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Abstract: Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic 
chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority 
of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when 
evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the 
minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we 
provide a user-friendly database—LCGbase (a comprehensive database for lineage-based co-regulated genes)—hosting information on 
evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. 
The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. 
Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our 
database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is 
human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-
blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two 
adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search 
for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance 
of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also 
provide useful tools for sequence alignment, gene ontology (GO) annotation, promoter identification, gene expression (co-expression), 
and evolutionary analysis. This database not only provides a way to define lineage-specific and species-specific gene clusters but also 
facilitates future studies on gene co-regulation, epigenetic control of gene expression (DNA methylation and histone marks), and 
chromosomal structures in a context of gene clusters and species evolution. LCGbase is freely available at http://lcgbase.big.ac.cn/
LCGbase.
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Introduction
Animal genomes harbor several tens of thousands of 
protein-coding and RNA-coding genes and the rest 
are regulatory elements adjacent to genes.1 Although 
there are intergenic sequences, which have been 
called “gene desert”, it is believed that a majority 
of them may also be parts of genes that have not 
yet been discovered.2,3 It is important for the entire 
genome to be regulated timely and accurately through 
a battery of processes with distinct mechanisms. In 
prokaryotes (such as Escherichia coli) and lower 
eukaryotes (such as Caenorhabditis elegans), operons 
or clustered genes are major regulatory mechanisms 
so that genes in a consecutive order share a suite 
of transcription machinery and its accessories.4 
However, gene structures in higher eukaryotes are 
not only greater in numbers but also more complex 
than those of prokaryotes.5 For instance, there are 
large genes in a size range of one million basepairs or 
more (such as dystrophin) and numerous regulatory 
elements for transcriptional regulation, including 
enhancers, insulators, silencers, and repressors.6 In 
addition, epigenetic regulations, including DNA 
methylation, hydroxymethylation, various histone 
marks, and chromatin structure states, may all play 
essential roles in the construction of a multiple-
layer gene expression regulatory network.7,8 In such 
as a complex gene regulation context, co-regulated 
genes are first to be scrutinized since they are readily 
defined based on transcriptomic data and are either 
adjacent to each other or co-regulated (co-activated, 
co-suppressed, and antagonism); the minimal 
co-regulated genes are a pair of genes adjacent to 
each other and the maxima are several genes that 
are clustered together over evolutionary time scale, 
which may be even extendable to large chromosomal 
regions.4 For instance, some of the clustered genes 
may perform long-range interaction-based functions 
or be involved in the same regulatory or metabolic 
pathways.9 The precise identification of compositional 
and organizational features for these gene clusters may 
improve our knowledge on transcriptional controls 
and RNA processing mechanisms.

Previous studies on minimal gene clustering 
have been largely focused on genes in three basic 
categories of paired orientations according to 
the relative transcription direction between two 
neighboring genes: divergently-paired (DPGs, 

positioned head-to-head but transcribed toward 
opposite directions), co-directionally-paired (CDPGs,  
positioned head-to-tail and transcribed in the same 
direction), and convergently-paired genes (CPGs, 
positioned tail-to-tail and transcribed toward 
each other).10,11 It has been suggested that tandem 
duplication may be the major cause leading to these 
paired genes (especially CDPGs), and promoter 
sharing is an plausible explanation for the occurrence 
of DPGs.4,12 It has been reported that the proportion 
of DPGs is positively correlated with gene densities 
as DPGs tend to keep their transcription directions 
throughout relatively larger evolutionary time scale 
(eg, human to fugu comparison).10 DPGs tend to 
perform similar biological functions being involved 
in housekeeping functions, as compared to CDPGs 
and CPGs, and the expression of DPGs is often 
positively correlated (albeit minor exceptions) at 
different developmental stages and under pathologic 
conditions.10,11 Furthermore, when comparing dynamic 
structural features of DPGs between vertebrates and 
insects, we found that all three categories of paired 
genes in insects are less conserved than their vertebrate 
counterparts, although DPGs in insects also tend to 
form functional clusters and to share promoters.13

As to the intergenic distance (longer in metazoa and 
shorter in fungi), although the distance of transcription 
starts between two co-regulated DPGs is between a 
few hundreds and around one thousand basepairs,12 
we recognize the possible function of sequences— 
often tens of kilo-basepairs in length—between the 
two neighboring DPGs with respect to co-expression 
and shared regulatory elements.14 Furthermore, the 
bimodality of intergenic distances observed among 
mammal gene pairs (but not in other vertebrates) 
suggests that mammals share certain common features 
in transcription regulation.11 Until now, how the length 
of intergenic regions affects the contiguity in regulating 
multiple genes remains to be illuminated.

As next-generation sequencing technology 
matures, both cost and throughput are in favor of more 
basic data acquisition. In future studies, lineage-based 
data organization will take over the “one-covers-all” 
fashion and more tools will be developed for handling 
both larger and more genomes in addition to those 
for smaller and single genomes, such as those of 
mitochondrion,15 plastid,16 and yeast.17,18 A recent study 
has expanded a gene order browser into 74  species 

40 Evolutionary Bioinformatics 2012:8

http://www.la-press.com


A comprehensive database for lineage-based co-regulated genes

but covers only four mammals.19 In this study we 
curated 38 mammal and 14 other animal genomes 
(only use one fungus as out-group) to discover and to 
display conserved gene clusters across mammals and 
their sub-groups, such as primates, large mammals, 
and rodents. In particular, we combine the two 
concepts that stringently-defined lineage-specific 
conserved core paired genes (based on both orthology 
and transcriptional direction) and gene order of ten 
consecutive genes flanking the core paired genes. We 
also offer a series of toolkits covering GO functional 
annotations promoter identification, gene expression, 
and evolution analysis to help characterizing features 
of gene clusters (Fig. 1).

Using LCGbase, we would like to address several 
most imperative questions: (1) Although mammalian 
gene order or genome organization have been 
thought to be non-randomly distributed among the 
chromosomes, what is the precise number of genes 
that tend to move around or to form clusters? (2) How 
are clustered genes conserved across various definable 
lineages? Are the forming-and-breaking events 
evolutionarily selected and functionally meaningful? 
What are the mechanisms, including rearrangement, 
translocation, inversion, recombination, duplication, 
and transposon-mediated episodes, that alter 
clustered genes? (3) Are we able to define a “core 
clustered set” for different lineages or subgroups? 
Are there identifiable chromosomal regions whose 
gene clusters are evolutionarily stable? (4) How 
are gene clusters related to nucleosome positioning 
and chromosome folding in the nucleus?20,21 The 
questioning continues but the conclusions will be 
what we have to know for every single gene and its 
position on the chromosome, not only physically but 
also functionally.

Functionality
These are several ways to reach available data in 
LCGbase. First, one can utilize the browse option 
to direct all annotated genes in the 53 species, and 
each gene can be found by the link of gene ID. 
Second, one can take advantage of gene positioning 
or clustering information to use a gene ID from the 
neighbouring genes within and across lineages. 
In particular, the search is strand-sensitive when 
used to detect strand-specific organizational 
features of gene clusters and their variations. The 
database also distinguishes TSS (transcript start 
site) distances between two adjacent genes in five 
roughly defined categories: 0–1 kbp, 1–10 kbp, 
10–50 kbp, 50–100 kbp, and .100 kbp. It display ten 
genes left or right of the core gene cluster and high 
light all the genes on screen in different colours to 
indicate their orthologous groups. Furthermore, it 
assigns random group numbers to order all groups 
(Fig. 2). Genes that are not assigned in groups are 
labelled with “X”. Users can click on the hyperlink 
for each gene to check for detailed annotations (eg, 
location, structure, ontology, and family). Third, the 
result page also displays gene orders from different 
species according to taxonomic and lineage definitions, 
such as mammals (primates, rodents, afrosoricida, 
carnivora, chiroptera, lagomorpha), birds (galliformes 
and passeriformes), reptiles (squamata), amphibians 
(anura), fishes (beloniformes, tetraodontiformes, 
cypriniformes, gasterosteiformes), insects (diptera), 
chordata (enterogona), nematoda (rhabditida), and 
fungi (saccharomycetales). The information helps to 
reveal lineage-specific dynamic patterns or rules of gene 
clusters in lineage groups and sub-group. In particular, 
the database provides three kinds of downloadable files 
(xls, cvs and html) containing information including 
species, gene ID, strand category, and group number, 
which appears on the search result page. Fourth, we 
also count species number, strand-specificity, and 
orthologous gene. Fifth, the database also provides 
blast tools22 (ie, to match cDNA sequence with blastn 
and protein sequence with blastp or blastx) to help 
users to study their query sequences and associate 
them to data in LCGbase as well as other databases.

Due to co-regulation, genes in a cluster may have 
related functions, share promoters, evolve at a similar 
rate or in a distinct pattern, and show significantly 
correlated expressions. LCGbase also provides 

Gene Orthologs Annotation

Statistics DownloadToolsSearch

ID convertor GO function analysis

Co-expression analysis Evolution analysis

Sequence blast Promoter analysis

Browse

Figure 1. A flowchart to illustrate the content and organization of 
Lcgbase.
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several easy-to-use tools to facilitate the analysis of 
these features. Due to the fact that gene ID used in 
this database is the same as the Ensembl gene ID, an 
ID Convertor tool takes charge of converting gene 
IDs of other systems (eg, Entrez Gene ID, Gene 
Symbol, Refseq mRNA ID and Refseq protein ID) 
into Ensemble gene ID. GO Function Classification 
tool is to compare a query gene list with all genes in 
both species and GO terms (with at least 10 genes)23 
and performs gene function enrichment analysis to 
determine whether gene clusters tend to be functionally 
related or not. This tool adopts the Fisher Exact Test 
involved in perl Text-NSP module (http://search.
cpan.org/dist/Text-NSP/) combing with four multiple 
testing correction methods (ie, Bonferroni correction, 
Bonferroni Step-down [Holm] correction, Benjamini 
& Hochberg False Discovery Rate, and Not adjusted).24 
Four cut-off values are to be chosen: 0.1, 0.05, 0.01, 
and 0.001. Promoter Analysis tool is to compare a 
query nucleotide sequence with the upstream and 
downstream (from –499 bp to 100 bp, or from –9999 

bp to 6000 bp) of experimentally-identified transcript 
start site (TSS) embedded in Eukaryotic Promoter 
Database (EPD), which is a promoter sequence 
collection of model organisms.25 To illustrate the 
co-expressed genes in a cluster, we introduced 
co-expression data of seven animals including human, 
mouse, rat, chicken, zebrafish, fly, and nematode 
from COXPRESdb (Gene Coexpression Database).26 
We adopted R package “BioNet” to draw network,27 
when a query gene has correlated expression with 
other query genes. Evolution Analysis tool includes 
KaKs_Calulator2.0 toolkit28 that adopts multiple 
algorithms and alternative codon tables to compute 
nonsynonymous (Ka) and synonymous mutation rates 
(Ks). The ratio of Ka to Ks is a popular statistical 
measure for selection between one or multiple pairs 
of protein-coding genes and one may want to know if 
several genes in a cluster evolve simultaneously.

In the statistics section, we draw two types of 
figures to describe TSS distance and minimal distance 
between three cluster classes: CDPGs, CPGs, 

Figure 2. An example of the Lcgbase browser (A) and a search result (B). The inquired gene is EnSg00000171612.
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and DPGs. Minimal distance is defined as (1) the 
subtraction of the 5′-end of the downstream transcript 
and the 3′-end of the upstream transcript for CDPGs, 
(2) the subtraction of the 3′-end of the downstream 
transcript and the 3′-end of the upstream transcript 
for CPGs, and (3) the subtraction of the 5′-end of the 
downstream transcript and the 5′-end of the upstream 
transcript for DPGs. In the downloadable page, we 
also provide the characterized features of gene pairs 
(“-.-.”, “-.,-” and “,--.” to represent CDPGs, 
CPGs and DPGs, respectively), including gene pair 
ID, order class, TSS distance, minimal distance, 
chromosome, gene ID, transcript ID, protein ID, 
and strand, as well as transcription start site and 
transcription end site of both genes.

case study
1. LCA5L (ENSG00000157578, Leber congenital 

amaurosis 5-like) and SH3BGR (ENSG00000185437, 
SH3 domain binding glutamic acid-rich protein) are 
both DPGs on human chromosome 21. Although 
most of the distances between transcription start sites 
of paired genes are from 1 Kb to 100 Kb, this gene 
pair is conserved in all vertebrate lineages across 
mammals, birds, reptiles, amphibians, and fishes 
(Fig. S1). When compared the genes among fish 
and bird lineages, we found that PSMG1, BRWD1, 
HMGN1, WRB, LCA5L, SH3BGR, and B3GALT5 
cluster tightly in three bird species (chicken, tur-
key, and zebra finch) and that MTMR9, XKR6, 
CCM2, FAM167A, LCA5, and SH3BGRL2 cluster 
in medaka and stickleback. The different clustering 
suggests potential difference in regulated mecha-
nisms between the two vertebrate lineages.

2.	 TUB (ENSG00000166402, tubby) and RIC3 
(ENSG00000166405, resistance to inhibitors of 
cholinesterase 3) transcribe in the opposite direc-
tion and they are CPGs on human chromosome 
11 (Fig. S2). All distances between transcription 
start sites of the two genes are larger than 10 Kbp. 
When trying to expand it into distant gene clusters, 
we found three obviously distinct patterns in the 
three taxonomic groups: TUB, RIC3, LMO1 and 
STK33 in mammals (such as human, chimpanzee, 
mouse, lemur, macaque, marmoset, galago, gibbon, 
guinea pig, mouse, cow, dog, giant panda, bottle-
nose dolphin, rabbit, horse, elephant, and opos-
sum), CYP2R1, PDE3B, COPB1, RRAS2, TUB, 

and RIC3 in fishes (such as medaka, zebrafish, and 
stickleback), and INSC, CALCA, CYP2R1, PDE3B, 
PSMA1, COPB1, RRAS2, TUB, RIC3 and LMO1 
in birds (such as chicken, turkey, and zebra finch).

3.	 PAPD5 (ENSG00000121274,  PAP associated domain 
containing 5) and ADCY7 (ENSG00000121281, 
adenylate cyclase 7) are CDPGs on human chro-
mosome 16 (Fig. S3). We found some interesting 
duplication events happened in long-term evolu-
tion of paired genes throughout the vertebrate lin-
eages. There are two patterns in the gene clusters; 
one contains NSUN2, SRD5A1, PAPD7, ADCY2 
and the other have PAPD5, ADCY7, BRD7, and 
NKD1. We found that the two clusters appear on 
different chromosomes of  several species (eg, chim-
panzee, orangutan, macaque, gibbon, turkey, fugu, 
and zebrafish). This phenomenon suggests that the 
duplication and rearrangement events forming these 
clusters happened very early in vertebrate evolution 
(perhaps at the formation of vertebrates).  Moreover, 
we have observed several species-specific gene 
insertion or deletion events. For instance, the loss 
of SRD5A1 gene happened between NSUN2 and 
PAPD7 on the anole chromosome 4 and the gain 
of A530095I07Rik gene occurred between SRD5A1 
and PAPD7 on the mouse chromosome 13.

Data collection
We collected positions of genes, transcripts, and proteins 
as well as other annotation information (eg, Gene 
Ontology and gene family classification) of 53 species 
across broad lineages (including vertebrates, insects, 
nematode, and fungi) from the Ensembl/Biomart Version 
62 (www.ensembl.org).29 We only selected transcripts 
with the longest coding sequence to represent genes 
or gene loci. Gene orthology relationship was also 
retrieved from this database, and we defined orthology 
between human and other 52 species as well as paralogs 
within human. In details, we assumed that there is a 
transitive relationship among homologs so that we 
combine paired homologs into one group until the group 
number becomes stable or converged. Based on this 
evolutionary principle and phylogenetic relationship, 
we classified all genes into homologous groups.

Implementation
This database is built on a GNU/Linux web-database 
LAMP framework (OS—linux, web server—Apache, 
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database management program—MySQL, and server-
side script—PHP language). At the server-side, PHP 
takes charge of calling Perl scripts and R functions, 
and uses GD modules across API (application 
programming interface) to generate 2D graphs. At 
the browser-side, we use HTML, Javascript, and CSS 
to allow users to experience better and convenient 
interfaces. We also chose SQL scripts and appropriate 
storage engine for MySQL to optimize the database 
performance, with three heavily-loaded record 
tables including gene, orthologous group, and gene 
annotation from the information of the 53 species. 
To speed up searching process and time-consuming 
tasks, we created full-text indexes for key fields in 
the database, and added Enquiry Optimizing of 
high-performance matching in MySQL database and 
Structured Query Language Grammar Optimizing.

Future Work
First, we plan to update the database as frequently as 
when new species are sequenced and new assemblies 
are released. We will focus on insect or arthropod 
genomes for comparative analysis with vertebrate 
genomes. Furthermore, with the I5K initiative (to 
sequence 5,000 insect genomes in the next five 
years), a large number of insect genomes may soon 
be available. Our preliminary analysis on the two 
dozen or so sequenced plant genomes also revealed 
clustering features, but due to the lack of contigu-
ity within the genome assemblies, we are not able to 
include the data into our database at present time. In 
the future, however, we will bring in plant genomes 
to the database to study gene clustering/ordering and 
distinct gene organizational parameters, such as large 
genes with small intergenic regions in animals and 
small genes with larger intergenic regions in plants.30 
We will also curate new annotations when they are 
published, including regulatory elements and new 
genes, such as what from ENCODE (The Encyclope-
dia of DNA Elements) and similar projects.31,32 Sec-
ond, we will increase the complexity of our curations. 
For instance, our current organization of genes and 
their clusters are basically linear. We should be able 
to incorporate chromosomal structures and organi-
zational information in a tempo-spatial fashion such 
as early and later replicated/transcribed genes. We 
should also be able to map nucleosome positioning 
and packaging information.33 Third, we can extend 

the concept “co-expression” or “co-regulation” to 
genes beyond clusters but neighboring clusters and 
clusters on chromosomes and chromosome regions 
(such as subtelomeric and subcentromeric regions). 
These new additions will lead to a network of genes 
and their relationships, a path toward systems biology. 
Finally, we hope to reveal regulatory mechanisms 
and their related genes that control lineage-specific 
or species-specific characteristics over evolutionary 
time scales.
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