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Abstract: Revealing the gene regulatory systems among DNA and proteins in living cells is one of the central aims of systems biology. 
In this study, I used Structural Equation Modeling (SEM) in combination with stepwise factor analysis to infer the protein-DNA 
interactions for gene expression control from only gene expression profiles, in the absence of protein information. I applied my approach 
to infer the causalities within the well-studied serial transcriptional regulation composed of GAL-related genes in yeast. This allowed 
me to reveal the hierarchy of serial transcriptional regulation, including previously unclear protein-DNA interactions. The validity of 
the constructed model was demonstrated by comparing the results with previous reports describing the regulation of the transcription 
factors. Furthermore, the model revealed combinatory regulation by Gal4p and Gal80p. In this study, the target genes were divided into 
three types: those regulated by one factor and those controlled by a combination of two factors.
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Introduction
Transcriptional regulation of gene expression is 
necessary for living cells to function, and therefore 
revealing the mechanisms behind this regulation is 
a central aim of systems biology. Such regulatory 
mechanisms are known to function via complex 
relationships among DNA, RNA and proteins, and 
to respond to intracellular signals and extracellular 
conditions to ensure proper gene expression.1 One of 
the most common regulatory mechanisms involves 
protein-DNA interactions. The proteins that bind to 
a DNA sequence are known as transcription factors, 
and they are crucially involved in regulating their tar-
get genes. Detailed knowledge about how these tran-
scription factors conduct this regulation is essential 
when inferring a gene regulatory network.

Investigations of gene regulatory systems or 
 complex functional networks among DNA, RNA, 
 proteins and other cellular components in a living 
cell conventionally follow a standard protocol. After 
a DNA sequence is completed, the mRNA level 
is measured by a cDNA microarray, to reveal the 
gene expression profiles under various conditions. 
With this information, the regulatory networks can 
be inferred by employing a number of approaches, 
including Boolean and Bayesian networks.2,3 
I previously developed an approach based on a 
Graphical Gaussian Model (GGM) in combination 
with hierarchical clustering.4,5 Among the graphi-
cal models, GGM is the simplest in a mathematical 
sense, as the conditional independence between vari-
ables is estimated from the partial correlation coef-
ficients. However, GGM infers only the undirected 
graph, whereas Boolean and Bayesian models infer 
the directed graph, which shows causality. Although 
all of these approaches are suitable for establishing 
relationships among genes, it is difficult to reveal the 
concrete interactions between proteins and genes, 
because of the insufficient information about proteins 
in the gene expression profiles. Thus, an alternative 
approach is needed when investigating transcriptional 
regulation that involves protein-DNA interactions.

One possible technique is Structural Equation 
Modeling (SEM).6 SEM has been successfully used 
to elucidate causal relationships in disparate fields 
such as econometrics, sociology and psychology.7–9 
In addition, it has been applied to Quantify Trait 
Loci (QTLs) for association and linkage mapping in 

biology,10,11 as well as to identify genetic networks 
from microarray data or SNP data.12–14 The significant 
features of SEM are the inclusion of latent variables 
into the constructed model and the ability to infer the 
network, including the cycle structure. Additionally, 
the linear relationships between the latent variables 
and the observed variables are assumed to minimize 
the differences between the fitted covariance matrix 
and the calculated sample covariance matrix.

To clarify the effects of latent variables in a 
 transcriptional regulatory model, I selected a serial tran-
scriptional regulatory system composed of GAL-related 
genes. This regulatory system in S. cerevisiae has a 
hierarchical structure comprising three transcription 
factors, Mig1p, Gal4p, and Gal80p.15–18 Mig1p is a multi-
copy inhibitor for gene expression and is the initiating 
 factor of this regulation.19,20 Gal4p, the gene of which 
is a target for Mig1p, represents the second stage.21–23 
Gal4p and its target genes then regulate the next stage 
in the system, including Gal80p, which represents the 
third and final stage. In this serial transcriptional regu-
latory system, the expression of one transcription factor 
in the former stage leads to the subsequent expression of 
transcription factors in the latter stage.

Previous investigations have revealed that tran-
scription factors recognize and bind to upstream DNA 
motif sequences to regulate the target genes.24,25 Some 
target genes have been empirically  confirmed, and 
others were estimated by computational analyses.26,27 
Analyses based on gene expression levels and motif 
sequences have indicated that various gene expression 
regulator mechanisms involve Mig1p and Gal4p. 
Although many genes have been estimated as the 
targets of those regulators, the regulation of other target 
genes remained unclear.  Therefore, to  characterize 
the entire mechanism of the serial transcriptional 
regulation, a network model that includes information 
on the relevant genes and  proteins is necessary.

Here, I applied SEM to reveal a serial 
tran scriptional regulation system that is mediated 
by tran scription factors, by using information from 
numerous gene expression profiles. Since microarray 
data do not reflect protein expression, a network model 
that includes not only genes but also proteins should 
provide new information on the genetic regulatory 
 architecture, assuming that the transcriptional  regulation 
by the transcription factors involves physical interactions 
between the factors and the corresponding DNA. In 
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this study, I used SEM to describe the transcription 
factors as latent variables and their effects. 
This method estimates not only the number of variables 
in the model, but also any significant interactions 
between them. The resulting gene expression 
profiles have clarified the complicated gene 
expression mechanism.

Methods
Outlier removal
The Grubb’s test was used to identify and delete 
outlier gene expression data derived from the Gene 
Expression Omnibus (GEO). The Grubb’s test 
was performed on a gene-by-gene basis for each 
experimental condition, to detect and delete the 
abnormal numerical data that are included as flags 
of experimental error. To quantitatively identify the 
outlier data, a Z value was calculated.

 z
mean value

SD
=

-
 (1)

where SD is the standard deviation. If Z was large, 
then the datum was considered to be an outlier. The 
SD was calculated from all data including outliers. 
A two-tailed probability for the Student t-distribution 
was obtained as follows:

 T N N Z
N NZ

= -
- -
( )

( )
2

1

2

2 2
 (2)

Here, N is the number of values in the sample. The 
probability that a datum is an outlier can be obtained 
from the Student t-distribution for T and N - 2 degrees 
of freedom. The approximate P value for the outlier 
test, which was calculated by multiplying the obtained 
probability by N, is represented as the probability of 
observing an outlier, assuming the data were sampled 
from a Gaussian distribution. If P was significant, then 
the outlier was excluded and the Grubb’s test was per-
formed on the next suspected outlier. The procedure 
was repeated until a P-value ,0.05 was achieved.

Data selection
A multilevel hierarchical regulation system between 
proteins and DNA is considered to be a good model 

for inferring protein-DNA interactions. To detect 
the hierarchical regulation in yeast, I utilized the 
TRANSFAC Database (http://biobase-international.
com/index.php?id=transfac). TRNSFAC is one of the 
useful databases that include information about tran-
scriptional regulation.

Among all registered yeast transcription factors in 
the TRANSFAC database, 108 genes were detected 
as encoding transcription factors, which regulate 252 
other genes. Some of these regulated genes had empiri-
cal confirmation for their transcriptional regulation, but 
other regulated genes were estimated by a computa-
tional analysis of their 5′ UTR sequences. To compose 
the hierarchical regulation among the genes, I compiled 
864 binomial relationships between the 108 transcrip-
tion factor genes and the 252 regulated genes. The reg-
ulatory network with hierarchy was constructed from 
these binomial relationships. Among the constructed 
hierarchical structures, a 3 layered  structure composed 
of 15 genes was the most complicated hierarchy. In this 
3 layered  hierarchical structure, many parts have been 
experimentally confirmed, but some parts still remain 
uncertain. The details of the components in this hierar-
chical structure are shown in Table 1.

In the TRANSFAC database, the target genes of 
each transcription factor have been estimated from the 
binding site motif sequences. In addition, the database 
provides quality scores ranging from 1 to 6, which 
reflect the experimental reliability of a particular pro-
tein-DNA interaction. Table 1 lists the regulated genes 
and their respective quality scores for each transcription 
factor. Ten genes are known to be targets of  Mig1p, but 
three of them have not been empirically confirmed as 
targets. Furthermore, for 5 genes among the ten genes, 
their binding locations and binding site sequences have 
not been identified. On the other hand, the five genes 
known to be targeted by Gal4p have experimentally 
confirmed binding sites. In the last stage of this serial 
transcriptional regulation, the transcription factor 
Gal80p targets two genes. Among the 14 regulated 
genes in Table 1, the quality scores of the two genes 
were 1, which represents experimentally confirmed 
transcriptional regulation. The quality scores of the 
putatively regulated genes were 2, meaning that the 
transcription factor protein has been confirmed to bind 
to the motif sequences of the regulated genes, but the 
transcriptional regulation has not been confirmed. Thus, 
the inference of the transcriptional regulation of these 
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genes is informative for the functional confirmation  
of transcription factor binding.

I utilized an abundance of gene expression data for 
the 15 genes to reconstruct and clarify the 3-layered 
hierarchical structure composed of them. Since the 
genes within each layer are controlled by one tran-
scription factor, this 3-layered structure is considered 
to represent serial transcriptional regulation passing 
through 3 stages, connected by transcription factors.

All gene expression profiles were obtained from 
S. cerevisiae and were downloaded from the GEO Data-
base (http://www.ncbi.nlm.nih.gov/geo/). The expres-
sion profiles from 11,923 experiments were obtained 
as series matrix files, which describe the expression 
levels as a log2-ratio of the raw expression signals. 
The data from these matrix files were transformed 
into Z-scores and compared. The Grubb’s test was 
performed on these 11,923 profiles, resulting in the 
analysis of 4,013 S. cerevisiae expression profiles.

Factor analysis
A skeleton network structure of serial transcriptional 
regulations was constructed by using SEM. The frame-
work of the network structure defined transcription 
factors as latent variables, and their coding genes and 
their target genes as observed variables. In this study, 

15 genes were described as observed variables, but the 
number of latent variables was unknown. To find this 
number, factor analyses were used in each of the three 
stages of the serial transcriptional regulation.

Factor analysis is a statistical method for describ-
ing the variability among observed variables in terms 
of a potentially lower number of latent variables.28 
The initial assumption is that any observed vari-
ables may be related with any latent variables. Let us 
assume that there are p latent variables (proteins) and 
q observed variables (genes) x1, x2, … xq, with means 
u1, u2, … uq. Note that the number p of latent variables 
is always smaller than the number q of observed vari-
ables. Each observed variable is expressed as linear 
combinations of p latent variables, as follows.

 x u F F Fi i i i ip p i- = + + + +α α α ε1 1 2 2   (3)

where xi is the vector of the expression levels of the 
gene i, αij is the partial regression weight of the latent 
variable Fj, and εi is an independently distributed error 
term with zero mean and finite variance. In matrix 
form, equation (3) is expressed as

 X U F Q- = +Λ .  (4)

Table 1. Known binding sites and regulated genes of selected genes.

Transcription  
factor

Regulated genes  
(coding protein)

Location of binding sites Quality score

Miglp YLL043c (FPS1) 2
YBR020W (GAL1) -140 to -120, -210 to -195 2
YDR009W (GAL3) 2
YPL248c (GAL4) -72 to -51, -50 to -30 2
YKL109W (hAP4) 2
YMR011W (hXT2) -504 to -493, -427 to -416 2
YiL162W (SUc2) -505 to -483, -451 to -426 2
YDR040c (enA1) 6
YLR377c (FBP1) 6
YLR044c (PDc1) -505 to -483, -451 to -426 6

Ga14p YBR020W (GAL1) 367 to 384, 386 to 405, 404 to 421, 465 to 487 1
-391 to -374, -373 to -357, -356 to -339, -291 to -275 5

YLR081W (GAL2) -383 to -366 2
YBR018W (GAL7) -292 to -270, -205 to -183 2
YML051W (GAL80) Around -95 2
YnL239W (LAP3) -150 to -134 2

Ga180p YBR020W (GAL1) 386 to 405 1
YBR018W (GAL7) -205 to -183 2

notes: Quality scores ranging from 1 to 6 reflect the experimental reliability of a particular protein-DNA interaction by TRANSFAC. Quality Score = 1, 
functionally confirmed transcription factor binding site = 2, binding of pure protein (purified or recombinant) = 5, binding of an uncharacterized extract 
protein to an element = 6, no quality assigned.
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If there are n samples in each of the observed 
variables, then X and U are the (q × n) matrices 
composed of the observed data and their means, 
respectively. The partial regression coefficients of 
each latent variable are indicated as elements of Λ, 
the (q × p) latent interaction matrix. In the matrix Λ, 
each column corresponds to a factor and each row 
corresponds to an observed variable, and thus each 
element of Λ indicates the strength of the regulation 
from each protein to each gene. The matrix F is the 
(p × n) latent variable matrix, and Q is the (q × n) 
error matrix.

In the factor analysis model, the error terms ε are 
independent and multivariate normally distributed with 
a mean of zero, εi∼N(0, Ψi). If we let Var i i( ) =ε Ψ2 , 
then the covariance matrix of ε is expressed as

 Cov diag p( ) ( , , ) .ε = =Ψ Ψ Ψ Ψ1
2

2
2 2 2


 (5)

The following assumptions are imposed on F and ε:

1. F and ε are independent.
2. E(F) = 0, Var(F) = Φ.
3. E(ε) = 0, Var(ε) = Ψ2.

The variance-covariance matrix between the 
observed variables Σ is given by

 
Var X E X U X U t t[ ] ( ) ( ) .= - -  = ∑ = +ΛΦΛ Ψ2  

 
(6)

The covariance matrix of the observation 
variables is structurized by the parameters. From this 
structurized matrix, the values of the partial regression 
weight matrix Λ and the variances of the “errors”  
ε are estimated.

To clarify the possible number of latent variables 
in the network, Exploratory Factor Analysis (EFA) 
was performed. EFA is utilized to reveal the latent 
structure by assuming that the observational data are 
a synthetic amount of a lower number of latent vari-
ables. The number of latent variables was suggested 
by a principal factor method with varimax rotation, 
which is a general method for rotating factors to fit a 
hypothesized structure of latent variables. To extract 
the number of latent variables as factors of observed 
variables, an eigen value .1 and a scree plot were 
applied, as usual.28

The number of latent variables estimated by EFA 
may not correctly result in the network with latent 
variables. To determine the number of latent variables 
in each stage, I performed a Confirmatory Factor 
Analysis (CFA) for all numbers smaller than or equal 
to the number of estimated p latent variables. CFA 
seeks to determine whether the number of factors 
and associations between the factors and observed 
variables follow the assumption. Suggested latent 
variables were arranged within a genetic network 
as indicators, according to the initial assumption.29 
As the initial assumption, I utilized the model that 
includes all possible associations between the factors 
and the observed variables. The details of the model 
assumption are described in the following section.

Model assumptions
Regulatory network analysis by SEM consists of two 
parts: parameter fitting and structure fitting. Before 
parameter fitting, a network structure must be assumed. 
The framework of the network structure defined tran-
scription factors as latent variables, and their coding 
genes and their target genes as observed variables. 
Based on their relationships, the transcription factors 
were considered as the predictor variables for the target 
genes, which in turn were represented as the criterion 
variables. Causality between transcription factors and 
their coding genes was treated inversely, with coding 
genes as the predictor variables and transcription fac-
tors as the criterion variables. Therefore, this SEM is 
a particular implementation of the  Multiple Indica-
tor Multiple Cause (MIMIC) model, with the latent 
variables and observed variables arranged alternately 
throughout the three transcription factor-regulated 
stages of the network.

Each gene was arranged as a variable in the 
network, according to the information registered in the 
TRANSFAC database. The three targeted transcription 
factors, Mig1p, Gal4p, and Gal80p, are known to 
be regulators of gene expression in the hierarchical 
transcription. I defined these proteins as latent variables. 
However, the number of latent variables in each stage 
and the details of the regulatory relationships between 
latent variables and observed variables were not initially 
known. Thus, I applied a modified four-step proce-
dure, based on work by Mulaik and Millsap, which is 
known as a method for constructing models when there 
is no information about latent variables (Fig. 1).29

http://www.la-press.com


Aburatani

80 Gene Regulation and Systems Biology 2011:5

Step 1:  Construction of the unrestricted model. By 
the application of EFA to the observed vari-
ables, the number of latent variables was 
determined. EFA is a technique for discov-
ering the base structure of the variable. It is 
assumed that a relationship exists between the 
regulators and the regulated variables. The 
factor loading value is used to find the factor 
structure of the data by intuition.28–30

Step 2:  Construction  of the measurement model. The 
regulatory relationships between the 
observed and latent variables were solved 
by CFA in this step. Varimax rotation, which 
is the most common rotation strategy, was 
used to seek the factor loadings across vari-
ables for each factor. All paths from latent 
variables to observed variables were tested 
for their effectiveness in factor loading. 
Paths with low loading scores were deleted 
from the models; those with high loading 
scores were retained. This was done for 
each stage.

Step 3:  Construction of the structural equation 
model. The relationships between latent vari-
ables were established in this step. This step also 
determined the causal relationships between 
observed variables and latent variables. The 
details of this step are described in the follow-
ing “Structural equation modeling” section.

Step 4:  Stepwise modeling connecting different stages 
of the network. The models for each stage 
were connected to create one model of the 
entire network. I tested all network structure 
possibilities for one observed variable and 
two latent variables, to identify the most likely 
ones. The stages were then connected sequen-
tially by SEM. Finally, significant relation-
ships between error terms, as estimated by the 
Modification Index (MI) defined by AMOS,31 
were determined. These relationships among 
the error terms were used for the calculations 
but not incorporated into the network, and thus 
they have been excluded from the figures.

Structural equation Modeling (SeM)
SEM is a comprehensive statistical model that includes 
two types of variables: observed and latent. These vari-
ables constitute the structural models that consider rela-
tionships between latent variables and the   measurement 
models that consider relationships between the observed 
variables and the latent variables. These relationships 
can be presented both algebraically, as a system of 
equations, and graphically, as path diagrams.

In this study, the target genes and the coding genes 
of the transcription factors in the transcriptional 
regulation were defined as observed variables, since 
their expression data were obtained from the GEO. 
Meanwhile, the transcription factors were defined as 
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Figure 1. Modified four-step procedure. Step 1, construction of unrestricted models for each stage of the serial transcription; Step 2, construction of 
 measurement models for each stage; Step 3, construction of structural equation models for each stage; Step 4, stepwise modeling to connect the different 
structural equation models.
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latent variables, owing to the lack of measured data in 
the expression profiles. All variables were  classified 
as one of two types: exogenous variables and 
endogenous variables. Exogenous variables are those 
that are not regulated by other variables in the  system. 
Endogenous variables, on the other hand, are. In my 
model, the mig1 gene is defined as an exogenous 
variable, while all other genes are defined as endog-
enous variables. All latent variables are endogenous 
variables, since they are regulated by coding genes. 
There are three possible relationships between the 
variables: relationships between latent variables, 
causal relationships between observed variables and 
latent variables, and regulatory relationships between 
latent variables and observed variables. The model is 
defined as follows:

 η η ς= + +B yΓ  (7)

 y = +Λη ε.  (8)

Here, η is a vector of p latent variables (number 
of transcription factors); y is a vector of q observed 
variables (measured gene expression patterns); B is 
a p × p matrix representing relationships between 
latent variables; Γ is a p × q matrix representing 
causal  relationships between observed and latent 
variables; and Λ is a q × p matrix representing regu-
latory  relationships between latent and observed 
variables. Errors that affect the observed and latent 
endogenous variables are denoted by ς and ε, 
respectively.

From the above equations, I have 
η η ς

εy y








 =



















 +











B
O
Γ

Λ
 to represent the model. The 

structural equation modeling is based on a covariance 
analysis defined as S = Σ(θ), where S is the covariance 
matrix calculated from the observed data and Σ(θ) is 
a matrix-valued function of the parameter θ. Let Φ 
denote the covariance matrices of the error terms  
ς and ε, and G denote a q × (p + q) combined matrix 
of the q × p zero matrix and the q × q identity matrix. 
The covariance matrix of model Σ(θ) is given by
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Each element of the covariance matrix model 
Σ(θ) is expressed as a function of the parameters 
that appear in the model. The unknown parameters 
were estimated, in order to minimize the difference 
between the model covariance matrix Σ(θ) and the 
sample covariance S.

The SEM software package SPSS AMOS 17.0 
(IBM, USA) was used to fit the model to the data. 
The quality of the fit was estimated by four different 
model fitting scores: GFI, AGFI, CFI and RMSEA. 
These scores were considered to be useful to clarify 
the degree of model fitting in this study, since the 
model can be evaluated by a general threshold, rather 
than a huge experimental number.

Parameter estimation
To make the model covariance matrix Σ(θ) closer to 
the sample covariance matrix S, the parameters within 
the model were estimated by the maximum likelihood 
(ML) method with the fitting function. Since the ML 
estimators are known to be consistent and asymp-
totically unbiased, ML is commonly used as a fitting 
function to estimate SEM parameters:

F S S tr S qML ( , ( )) log | ( ) | log | | ( ( ) ) .Σ Σ Σθ θ θ= - + --1

 
(10)

Here, Σ(θ) is the estimated covariance matrix; 
S is the sample covariance matrix; |Σ| is the deter-
minant of matrix Σ; tr(Σ) is the trace of matrix Σ; 
and q is the number of observed variables. The fitting 
function FML(S, Σ(θ)) is a discrepancy function that 
compares the difference between the estimated cova-
riance matrix Σ(θ) and the sample covariance 
matrix S. The principal objective of SEM is to mini-
mize FML(S, Σ(θ)), which is the objective function that 
is used to obtain the maximum likelihood.  Generally, 
FML(S, Σ(θ)) is a nonlinear function. Therefore, itera-
tive optimization is required to minimize FML(S, Σ(θ)) 
and to find the solutions by Fisher’s scoring method 
in the AMOS software, since the Fisher method is 
highly effective, and may even converge in a single 
iteration.32 To avoid a local optimization, I executed 
iterative optimization procedures with different 
initial values, and chose the global optimum solu-
tions of the parameters. In the optimization pro-
cess, the range of parameters was not chosen, but 
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one  parameter of the relationships from the latent 
 variable to the observed variable was fixed to one, 
as a restriction of the model. Furthermore, I used 
1E-5 as the convergence criteria. As the limit on the 
number of iterations, I chose 100 iterations to be per-
formed by AMOS. When this limit was reached and 
the convergence criteria had not been met, the model 
was rejected.

Results
Factor analysis in each stage
In the hypothetical network structure, 15 genes were 
described as observed variables, but the number of 
latent variables was unknown. To find this number, 
EFA was used in each of the three stages of the serial 
transcriptional regulation. After the number of tran-
scription factors was determined, CFA was applied 
with a severer check. The check by CFA is required 
before the SEM analysis.28,29

EFA was applied to the ten genes regulated by 
Mig1p in the first stage, the five genes regulated by 
Gal4p in the second stage, and the two genes regulated 
by Gal80p in the last stage. In the first stage, four latent 
variables were extracted by EFA as the effective fac-
tors of ten regulated genes, and the parameters of the 
two models composed of one or two latent variables 
could be calculated by CFA. The remaining models 
composed of three or four latent variables cannot be 
calculated by the partial regression coefficients, even 
though the number of parameters was smaller than 
the number of equations. Thus, the limitation of the 
latent variables in the first stage was considered to be 
two. In the second stage, two latent variables were 
extracted by EFA, and the parameters in the model 
with all extracted latent variables were calculated. 
Hence, the limitation of the latent variables of the 
second stage was regarded as two. In contrast, only 
two regulated genes were included in the third stage. 
According to the restriction that the number of latent 
variables is smaller than the number of observed vari-
ables, the number of latent variables in the third stage 
was considered to be one. Actually, only one latent 
variable was extracted by EFA, and the parameters of 
the model composed of one latent variable could be 
calculated by CFA.

By a combination of EFA and CFA, the maximum 
number of latent variables in each stage was assumed 
to be two. Furthermore, the regulatory factors were 

expected to be encoded by only one gene in each stage 
of this hypothetical network structure. Thereby, the 
two factors were considered to be simple substances 
or complexes of multiple molecules. Although it is 
possible that the target genes are regulated by other 
factors, those factors are considered to be encoded by 
other genes that are outside of this hypothetical net-
work in this study.

After the number of transcription factors was 
determined, the modified four-step procedure was 
applied in a stepwise manner. The structure of the 
resulting model was not simple. For example, the latent 
variables clearly had high loading for some observed 
variables, but low loading for others. Similarly, some 
observed variables were strongly affected by both latent 
variables, but others were influenced by only one.

Results of SeM
SEM was used to determine the relationships among 
the transcription factors and the corresponding coding 
genes in this serial transcriptional regulation. The 
target genes were considered to be physically bound 
by the transcription factors represented by latent 
variables. The regulatory and causal relationships 
between the latent and observed variables, and 
the relationships between latent variables were 
considered in each stage, but the relationships 
between observed variables were not. By connecting 
the observed variables, representing the coding genes, 
to the latent variables, representing the corresponding 
translated transcription factors, the stage separated 
models were combined to construct a model for the 
whole transcriptional regulation in the cell. To connect 
the different stages, all possible connections between 
one observed variable and the estimated latent variables 
were considered. This was done sequentially, with the 
first two stages being connected by SEM, followed by 
the third stage. Figure 2 shows the various network 
structure models between observed variables and 
latent variables, which molecularly describe a coding 
gene (gene) being transcribed and translated into one 
or two effective proteins (F1 and F2).

All possible models were evaluated in terms of 
their goodness-of-fit scores by using the goodness-
of-fit index (GFI), which measures the relative dis-
crepancy between the empirical data and the modeled 
network, and the adjusted GFI (AGFI), which is a 
GFI modified according to the degrees of freedom. 
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Furthermore, I used CFI and RMSEA as fitting scores 
to evaluate the model fitting. Since these indices 
have threshold values as criteria to decide whether 
the model is suited to obtain data independent of a 
huge sample number, they are considered to be use-
ful to clarify the degree of model fitting in this study. 
By evaluating the attached models in terms of their 
 goodness-of-fit scores and expanding the network 
model in a stepwise manner, I constructed a complete 
model of the serial transcriptional regulation com-
posed of the GAL-related genes.

In the first and second stages, two latent variables 
were chosen as the regulators of the target genes. 
The associations from those latent variables to the 
observed variable had been estimated in the first two 
steps of the four-step-procedure, and thus the  models 
for inferring the connected part were  constructed while 
maintaining the estimated associations. According to 
Figure 2, I constructed 7 models while maintaining the 
association from the latent variables to the observed 
variables. There was no difference in the goodness-
of-fit scores of the 7 constructed models in the first 
step, and all of the goodness-of-fit scores were low, 

such as GFI , 0.9 and RMSEA . 0.5. To select 
the best model, I modified the models as  follows: 
(1) Deletion of the associations between the variables 
with P . 0.05, and (2) Addition of the associations 
between a latent variable and an observed variable 
according to the MI scores. All of the modifications 
were performed step by step to infer the best structure 
across the two different stages.

Figure 3 shows the estimated relationships between 
the genes and their corresponding transcription factors. 
The regression weights for each path are shown in 
Table 2. Table 2 shows all of the significant regression 
weights (P , 0.05). The MI was used to estimate the 
relationships among the error terms after all of the 
relationships among the variables were estimated. 
The MI measures how much the chi-square statistic is 
expected to decrease if a particular parameter setting 
is constrained. Different covariance structures were 
constructed for the error terms, and thus the relationships 
between the error terms were tested last. The MI 
showed thirty relationships between the error terms. 
Adding these relationships between the error terms 
to the model improved the goodness-of-fit (Fig. 3b).  

Gene

Gene
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F2

F1
F1

F1F1

F1

F1

F2F2F2

F2
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Gene

GeneGene

Gene
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C D E

F G

B

Figure 2. Possible relationships between variables. The relationships between one observed variable (gene) and two estimated latent variables (F1 and F2). 
Based on empirical studies, two possible causal relationship directions exist: the observed variable to the latent variables, and one latent variable to the 
other latent variable. (A), (B) Possibilities for one causal relationship between the observed variable and one latent variable. (c), (D), (e) Possibilities for 
two causal relationships between the observed variable and the latent variables. (F), (G) Possibilities for three causal relationships between the observed 
variable and the latent variables.
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Figure 3. inferred network model of the GAL regulatory system. (A) estimated main structure of the transcriptional regulation. Arrows show causal rela-
tionships between genes (rectangles) and transcription factors (circles). error terms are indicated by ε. Relationships between errors are considered to 
represent other regulatory systems in the cell. For simplicity, these relationships are not shown. (B) Goodness-of-fit scores. The calculations for these 
scores included relationships between errors. Four criteria were used: GFi . 0.95, AGFi . 0.95, cFi . 0.90 and RMSeA , 0.05. 
note: All four scores indicate that the model fit the measured data well.

In other words, incorporating the relationships between 
the error terms led to a better model. Since many 
regulatory systems in a cell act simultaneously, the 
relationships between the error terms can be considered 
to represent the presence of other regulatory networks. 
In this study, the network structure among the latent 
variables and the observed variables focuses only 
on the hierarchical transcription initiated by Mig1p. 
Therefore, for simplicity, these other regulatory 
systems are not displayed in Figure 3A.

The relative strength of each association is shown 
as a standardized regression weight in Table 2. 
Interestingly, the standardized regression weight of the 
association from F1 to F2 was negative, even though 
both F1 and F2 were considered as proteins. This is 
one of the features of the SEM analysis. The nega-
tive interactions between the observed variables are 
summarized as the existence of a negative interaction 
between an observed variable and a latent variable. 
Thus, the negative relationship between F1 and F2 
does not indicate the negative association from F1 to 
F2, but the negative relationships between YGL035C 
and the target genes of F2.

In the first stage, 6 target genes were regulated by 
F1 and 5 other genes were regulated by F2, although 
YIL162W was regulated by both F1 and F2. Among 
the 6 genes that were regulated by F1, 3 genes have 
identified Mig1p binding sites in Table 1; the bind-
ing sites of YMR011W are -504 to -493, and -427 
to -416; the binding sites of YLR044C are -505 to 
-483, and -451 to -426; and the binding sites of 
YIL162W are -505 to -483, and -451 to -426. In 
contrast, the known binding sites of the F2 regulated 
genes were closer to the transcription start points.

The latent variable F4 in Figure 3(A) shows that 
the latent variable in the third stage was combined 
with one latent variable in the second stage. The 
association from YML051W to one latent variable 
in the second stage was revealed by the MI scores 
during the model modification step. Furthermore, the 
probabilities of the associations between the third 
latent variable and the target genes were not signifi-
cant (P . 0.05). Therefore, the associations between 
the third latent variable and the target genes were 
deleted from the inferred model, instead of adding 
the association from YML051W to F4. This model 
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shows that the transcriptional product of YML051W 
(Gal80p) may interact with the  transcriptional 
product of YPL248C (Gal4p). Actually, the assumed 
transcription factor Gal80p has been experimentally 
confirmed to form a complex with the  transcription 
factor Gal4p. Thus, the stepwise method using both 
the MI scores and the probabilities of the  estimated 
parameters seems to be useful to expand the 
network model.

Discussion
The scheme of the entire transcriptional regulation 
composed of GAL-related genes is shown in Figure 4. 
In the first two stages, the transcription factors are 
determined by two latent variables. The transcription 
factor in the last stage, Gal80p, appears as one of the 
two latent variables of Gal4p. This suggests that some 
latent variables represent protein complexes. This is 
no surprise, as Gal80p is known to form a complex 

Table 2. estimated regression weights (P , 0.05).

Regulated 
variable

Direction Regulator  
variable

Regression  
weight

standardized  
regression weight

Level of significance  
probability

F1 ,--- YGL035c 0.075 0.345 ***
F2 ,--- F1 -2.248 -0.467 ***
YPL248c ,--- ε9 0.949 0.997 ***
YPL248c ,--- F2 0.083 0.084 ***
F3 ,--- YPL248c 0.285 0.263 ***
YML051W ,--- F3 0.209 0.301 ***
YML051W ,--- ε12 0.685 0.954 ***
F4 ,--- YPL248c 0.376 0.331 ***
F4 ,--- YML051W 0.259 0.172 ***
YDR040c ,--- F1 1 0.181
YDR040c ,--- ε1 1.085 0.984 ***
YLR377c ,--- ε7 1.336 0.977 ***
YLL043W ,--- F1 0.721 0.202 ***
YLL043W ,--- ε2 0.696 0.979 ***
YDR009W ,--- ε8 0.962 0.975 ***
YKL109W ,--- F1 1.991 0.344 ***
YKL109W ,--- ε3 1.083 0.939 ***
YMR011W ,--- F1 3.223 0.432 ***
YMR011W ,--- ε4 1.344 0.902 ***
YLR044c ,--- F1 -0.445 -0.068 0.027
YLR044c ,--- ε6 1.306 0.998 ***
YiL162W ,--- F1 1.513 0.24 0.002
YBR018c ,--- ε11 0.733 0.654 ***
YnL239W ,--- ε13 1.021 0.994 ***
YLR081W ,--- ε14 1.126 0.989 ***
YiL162W ,--- ε5 0.805 0.641 ***
YLR377c ,--- F2 0.3 0.211 ***
YiL162W ,--- F2 1 0.765
YBR020W ,--- ε10 0.826 0.923 ***
YBR020W ,--- F4 0.313 0.379 ***
YBR018c ,--- F3 -0.637 -0.586 ***
YDR009W ,--- F2 0.229 0.223 ***
YnL239W ,--- F4 -0.133 -0.14 ***
YBR020W ,--- F2 0.059 0.063 0.006
YBR018c ,--- F4 0.581 0.562 ***
YLR081W ,--- F4 0.148 0.14 ***

notes: The value in the Regression weight column indicates the degree of influence from “Regulator variable” to “Regulated variable”. The “Regression 
weight” is estimated with the restriction for the discrimination of the model. Thus, the Regression weight from F1 to YDR040C is fixed to one. The 
standardization regression weights were calculated after the standardization coefficient first calculated by the standardization of all original data. The result 
is often interpreted as being comparable by using it in general in SEM, relative to the influence of two or more passing coefficients. For example, when 
YGL035c increases by 1 standard deviation, F1 increases by 0.345 standard deviation.

http://www.la-press.com


Aburatani

86 Gene Regulation and Systems Biology 2011:5

with Gal4p.33–37 Similarly, Mig1p is also thought to 
form a complex with Hxk2p,38,39 although the details 
of this complex are unclear.

According to my inferred network, one of the 
two transcription factors in the first stage is Mig1p, 
which is encoded by the YGL035C gene. The known 
binding sites of F1’s target genes were far from the 
transcription start point, such as around -500, even 
though there is no information about the Mig1p 
binding sites for the remaining 3 genes. In addition, 
the feature of the Mig1p binding position was not 
detected for F2’s target genes. It is suspected the 
differences between the latent variables were caused 
by the Mig1p binding site. Similarly, the unknown 
binding sites of Mig1p in F1’s target genes may be 
expected to be around -500.

The negative relationship between F1 and F2 can 
be regarded as the negative relationships between 
F2 and its target genes. The expression of all of F2’s 
target genes is known to be induced by glucose under 

poor conditions, even though the  relationship with 
glucose for some of F1’s target genes was not revealed. 
Actually, Mig1p is known to be active and bound to 
other genes under glucose-rich conditions, to repress 
its target genes.40–43 Thus, the associations between 
F2 and its target genes may represent repressive 
regulation by Mig1p. Furthermore, the relationship 
between the two latent variables in this stage appears 
causal. The second factor is considered to be a com-
plex involving Mig1p, since Mig1p is known to form 
a complex when binding to F2’s target genes. The 
estimated regression values between YGL035C and 
the two latent variables are shown in Figure 4B. Only 
YIL162W was regulated by both F1 and F2. This may 
be occurred by the difference between the meaning of 
arrows from F1 and those from F2. The arrows from 
F1 indicated the position of physical interaction, on 
the contrast the meaning of arrows from F2 meant 
binding regulation by Mig1p complex. The expression 
of YIL162W is known as to be repressed by Mig1p 
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Gal4p
Gal80p

YBR018C
GAL7

YML051W
GAL80

YNL239W
GAL6

YLR081W
GAL2

YBR020W
GAL1

YML051W

0.172

0.301

0.263

0.331

YPL248C
YGL035C

GAL genes
(GAL1,2,7)

F4

F3
F1

F2

−0.467

0.345

?YBR112C

YBR112C

A

B C

Figure 4. Biological interpretation of the factors. (A) Key structures of the inferred network. Genes (rectangles) with two names show the ORF name 
(upper) and the coding protein name (lower). Circles indicate the transcription factor or a complex of factors. Mig1p and Gal4p form complexes with other 
proteins. (B) Beginning of the serial transcriptional regulation initiated by Mig1p. numbers indicate the regression weight of the relationships between vari-
ables. The edge from YGL035C to F1 was positive, indicating that the expression of YGL035C promoted the translation of the subsequent coding protein. 
On the other hand, the edge from F1 to F2 is negative, indicating an inhibitory relationship. (c) Gal4p and Gal80p. The best fit for the latent variable at the 
third stage was located at the same location as another latent variable. In other words, Gal80p was inferred to form a complex with Gal4p.
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binding, but its expression may be controlled by the 
balanced condition in cell.

In the second stage, the observed variable 
representing the gal4 gene, YPL248C, has a causal 
relationship with the two latent variables. One of 
these latent variables is also regulated in the third 
stage by the gal80 gene, YML051W. The details of 
this regulation are shown in Figure 4C. The latent 
variable F4 is regulated by the two genes, and is 
therefore considered to be a complex of Gal4p 
and Gal80p. Such a complex has been observed 
empirically.33–37,44 The model aptly reflects the fact 
that the regulation of GAL 1, 2, and 7 is controlled 
by this complex. In general, the target genes in my 
model were divided into three types: those regulated 
by a single transcription factor, those regulated by 
a transcription factor complex, and those regulated 
by both. Overall, the model successfully describes 
the hierarchy of the serial transcriptional regulation 
among GAL-related genes.

Some relationships between the genes were 
indicated by the MI scores. The tentative relationships 
between genes have a reverse direction, such as from 
a gene in the second stage to a gene in the first stage. 
In this study, those relationships between genes 
were not included in the model, since they do not 
clarify the relationships between proteins and genes 
in serial transcriptional regulation. However, it is 
possible that the relationships with a reverse direction 
indicate feedback regulation. To clarify the feedback 
regulation in this model, all proteins encoded by all 
genes should be defined as latent variables in SEM, 
because it has no previous information about latent 
variables. This approach contradicts the assumption 
that the number of latent variables should be smaller 
than the number of observed variables, and the 
parameters are not estimated. Since a cyclic model 
can be analyzed by SEM, the feedback regulation 
will be clarified with the latent variable information 
in the future.

Although many factors are suspected to regulate 
gene expression, since their underlying mechanisms 
are unclear, these regulators can be viewed as little 
more than a black box. Here, I have shown that 
SEM is a powerful approach to estimate the gene 
expression network controlled by transcription factor 
binding, based on its gene expression profiles. As 
biological data accumulate, it is expected that SEM 

will be applicable to a wide number of gene networks 
to clarify gene-protein interactions.

conclusions
In this study, one serial transcriptional regulation was 
reconstructed by a model that incorporated both genes 
and proteins from only the gene expression profiles, 
in the absence of protein information. Since the inter-
actions between proteins and genes can be accurately 
inferred, this approach should be of great interest to 
systems biologists. The ability to identify expression 
profiles and the corresponding biological functions 
is expected to provide further possibilities for SEM 
in the inference of regulatory mechanisms in cells. 
As this approach can be applied to numerous systems 
and organisms beyond yeast, my findings should be 
of interest to a wide field of biologists.
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