JD, J7 discs RT-PCR:  
detection of actin 
transcripts as  
internal control

34 AcT-R01 GcG GTG Gcc ATc Tcc TGc Tc

35 lacZ-pcr F TGG TTA TGc cGA TcG cGT cAc AcT Ac 26 
26

JD, J7: RT-PCR on discs 
for detection of lacZ 
transcripts

36 lacZ-pcr R cGG ATA AAc GGA AcT GGA AAA AcT Gc

Notes: The oligonucleotides were designed with Bioinformatics tool Laser Gene 9.1 module Primer Select and synthesized at Microsynth AG, Switzerland. 
As indicated the primer sets were used for sequencing and amplification of dmyc noncoding regions as well as for sequencing of cloning vectors and 
injection plasmids. Orientation of the indicated primer sequences is 5′ → 3′. Length of primers is in base pair (bp).
Abbreviations: bp, base pair; CDS, coding sequence; RT, reverse transcriptase; PCR, polymerase chain reaction.
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ChrX:3,253,853-3,261,899
ggccgccgactcaacctcagcccctcgccccttccccccttccccttctcatgctcctttttggggaaactgtcgccTCAAAAATAGTTTATGTACGAATTTTTGATTTGATGCCAAA
ATGTCaCcgAATAAATAtgTTTTttcgaacacagcgagaaaatgtgtgatgtcggcaaactgaaatttaaagtactttaaccccttttttttactggccacacgaaacgtctgcctat
agagttgtaacatcaatttagcaacatagttcattttacttcgatttcattcgacttccaaacatttatcggcaattaacattcgaccgcaaatttcttgcttccctttcaagtattt
ctattattattattgttgtgcctttgggcctgccaaaatccataatgtttgctcgcaaattagttttaaagactttccagttcgcagacataggcgcatgtgaaacacatttgagggg
gctgttgcccgtgggaggggggggggggcagataggtaggccaatgatctaaacgccgaaaactcgtcgtcaagagccaaaactaaacagaggcggaaaaaactacgccaaagtgaaa
cattcactgactatctacatatatttgtatcaacgagcggcatagccgactgaaaaaatcgcatacaaacatttggaaatcgaaaaattcaaatgcgaattagataaaatgcagtgct
gttaacgactttagttgcacatattattaccaactagtgttggctatgcatattatttatgatttcagtttagatgcttgatagataaatgctcttttaaaattcacaaaccatgatt
aacatattcccaagcttctaaatgtattacacaatttttgtttaattactttttattgtttgtaaagatggagcactcgccttactttgcatacacaccctgaagaatcataaaagac
tcgccttttccgtgtagcgtatcgtacttataaaaacgaaactgtagacgaaatgtaggaacaacaacaataacaacaacaaacagcagagcaaatagaaacacactaaaaataacaa
caacaacaacaacaacaacaacaggtaggcgagtataacaaaaagttttcacgactttttcggctttgtaataatttcattttattttctaattctggctacagttggatacaccaca
cactcgAgATAaATTTAtTATTTCATGCTAATTtctTTATCTTTGACATTctgcttaaaaactcagcatactgtagttcgttggattttgtgaagggcgttggctgggtggtgaaaag
ggggcggtgggaaagggatcaacaacacattttcaattgtatttttgttttatgtttctcatttttttttttttttttttgtatatttctttgcttatcaccaacacgtgtcattaat
ttgcgtttgcgttcacttttatttgtatgttttatgtatttattttattttattgtatggaaaatttaacgtctgaacaagtttcaatcggatatattttagtatctcgagaatactc
atagcaacaggtacataatttccaataaaacgtattgttattaaaaaaaaaaaaaaatcatcgacatttattatacattttaatatttcagaattcagaataatatgtatactacgaa
attagttttcgattttccgctgaagccaagacaggaaaaaaacgttgtattttcgagcaattcatttaactgtgtactgtttttttttttattgaccatcttgtcttaattttggtgt
atttaaaaacaatcaccgatggaAAATTttCCAcaaAcaTGGAAACAAGTTCctcagatatatCTCTGAATTATGTATAAGCAtacatattatatatgccatgccatttgcctttttt
ttattgacttgaactctgAagCAACTGCGTAGatgttgaattcaaatccatgacagaaatgttcaacttattctgccgtGTCAAcGAatattttttctcgtgtcgtaTAAGGTGACAT
TTCCTGCagaatcggccttcgaagcattttctttattttattttattttatttcgtttttttttatcttattttatttcgagtggttgttgtgtctacggcgcaatttagtacacttt
ggtcccttgctttttggccaactttagctgacacttttttccgttcaataaagcgaaagaaaaaaaatgcagaaaaacgcagaaaaatgcacaaacacAGCGAAATTcAATTttTCAC
atcgcttgagaaatggaaattattgattattgaaaaacacaatgagccctgtaattcaataacaataataatattgtttgtcatttattaatcgagaatgcctaaacctcttgtaatt
ttatatttcgaaaggtgatgacaaaaatattttggacgatttacaaaagttttcgagacgaaattgaatgaaaattgtataatcaaagaaaattgcaaatcaaatatttcgaattcgt
tgcaaccaagaatattttttatgtatttcccacagcttacaaaaaaaaatatgtaaaatagaaaaaaaaaaacatgataataaaaattatgattatttattctttaaaattcttttga
aaatatttttgcaattgaaaaatcgtaaattctttacgttgcttcctattcgcaattatttcaagtggtgctttgctaaccgccccctgttcacccctttcgatttgatctatcagca
tatatttatgttcatatagcTtTGCACTTGAAAccagcggaaAAAAaaacgatgcgtttTaAATTtccattaaaaaacgattttctagagtaggaacttcGTTCtCaAGAAgtgAATT
tGAgaAgcccGGAATGTCTGACTttgtgagttttcgttttcaccaatttttgtttatttcttaatatttttattgaacaaagcggaaggtcttacaattttgttTcCACGcGCCAAat
tttgtttttggcttgctgtcttattagcgaatgaaaacagtgttgttaagtaaacaatgcaacgcaatagattgaggcacttgtgcttgtgcaaaatgtcagttacttggctttggta
tttggcaacataaagcaaagtggttggatctttggattcctgcacatacatacatacatatgtatgtatgtacctatgtacatttatccccaatagaaatcgttatctgtagccgatt
cgtcatgcgtgtcaaggctgtggggcaaagtgcgtgaaacttcttaaaagttaatcggacaccagtgtgcgtggaaaagctgacaaaacacaaatgtgataaaaagccagcaaatgct
aaacccaccatcgcctatcttgccctctctgctttcccatattccttcgccttctgggcgcgtgggaaaatagaaactcaaccgcagagtttaatttcgttttgttattttgctcgtg
ttttttgttttttctgttttgagtttcttgttgctacagcaagttagataaaatggaaacaaaacgacggaaaacatcgttctcactggcaacaaacaaaaaaaaaaggggtatacga
acactggttaccccctttttttttgcgagatccaattttaatagtaaagatactgtaaatctcttacaatgaatgccattatttcatagcccgctaaaatattcttagtaaacttagt
tttaaagtgcaatgaatgcaataatacatcttgtaccatctcactttcgaattatattcgatacgatcctctctaatcaaattaggcaattggctacaatctttttttttttttgtca
cgtgtcacgagccgcaatccagcgatcaaacccggaagagcggtgagttgggtgggtttttttttttttcggtggttccagtggttccagtggtttcagtggtgctattactctgggc
aggtgctggcgatccggactggttgcggatcgctttgattgtttggacatttccatacactggtcatgcgccatcgattgccagttcttacacaggaaaaaaaagcacagacatttgc
cactgcgatctcaataaaacaatgtatgtatgttcgcttcaaagttatcatcgatttcatcattaaattgagcatatttttccttaattttgcactttgccaattattgcacattttt
tcttactgtgtacgttctaaagggctgcgaaccggaatggaccagtgggccacgctccacactcaattgatcaactgccgctttgaatatagattggattggcttaatattaagaaat
ataatacatttttgtggcaatatcatggaatgtgtgagctgcgaacactgtggttgatctacagtttgtactcgataaaagtggcttaatataattcgaaaaaatatccttcattctg
tattgccagtggttattattattttttattttttataagaaaccagcagcaatacttgttatatggtaaccatgtataaattaaatcttttttttaatgagttactatattatttgta
ctcttgatatcaaaaaagtcaagcttggcttttatctgaattcttcgaaaatttcagagattatataaaacggttgtttccgctattcaaattcaagtacatacacaataatgaagta
ttaaaaaacgcgaaaaaaaggtttcggcccaccgtttgaaacatacatacatacatacatacatacatacatacatacgttagcacaacaacaaatgccacaaaaaaacaatacgaaa
AAAACgAGGTTCAGGGTCAgCGATGTAATATTTTAATTTATtTggcaTTCTTTCTTTtacCCtccAcaTtcgcaacattcgggtttttTattgTTTgaTTatttttttttttgttatt
ttttttctcacttttcttagcacaaagcgtttgtgtttcttctgctggactTTTTTGTTTTGCTtTTcgATTCGTAAgctttcaaaactctTtCTaagcccactgacttccattattc
tatatcttcaatttttttaaagaagttagtatctaaacaaataaatcattgcatatattaggtaacaagtgcaatgacttaatgtattacacaaacattaaggacttattcaaataaa
aatatggaataaaaaaaatttatacaatttttgtgattttaattattgcaaaaaatgattcatagcacatattttccaatgatctagtgttgctcaacgttcgtttttgagactttcg
cgatttcccatggcctcttgttcattttgttcattatgtagaaacttaatttcgattttcggggctttcggttcgAtttGtcCATTAATCTTTCGCCtCgtATTgagtggttagccCC
tcTcCCTTtgtGGCcTTTgTTctTCCAATTTGCTTAATTAACTTCTAAACGTCGtCTTTTTTTtattagcgttttttttgcacgcttcgttttttggtgtgtgtgtgtgtgttttttt
tcttgcactcaacttctttttcatctttcttcatGtccgAAAtTccctttttcgaaCAGTTTcgtttTGgtcttttatctgttttaaaatttgcgttctcgaattttgtcttttatca
gcaaaataaatgaaatcgggatgatttaacccttgcgaggctgtcttatttatatgtatacatccttttacatttcaagatttctgcgtacacttagctcacctttttggcatatttt
atgggaccatcttaatctacttccttagtccatcatcatctagtaaatttctgtgcatatctttattaacttaagatcggctaagttggcagttagaagctgataacagcccctcctt
gattgtgactaactaaaaacccacatgaagaaacatatagtggatctttctgaccttgctttgcgttggccaaaatttattgctgcttctttgttaggcgttttttttttatggtccg
acattattaataaaaccaaaaagctgtgcgtggaaaagtgcgaacaaaaaaaatgcgtgaggagcaaaaatgtttgaaatgccaacgaaaaaagaaaaaaaaacgcgtatgctaaaaG
attatggcggcatttatttcttttgcgaaatcgcgcgatacggacCTTGAtTGATAAccaaactataTATaactataaatatatgtatgtacatatATactaaatttacctatagtgc
tgttatagcaaccaaacttaaaggccttcaaaacggcaaaaaacgaagacgaagaaaatattttagaaaaacgaaaaagtgatagtaaattagtttagtttagtttgaattatactac
gacacttaagactttgacaattgataagatttcattggggcagatatagatattgtgctgccaactaaatgtataacttatatatacgcacgtttctagatacggatagcattttttg
ctagatttcaagagaaaaggggaaacttaattagcaactgattaaaacggggaaatcacagcaaagcctcttacgactgcagttaactaatcatttgagatacaaaaaaaaaatccta
attacgaaacggaatcaaaggatatttcaagtacaccatttcaaaaataatcaaattaaaatctaagcacacattttctattcccatcagctacataaatattgaactcatggtggaa
aaaaaatcatcatccttggcgtgatttttaccctgacatttagtcgattgacttaaatatctccctcaactttcttttcaaacgcaagcaaactcagcgagttgtatttagaaaagcg
accccagttggtctaaaattaacatagccccaaactttttttcggtggccagaaaatcccgtctaaggctgaacaaaaatagtccatctatctttgcatctccaactctatcggcatg
tgtagcttcatagtttaaagaacagagcaaaaaaaaaaacactaaagtttttcgaaattttagcgatattccattgaaatatacatatgacattttgtattaacaattgcatacatgc
attttttgaaaaacatcttagaattaccgaaagatcgcaatgtcatcgattcaatattctttcaattcgttttaaagtttgccgactttatctcagtgctatttgtttagtgctgtct
tgggaagtttgctgatatacatatgcatgtatgtatttttgttggtcgccagcgctaaaggtcatgctcttggcgatcagaaagagacggcagaacggcgaaagaaagagacgcccag
atgccaagtgacagacgtgagtgacagagagcaaacgaaaaaaaatacagaaatgaaaagcgcaagaaaattctgttatccgaaaataaacaagaatattatctcggcacccagacgt
ggaaatattagttttggaaagccgaagaGCtgGATTTTcccgcttatcGTGcGTGTGTTTAAcGAtTTTCCCcgacGATAACCTCAAGTGCaACATTGACGAGAcGtcgggggtctga
agtggagaagtatctaagtatctaagtatcggtataggagtatgggagtagcaggtatagccagttcaatttccttcttccctggggtcttttttctattccattccaggggtatttc
gaaaatatatacatacgtagttgggcttaggggtgaatatagttaaaaactcgagttttcaattgaaattattaccaacttccaacagaactacaacaatttgcacgaagatcaggct
gttttggtgttcttaattattttttttctagattaattctagctgaaatgattttaaaaggtatcccttagtcgaaccgaacgcatttggttcttagaaatattttttcttttgtttt
tttggtgttgattgttttcccccgtggcttcaatttggaactcctcaagtttcccctgtcgagtgggtcctttttctctttattttgtgccctgtgccacttgtgtgtgcaccacttt
tcgggcacttttccccagagatcacaacaagtgcacgagtgtccgtccagggaatggggaaatttggtattttccctaacgaattccatccgtgaagcttcaaaattaatcagcgaaa
aaaaataggatactccgtgaaag

Figure S1. evoDifference analysis of the distal 8-kb upper strand of the 40-kb D. melanogaster dmyc locus detects conserved sequence blocks. Each 
block of uppercase bases represents a cluster of conserved sequences. Black capital letter bases are conserved in all or in all but one species including 
D. sechellia, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D. willistoni or D. virilis. There is one E-Box, conserved in all species except D. virilis 
(white text with black highlight). The neural network genetic algorithm PROMOTER 2.0 predicts three possible promoter regions using ccaat or bHLH 
recognition motifs (lower case black letters). The yellow highlighted sequence includes a highly likely promoter region (dubbed as P0 putative). Sequence 
orientation is 5′ → 3′.
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ChrX:3,263,512-3,263,983
agtgtttcggcaacatttgagtttgcttggccacagtgtttctgcaacaaaaagaggggaaacttaaaaaaaactcactcatttcgttctgtgatacactgtatatgaggcttttgct
tttgcattgttttgatttttttcaatctagtgtgccgttataaaatcgccacgctgcacttttgttttgccatttacgctcttggcgaattTGTTGTGTGAgcaTGTGAgtgtgtgtg
tgtGTGTGTGTGAGcgcaactgtaccggcgtcttctttcttcgtcctttttctttcgtgacgaagctttTTGTTGtTTTTGCAGCTGCcGTTTtcgccctttctattcaccttccaac
atcttatgtctgtcttcacacttacattctaggcgtatatttggaagtgcacatgcaaaacggcaaaaaaaatcgagagcgaagataaagacgaagaagacaacgaaataatttgtaa

ChrX:3,264,456-3,264,691
atgacatgaatccatccatacaatcaaaatacctgtaaaactttccttattgcgtattataataaaagtacctacaattcgaaataacacttaaagagagggtgtgatttttcgtcgc
cttagatttgaacgtatttttacgtttttgtagtaaaataccaatacatgggtaacgtgaaaaaaaatAAGAAGtcgaAGATAgcgACaTtgTTGCAAaaGaAAgactagtgcgcaat

ChrX:3,265,046-3,265,281
tcccataactgccggtttattcgatttactgccaatgcattgcatttttacggccaattttttgaaagcttgcaaattcttgacaaactagatatggaaactcggcagccacttgctg
ccgTTATTTACGCAGTTGTTTTatctcgccatgcacactttccatttacccgcgaaacaaaaaaaaagtgcagaaaatagtttAaTActattACAAaAACAagcagcacacgcaaaca

ChrX:3,265,636-3,265,753
ctcGTTGCgAAATCAAAACAAAgcgtgtgaaagagagggcagatgcacgcgccaaaagcgctatgttgtgcactaaaagttgtggaaatgaaaatcaaagcgaaacgtaacaaaatcg

ChrX:3,266,226-3,266,579
tggctcttcttttgtttctaccatgcggcctaacttttctattattgttaaatgaattctgcaTTGTTTaCAAAGTTCAcaaGTTCAATCAACTTGACAAAacggaaaaTGaAGTTGc
gtggcagacaaagaggtgacaaaggcacacacgcacataAaaaaaagtacggtaaatgcatgcatagataaaggaaagggcaagaaggaaatacgaaagaaatgtaaggcgccaaagc
aagagggaatgaacaacttctcgcaacttctacgcaaaaaggaatagagcttaaaataaatcgatttaaaaataggaaacatttatgcggcaatgaagaatcccaaataatgccacag

ChrX:3,269,878-3,270,827
tttaagccacagacaacatgaaacgggcactatttctgtggcgtcgcgtgttcagttcaccgcgggtaattcagagaatcgctttgtggattggatttttgcctgttttccgcccgata
caaaaaaaaaaaaccaaacgctatataaatagttctgtagtaaaacctgaagcaacacgttttaaaatatacaactactactaacaactgtcacagccaagttacaaaagtgctaaatc
ccagaaataacctaagagccgacttaaaaccgcgcaaatacataaaaaaaaatcttctccaaagcagaaacaaaaacttgtgaaaaactagaattaaaaaaagattttttaaaaaaaat
cagctagtgcaaaataaacgggaagaatttttttttgtgtccctttttttggtgttttttctccgtctttccccttctttgacgcaaaaaaaaaagtgcccaacttgctggcggcacgg
gaacgggatagaaatagatatagccgaaagcgactggaaagcaaaggaagctaactaaattggattacaatcaattaaatagagacggatacggaaactatgttcagcgag…………….ga
agctataagctaaatttgcttttgataacatttgctgaaccctcgacatcgcctgacgtcattataggtgaaatctggcacagtagaacgtgacttaatacaataataatattaggagt
ttagttactcttacattatagttgaaatgttgcaaaaatccttatgttgaagaagttttcaaaaagtgtgttgccgacatatttatttaattaagttcaaatatagaatcatacCtaCA
ACgATTTccgcctTAtcTATAtTTTtcaGACAGGCataTAACTCAGGAActtaagATATAtagAAagaaaaaAAAAcccagacaacataatcgcaatggccctttaccgctctgatccg
tattccataatggacgaccaacttttttcaaatatttcaATATTCGATATGGAtAATgatctgtacgatatggacaaactcctttcgtcgtccaccattcagagtga……..gatcaacg
atgtcctcgatgtgctcaaccagcattccaattcgacgggtggccaacagcagttgaaccaacagcaactggacgagcaacaacaggccatcgatatagccactggacgcaacacagtg
gattctccgccgacgaccggctctgatagtgactccgatgacggtgaacccctcaactttgacctgcgccatcatcGCActAGCAaaAGcgGCAGCAAtgcCAGCAtcACCacCAACAA
CAACAACAGCAACAACAaaAACAacaaattgaagaacaaCAGcAACGgcatgctgcacatgatgcacatcaccgatcacagctacacgcgctgcaacgatatggtggacgatggtccca
atttggagaccccctcagattccggtgagtcaaatttatatacttttcatatgccccattttcatcaatattggaagcttaaagtccgaatgtcttacaagaaatacaaaatggtctgg
tcgttggatgcatggcaaaacagtagagattagttagatccctggggatgcattaaaatttagtttacgcctgagtcagtctaaaacgcctaccaaaagtggcatactaattacaacgt
cgtggggcggccgattagtttacaaccggccacatgaccccccgcccgcccgcacattcatccatcctttgggtgttgcaCATTCAACTAGTGTTCgcACTTCCgTTTcgTGTGGGtgc
agagtaacgcccaaacgcacaagtacgctgtataccataggcaaccggaaaatcgattggcggAAAACGCCTACGTCAACAGCAAACGTAGTAAacttgttacgttgcacaaaaaaaaa
aaaacaataaaaaagagaagaaaaaacccgcccacgcgacgccggcgtctgtctgcggtggttttccatttcccccattgatttttgtgcttttcgctgcgatgtgctt

ChrX:3,272,691-3,274,460
Cggcggttggcaacaacgcacgaaattcggcacatagataaggttcacgggggagtgagcgagagactagaggccacatgcctatgatgttggcgcctctataaaagtgcgtacacac
acacacacacatacatgactggctgtgtacgtataatatgtatatgtatttacctttggcaGTGCgtgCTGgTTTTTGgCATTTCGCACCTTgcgactgtgtgtgtgtgtgtgcgttt
gtgggtttgGAAAAATGTTAATGAACTGAACCAAGGTCagcCAttcgccggaAAAAAAAgTGCGTAGAAAcCGAAAattagtggtgtggggGTGCgGCAcagaaaaaaaaaaAAAaAA
AAAcgtatggccaagtcatgttggctaaaacaatatttcctattttggcctcttcgctttacactttcgatctcagcagctcttctgggctctcttgtggccttttagaagaagacaa
caatcgaaagtatagagacatgtaaacaacattaaatgaaattaaataacgcccaagaagaaagaagaaactgtatgaaaaagtagtggataataataatacgaaaaccccaaagact
agaacataaatagttgtcgattgttggcaagacaccctttttgttgtaaatgcccaaaaaggcactcttaacaatgggccgtatgttcttttttttttccggctgtggggctattttt
tttgtcaaattttttcgtacacatttcggcagtttccttcgaCTGTTGCTAGGCGtctctctccccgtccttatctctctacatagcgcaatctctttctgatgtacgaattgcgtcg
tggTTGTtggcTTgTTGTtgctTTATTCGCACACGTGTAGCAATAAAttggttTGCTCAAGGTCGCAAgAGCagCGACGtcggcgttataaaaaaaaaaaaccaaaagcccataaaga
gcaaagctttttcgcccCTCTCgCtCTcacACGCACTTGGcACagcTTTATttatttatctttttTTTTTtgctTcTTAAcAAACGAGCCTCCCTTTtGgcgttcatcAGAGATTTCC
TGtggtgtacacatgtacgtctgtatgtacaacgaagatgtatccacgcccaaGAATGTTGCCAAaagctccatgccgAaATGTTGCCAGACgCATTTTcATAATTTATGTgccagtc
acattattacattagggatgttgtgtcgtcccccgaaccttcttctaatatccaatatggtctgggctctaatcgtcgtgttcgatgtgtcgcattgcgacgtacatttgtcattatt
ttcgtgcttttagcgggaaggtgtgtgtgtgtgtgtgGAGGGGGGGggtttagagtgtgcagaggtttgcatcggaaaaggcttaactTGATGACTCAcATCCTgcttctccTCCGAT
GATGAAATtcccactGACtACGTCACAAAAaaggaaaggccgagaaaatcaaatggacgggggcaaagaaaaaaaatatatataatattaaaggaagaaaaagtgcaagaaatgCGCG
TGGGAAAAtcttACAgtGCAGCGGAAGCAaTGTTTttccgcaaTTGTTTATaacacagcggtggctaatgttatatgataaatattttaaagttcaacaagagtatgcatagcattcg
ctttgatcagataagcagatgcttattattatttctaaaggactacagtttaaattgccttgtgtgcccctgtgttacgggtgtgtgacctatttcgctggccgttggtgtggcaagt

ChrX:3,275,523-3,277,528
tttgttgtatatttcgcattttttataattccctcttttaaggtctactctttggtctgtctgtccgcatcatctcaccgtacccccgttcctatggtaattttatagggcaaaaggc
gtctctgcacacacatgcatacttgtgtgtggtgtatactcgtatataTATATATATAttgcctatcgtgtacgtagaatgcagggacaggaaaaacccagcccaccgccctccccct
ttttccaGCAaaAAAGTTGCGCAACaTGTGgcggcTTgTGTGCAtTTTATTTGCAATTGTAATcAACggcAGCTTCCTCttcggaattcgataccctagctaaagggttgactcgaat
tcttttgaagaggtgatgtgatgtgatgatatggactattaaatcgatttatcgatgacacttttagttagtaaactgaaacgcacaatcttatcttctgcagtcgtctgcaaacttt
ggtgaggggtatccaatagtcgtgttcgaatctcttgcacgctactctactctcggcttttgctttatTgTgaCGATTTGATCTTGGCttcgttcGCTTAGCAACAAAAGTTGCtGCT
GtCGTCGCgaataaataatacaaaaaataaaagttgctttgtttggtctgtctgcttcttctttttcttctactactactactcggtttcTTGtaTTTTAatgcagtAAACgaGTTTG
TCtGGTTTtttattcgaattcggtgagagagagagagagagatagggagagaggagagatatattatacgatggtagctaacagcagcagcatccgatttgtgcgagcggaataaccg
ttagtaaaactatggcaaaagcttgcggcacaaccccagtttttatttttattgttgttattataaccgagagagcagcgctcaattgaatgcacttttgacggggccagcagatgca
gatgcagatgcaatttgatgatagtaaacaagtgcgggaagtttgcactttttgttattcccttgtttcttgTTTTTTTTtTTTTTTTTTTtttttatcattcattcattgtctatcg
aaagcgcggtggtgggcttggtcgcattcgtctggaaattcccctttcgatattaaaatagcgctcttcgctGGAAATCTCgcttgaCAGTTGTtactTTGCATattaattgatttta
agcgaaagacgagagttggtttttttttgcttacacatggcaacatactagaatttaagcctgacaaaattcgtcaaatccacttgctgcatatttatttattcgatactacaatttc
atttatacgcgtataatattaactccggatttccccatttaagcgcccattcctgtggcattccgcagtttgctgtcctctgcgcttttttttttatttattttttaatccgTAAAAT
gGCCGtcgaagaagaggctgcattccaagattttgtcgaggggagaagactcggtgGGTCTGtTGgTTGTCTAGCCAaagtgaaacgatgacgttggcaaaaaaaaaagaagaaaaaa
aaccagtcaagaacttgcgcttgtggctccttcgtttcttctcgtttggccggtcggttgattctcctgaaagaatctgactcatgcccactcaggcaTTTCTtCTGCAGGTTTCGAT
TTCGTTgcggttacttaccatcagttgggttttattcaatgtttattttttgccagtctcccatgcacatgcacttgatcttgcaacttgcaacttgttgctcttgtcagctcagcag
agtctaccagcaacgtctgccgccctcctcctgcgtctctcattcgcatttaccttgttgccaagcgcagaataaagccatttcttttggtttgcTTGCACAGTTGCctgttttacta
aacaaatgaaatgtttaaacagttgacttgaattcaaagcgctaaaaatttgattcatttgaaggccacaattttaggcgataaaataaaacacaataatgcataaaacaatatcgaa

Figure S2. (Continued)
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Figure S2. evoDifference analysis of the 40-kb top strand D. melanogaster dmyc locus. The 12.834-kb dmyc gene resides within the 40-kb fragment. 
Each block of uppercase bases represents a cluster of conserved sequences. Uppercase black nucleotides represent bases in the D. melanogaster dm 
EvoP 40-kb reference sequence that are conserved in all or all but one of the other 5 orthologous DNAs, D. sechellia, D. yakuba, D. erecta, D. willistoni 
or D. virilis. The D. melanogaster dmyc transcribed sequence is annotated according to FlyBase as follows: 5´-UTR (light grey), protein-coding sequence 
(dark grey) and 3´-UTR (light grey). The conserved bHLH binding sites and E-boxes are in white text with black highlight, as is the repeat motif ATGT-
TGCCA and the nearby sub-repeat TGTTGC. PolyA1, 2, 3 in the 3′ UTR (yellow highlights), detected by Lasergene GeneQuest module, is indicated. The 
DPE in the intron 2 region is lower case bold and underlined. ORF orientation is 5′ → 3′.

ttAaAAAAcacAAAAAATgAggacaaagaaCCAAAcattgAAAaGtGAAAgGAAtAgttaGAAatgAcAGACctagcggagaAACGAAACACAAAaaaaaaaaaaaaagaaactgaag
ggaaaaacacaaaaggagagaacaaaaacaaaaaaaagaaaaaCGGAtACGGAAAACAGACAAAAGTTaCAACGAAgGAGCCACAAAgaggagatagagcacacaaagttgggagcga
gaacgatgagataTATActtatATaacatcTATATATcTATATATcTATATATATATATAGAAAtTAGTATAGcttaaagtagaacttttggtttcgtaccccaaagGCAAAATGCGa
aatgagccggcttcaaatagttccgaacttcttgacgaagcaacatggaacacgatgatttaattcgaccttggttcgctagtttattaacaaaattacctatttaAACcATggacat
gtttttaacatgcgctttttttttttgggtcctatattcttagagacgcatccttggaggagaaaagaaacccaaaatgtatctgcatgcatcttgcatgcacacaattcaatgcttt
tgcttagaaccccaactcccccccccccttgctataacccgtatatatatattatatactatgtgtatatggattatatacatctgttggacgacgcgaagatgaaagagaaacgctt
tttatatatacacccgaaaacaaaAAAAAActtgaactcTACTGCCTAtATtgAGAAAAtACATTtaaTTTGctatgaagaTTcAAttaTgAATATAgttatatatacgtgTGTATAT
ATAtaGaAACCTTTttacaatcatattatcatatttctttttttTTTTTTTTgcaacACcTAgggatacatagatATATATaTTttttAACTgaTAACTAtGCATATGAAATGCgCaA
AActTAAcGAAAACAAAAcGGAAttaaggAAACaTTAAactatataatagtgctaagccgcgcctaacctctcgagatatatatagttAGgAtGagagatAGGaAGAGTgtAGAAATT
GGCTGCAAAGTttgtgattggagttaagagaggagagacccagagagagatatatacacccacgacccaagacccaagaaaactcAaACtTTTGTgAGCTGTTtAACTGTCGATTTTT
TGCTAATAAGTtatagccttccggcgATATGTtATATATATatatatgttataacgattctaccaattgtttacacgcatctaagtatcaactaaactaaaaactactactaaactaa
tggacatgaagcataaggcaaatgcaaatgaagttaaaaacaaaaaagaaccgcatgcgaaatatgtagaaaaacacacgaacgggattctaaagaaatgtcaACTGTTATTTAGGTT
TAggcacatacaaataaaaaaaaacccatgatatatatggatattcgataaatatatatgatgaccagaatttgaatgagatcgggggaggttatatagctagctagctatatacata

ChrX:3,281,777-3,284,608
ttttgtattgtttcgaccaaaaaaTGTGTAcACAcTGTAAATAGCAATCTCGTTAAATaATAgttacacacgcctacaaaatagcgaacccaaaacccaagaaatggaattattttTA
TAGaaaaCAAAAAAACccggagagAAAACacaAAGCAATAGACTTAAGCgaattgtacaacgcGAAACGaaaacaaaacttcaatAAAcCAACAAAAACAcacacactTaTATATATA
TAcAtATAtATatgTATATATAcATATAcAAAaccacacacgaatgcacctattttcctatagtacatacaaccagaaatagttaaacgaaaaaaccatgttttctttcaataatttc
aacaaacaaaaccgtacaaatttacaagaaacaaaaatacgaaaagcaaacctttTCTTTGTTTggtccttttattaatttattaacgaaacaacaaattcaagtgaaagggcatttt
taaacataatttttcattgtAAAAAAAAcaaaaTaTATacactaaaactatgaccaaaaccaaaatcctcgcaaacAAAACAAAAAAATATTaaatTTTTTTCTTTtaaaatatattt
ataacaaaaaacaaaacaaaagtttttaagtttaaatatatttttatgattatcaaattttttatattatatacACACacaCAAAcTACtatttgaattagttgttaaaaaatttata
ttattaaaacaacacattatttgaagacaaatAAcAtAAAAAAaaaactatgtaaAaAAAAATctgaaaaactcatgAAATGAAagcaaaaaactgttaaagccgtacgGaAAATatg
aaactatagacgAaCATgcTTGAATTATTACATGTaTATTTAaAttaaTTTTTTTTtttagtcataaacgtatgcaaaaaacgtatacgtttatggctatgcatttgaaatccctatt
tttgatttgatgacaaaagaagatatgaaaattcTGTTTACTTTGGtTATTgcttattaaatatgtgtaaaaattgcaaaataatatagatatatctggcaaaacaagctAAACAAcT
ATATtAATATATTATCTAATaAATTTTAACTCGTTATGTAGTTACCTATTAATGAaaAACAAAttaaaaGCAAAAAAAAtgagaaaagtaaacacaataaattacattttatgtacct
tctacatatatAAACTAAATATATtacacagaacacacacactTATATATAaacacacacacacacacacacactactaTATATAgaaaccgtttaaatATTTTTTTTttCAAAATTT
cTGaTaATGGAATTATAtatacATTATACAATAAAaaTAcTTCACCAAcAAATTAcTTTtgATTTTGTTtTTATTtttacgcTtgATTccTTTTcGTTtaatatatggatgcaattat
tgaagcttcccagatctttcaattggcacaaggatttcctcttgttatttgcgttttcgtattcgaatattcaaatattcgaatatgcaattttgttgcacattttttctggacgccc
tgttttattttatttactttcagcgactttcaaaaccccaagtgtgtttcatccgagttgtttatatttgttttactttagaaaatcgtattgtgtctcacaataagctggctaaaaa
aaaacagcttttccttTTTtggAaTTTgGTactatccaacttgtgcTTCACTTTCattttccaaccgcgccgagtatcaaattcgcagtgaatcattcgagtgagtaagtgattcaca
tttgtgggtggtGGGaaAATTGctttTGTCGCCGTTTCTAATCtagcagttcaacGTATTTtttctcgTTGCCtggttgcgctgcctcgctcatttgcccaccagacAAATTAagTTA
ATTCAATAAgagtTgttgctcactattgttgttgTTGTTTTACCGGCAAattttttgtttttaatgaaatcaaagcgacaacaacgacagccgagaagccggttgggatacagtcagc
gacatgacgacaataacaacgatcacaacgatagCCatAtAAtataacaTTTTATTTaTATGTAcgtgTTTTgTTTTCgttgaTTTttgctggTTTaTTATTTtACtacAATcaTTCa
gttacggtttcgttggttgaatttttttcttttaatttttactcgaaactttcggaagaaaccaaaacgaaataggcgatgctcttatttgaatgtacaatatattatttaaacagtg
tgtgttgtatagtgttttatgcgtgttctatgaaaagtgttgttaattgtttggatatattttttaagcatcacataaagttttctgttgggtcgtttaagtttaaaagtttaaaatg
gagagctaaaacagatgaattaaacTTAAtttgcagtttattatgacagtggggataccgcgttaaatagaaagggtacacgaatggcagaagtagccggcaaattCaCACACACACa
cacacacacagcgggccaagcaaaACAGAGACAAcgaaATTGgggtgCaCAATTGTTTAACTGCaAAAaaaaaaaaagcagcaacgaaatagccggcaacgaattttttttctttaTT
TTTTACaCTCTGACCGCGGTCGATCGCTTTATTGGGTGAAGGTCACGCCgGCTGCCTtttgtttttaTTTTtTTaTTTTTTTTTGtTTGctgccacTTcTGtTTATCTTcatacattg
tgTaTTtagtctattcaggaaattttagataatattttttttagctgccttaagtaaatttgagtgaaatttaacataaatttcagtaactatttgaattaaaaattcgttttatata
tgattcatttttttgtagaatttt

ChrX:3,284,960-3,285,785
ataactttttactgtttatttgttacatatatttcctagttttatttgagatctgatattttgctagatttcaaggtcgtttCACACTCACACAtatgCACACgctCctacatagaca
tacacacacacatgaagaaaggtcatgcagaatcaaaagtacaaaatagtcatagaaacatgggtgtaaatagtaaaaaaaaggggaaactgatttgattcaaaaagcacagtaaatc
ccagaagataataaaaacacagaaatctgcttAcATAGACAGCTTTAAccatAAAAccaAAAACAcatgACAGGCTTCAATAGTttAACTAcAAAAAAAaataaaaatAaaacaaaca
aatGTTttgtaaattttgtattttttcGAAAATATttaAtAAATGtgttTTACATGCATATttatacatacaatatatataatatatatatatatatatAATgaaagaATAaCaATAT
AatgatAAACTAccaattattTGAAAtCAAAtatattctatattatatattatatacgcgatatacttatacattattcaattatatatttatttagaaagcaactacaaacaaatta
tttatattatctaAATAGAACatTAACAAATTTGTAtgaaagcgaggcgtatacgtaatgaaacaagaaaaaataataagacgaaaggaagagcttaagaaaccgaacacttttgtaa
gtaaatattgaatagaaaataaaggatatgtgcaaatgcggagaaagttgaataaagaaaacgcgcagccacacACAAAAAAaaaaaaaacgcaaAgtTTTtAATTatcagccgttga

ChrX:3,286,494-3,286,847
tttttgttttttttttttcatttttgtcgggtagaaagagtatctataggggcaacgggtagttaagaagcaacacgaacactgattagggcgagatgtagtgcgtgccgccggcaac
cTAATTGgGCTTAATGCAGGTtgagttgCAATTAtgccggccctgCACCTTTacTTAATGATGACATTCGgcgtcgttccgttcctcaaatgatacgcagcgagtgctcgacgtgctc
gccgagcgccaactcgaaaacgctcttcacgcagcaaaccatcgcgacgaagatcacatgcaaaacgagcgacagcagcgtctgcggatcgagcggcaaacggccggtcaatacgtcg

ChrX:3,278,2373-3281422
gaagaaaataaagaaagacgccgagactgcagcacaatatataacaatatacataaccacataactataaacattattaaaacacattatgtttcggatatcgatgatatccggaaat
ttaaaacaaagaacgcattgctaatcaaaaatacaaaattttttttttttactaTCGCtgtGCAGATGAGGAAATCGATGTcGTttCaTatACgGAcAAGAAGcTaCCCACaAATCCc
tcgtgccacttgatgggcgccctacagttccagatggcccataagatctcgattgatcacatgaagcaaaaaccgcgctacaataacttcaatctgccgtacacaccggccagcagca
gTCCagtgaAatcGGTGGCCAACtcgcgttatccatcaccgtcgagcacaccgtatcagaactgctcctccgcttcgccgtcctactcgccgctatccgtggactcttcaaatgtcag
ctcgagcagctccagttccagttcgcagtcaagcttcaccacctccagttcgaacaagggacgcaaacgatccagtctgaaggatccaggcttgttgatctcctccagcagcgtttat
ctgccgggagtcaataacaaagtgacgcatagctccatgatgagcaaaaagagtcgtggcaagaaggtggttggcacctcgtctggcaatacatctccgatatcgtctggccaggatg
tggatgccatggatcgtaattggcagcggcgcagtggtggaattgccactagcacaagctccaacagcagtgtccatcggaaggactttgttttgggctttgatGAGGCcGAtACgAT
CGAGAAGCGcAATCAGCAcAATGATATGGAGCGtcagcgacgcattggaCTcAAGAAcctctttgaggctctaaagaaacagattcccacaattagggacaAGGAGCGggctcCCAAG
GTaAATATccTGCGaGAGGCGGCcAAgctatgcatccagctgacccaggaggagaaggagcttagtatgcagcgccagcttttgtcgctgcagctgaagcaacgtcaggacactctgg
ccagttaccaaatggagttgaacgaatcgcgctcggttagtggatagtgttgtctcatactatcggcttaaagcggcggcgtagggctaggataacccccaatgtatatgcaagattt
gtatatcctcctactttttttTTTTTGcaatttactttgatttagcttcgatcctttcTTGACaTTAAGCcctaaatatgatTtTTTTctggaGAACTTCAATATCAGTTAGTAggtt
atgtttaacgatttgcttgcgcTTTTtccgcTTTTTTTTTtgTTtttttaccataccataccataccatacaaggggttagagtttacgAGTGATTTAAcaaATTTGATTTCTTCaAT
GTGATatATATATgATTTTcTTTccgcgcgatttgatttggtagggaaaggttaacgaaagcggttttatgaaatcaatttgaagtgtttttttttcgctgcatatattacaatatac
acgtatggattagatttaattaacaattagcggtctgtatataacatatgaagtagaatatcttaattatttttttgaattagttacttaaccatgaagtaaacaaaaaggAAAACAt
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Figure S3. The TATA-less downstream promoter element DPE functions unidirectionally. (A) The 8-kb intron 2 full length sequence in the J8.1 transgene 
and its relative location with respect to the dmyc locus and genomic organization is shown. (B) The J8.1 fragment was examined for its ability to drive 
reporter expression in different tissues during early developmental stages. Except for a minimal basal expression in the brain (a) the activity of the reporter 
was abolished in imaginal discs (b–d), embryos (e, stage 1–2; f, stage 13–16) and ovary (g), emphasizing the unidirectionality of the minimal core pro-
moter within the J8.1 fragment responsible for full activity in all the tissues (compared to the J8 activity in Fig. 6). 
Note: Staining times for the discs and ovary are indicated above the scale bars. embryo staining took place over-night. Scale bar in (a–g) indicates 
50 µm.
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Figure S4. The fusion of J5 in the direction opposite to J8 attenuates expression in embryos. (A) The approximately 4.1-kb J5 promoter, the 8-kb intron 2 
full length sequence in the J8 transgene, their fusion product J10 and their relative location with respect to the dmyc locus and genomic organization are 
shown. (B) The approximately 12.1-kb chimeric restriction fragment in J10 results in reporter activity in the brain (a), discs (b–d) in a manner similar to 
fragments J2.1 to J6 in Figure 5 or intron 2 transgenes in Figure 6. However, the expression is weak during different stages of embryogenesis (e, stage 
1–3; f, g, stage 9–12). The expression in ovary remained similar to J2.1 and its deletions and J8, J8.2 transgenes.
Note: Staining times for the discs and ovary are indicated above the scale bars. embryo staining took place over-night. Scale bar in (a–h) indicates 
50 µm.
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Figure S5. Positive and negative controls for lacZ staining. For each lacZ staining of transgenes negative and positive control stainings were performed. 
As negative control different tissues were taken from the “y[1] w[1118] “ and “attp-flies” listed in Table 2. dpp-lacZ flies served as source for positive control. 
Depicted are negative controls (a–n) and positive controls (o–u), (a, b, o, brain; c–h, p–r, discs; i–m, s, t, embryos; and n, u ovaries).
Note: Staining times for the discs and ovary are indicated above the scale bars. embryo staining took place over-night. Scale bar in (a–u) indicates 
50 µm.
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