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Abstract: BRCA1 is a tumor suppressor protein involved in maintaining genomic integrity through multiple functions in DNA  damage 
repair, transcriptional regulation, cell cycle checkpoint, and protein ubiquitination. The BRCA1-BARD1 RING complex has an E3 
ubiquitin ligase function that plays essential roles in response to DNA damage repair. BRCA1-associated cancers have been shown to 
confer a hypersensitivity to chemotherapeutic agents. Here, we have studied the functional consequence of the in vitro E3 ubiquitin 
ligase activity and cisplatin sensitivity of the missense mutation D67Y BRCA1 RING domain. The D67Y BRCA1 RING domain 
 protein exhibited the reduced ubiquitination function, and was more susceptible to the drug than the D67E or wild-type BRCA1 RING 
domain protein. This evidence emphasized the potential of using the BRCA1 dysfunction as an important determinant of chemotherapy 
responses in breast cancer.
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Introduction
The BRCA1 gene encodes a 1,863-residue protein that 
participates in the maintenance of genomic stability 
through DNA repair, cell cycle checkpoint control, 
transcriptional regulation and protein ubiquitination.1,2 
The N-terminus of the BRCA1 protein contains a 
RING domain, both ends of which adopt antiparallel 
α-helices, that flank the central RING motif charac-
terized by a short antiparallel three-stranded β-sheets, 
two large Zn2+ binding loops and a central α-helix.3 
The two Zn2+ binding sites are formed in an interleaved 
fashion in which the first and third pairs of cysteines 
(Cys24, Cys27, Cys44 and Cys47) form site I, and the 
second and fourth pairs of cysteines and a histidine 
(Cys39, His41, Cys61 and Cys64) form site II. This 
domain is essential for mediating macromolecular 
interactions to exert tumor suppression functions.4,5 
The BRCA1 RING domain preferentially forms a 
heterodimeric complex with another RING domain 
of BARD1 (BRCA1-associated RING domain 1) 
through an extensive four-helix-bundle interface.3 
The interaction between the BRCA1 and BARD1 
RING domains markedly exhibits an enzymatic activ-
ity of an E3 ubiquitin ligase.6–8 The RING heterdimer 
BRCA1-BARD1 can mediate auto-ubiquitination 
of BRCA1 and trans ubiquitination of other protein 
substrates.9,10 Many cancer-predisposing mutations in 
the BRCA1 RING domain that inhibit the E3 ligase 
activity and the accumulation at damaged sites are 
defective in DNA double-strand break (DSB) repair 
pathways, and render cancerous cells hypersensi-
tive to ionizing radiations and alkylating agents.11–14 
Therefore, the BRCA1-dependent ubiquitination has 
recently been linked to tumor suppression by its par-
ticipations in DNA repair and transcription.15,16

Recently, evidence from several preclinical and 
clinical studies have identified the possibility of 
utilizing DNA damaging agents such as platinum-
based drugs in patients with a BRCA1 mutation.17,18 
It revealed that the response to cisplatin treatment 
was a dose-dependent manner in human breast can-
cer cells in vitro.19,20 After a 24 h exposure to the 
drug, cisplatin concentration of 60–100 µM was 
required for a half inhibition in cell proliferation 
of the BRCA1- competent MCF-7 and MDA-MB-
231 cells while  cisplatin at 20 µM led to a 50% 
reduction in cell viability of the BRCA1-defective 
HCC1937 cells (BRCA1 5382insC mutation).21  

Furthermore, a clinical study showed that nine out 
of 10 (90%) breast cancer patients who carried the 
common BRCA1 C61G and 5382insC mutations 
achieved a complete pathological response in 
cisplatin-based chemotherapy.22 In a retrospective 
study with 102 BRCA1 mutation carriers, ten out 
of 12 (83%) patients with the presence of BRCA1 
C61G and 5328insC founder mutations who were 
treated with cisplatin also experienced a high rate of 
a pathological complete response while the remain-
ing 90 patients who were treated by other regimens 
obtained a much lower response rate (16%).23 These 
were consistent with previous studies, demonstrat-
ing that BRCA1 mutations which disrupted the E3 
ligase activity and the homologous recombination 
repair of RING domain (C61G mutation) and BRCT 
domain (5382insC mutation) caused the significant 
cytoplasmic mislocalization of BRCA1 and altered 
the formation of DNA repair-associated nuclear foci 
in response to DNA damage.11,12,24,25 This contributes 
to the inhibition of nuclear DNA repair and transcrip-
tion function. Therefore, the increased cisplatin sen-
sitivity in the BRCA1-mutated breast cancers might 
be related to an impaired BRCA1 function normally 
responsible for repairing DNA adducts produced by 
cisplatin, and ultimately results in cell death.26–28 It 
suggests that the BRCA1 gene product acts as a key 
modulator of drug sensitivity in breast cancer cells.29 
This was consistent with previous studies, show-
ing that cisplatin-based chemotherapy achieved an 
increased response rate for triple- negative breast 
cancer.30,31 This evidence has emphasized the poten-
tial of using the BRCA1 dysfunction as an important 
determinant of chemotherapy responses in breast 
cancer.32 Interestingly, an unprecedented D67E 
BRCA1 mutation (substitution of aspartic acid with 
glutamic acid at position 67) has only been identi-
fied in three unrelated Thai breast cancer patients.33 
This mutation is assumed to be a founder mutation 
in Thais. According to the Breast Cancer Information 
Core (BIC) database (http://research.nhgri.nih.gov/
bic/), the D67Y BRCA1 mutation (substitution of 
aspartic acid with tyrosine at position 67) identified 
in eight European patients has been observed in the 
same protein residue. These mutations are classified as 
variants of unknown clinical significance. However, 
they are located in the second Zn2+ binding loop (resi-
due 58–68) that forms a recognition interface with an 
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E2 ubiquitin-conjugating enzyme.34 It is postulated 
that these substitutions might interfere at the E2 
binding interface and consequently the ubiquitin 
ligase function. In this study, we have investigated 
the functional consequences of the familial D67E and 
D67Y mutations in the BRCA1 RING domain on the 
ubiquitin ligase activity, together with their respective 
responses to cisplatin in vitro. The findings could pro-
vide additional insights into the BRCA1- dependent 
ubiquitination inactivated by cisplatin and be of inter-
est for molecular-targeted cancer therapy.

Materials and Methods
plasmid construction and protein 
purification
The short N-terminal fragment of the BRCA1 protein 
amino acid residues 1–304 was produced as a glutathi-
one S-transferase (GST) fusion by cloning the respec-
tive gene into pGEX-4T1 (Amersham  Biosciences). 
BRCA1 point mutations were constructed by the 
QuikChange Lightning site-directed mutagenesis kit 
(Stratagene). The mutagenic primers were as follow: 
forward: 5′-CCTTTATGTAAGAATGAGATAACCA
AAAGG-3′ and reverse: 5′-CCTTTTGGTTATCTC
ATTCTTACATAAAGG-3′ for D67E; and forward: 
5′-CCTTTATGTAAGAATTATATAACCAAAAGG
AG-3′ and reverse: 5′-CTCCTTTTGGTTATATAAT
TCTTACATAAAGG-3′ for D67Y. The base changes 
are underlined in the sequence. The BARD1 gene that 
encodes the protein residues 26-327 was amplified by 
the polymerase chain reaction from a BARD1 gene 
template (Addgene plasmid 12646),35 and was cloned 
into pGEX-4T1. Full-length ubiquitin (Ub) (Addgene 
plasmid 12647) and UbcH5c (Addgene plasmid 12643) 
genes were inserted into the pET28a(+) derivative 
for expression of His6-tagged proteins. All recombi-
nant plasmids were verified by DNA sequencing, and 
transformed into Escherichia coli BL21(DE3) for pro-
duction of the protein. Protein expression was induced 
with 0.5 mM isopropyl-1-thio-β-D-galactopyranoside 
for 12 h at 25 °C. Cell pellets were resuspended in a 
lysis buffer of 50 mM Tris (pH 7.4), 50 mM NaCl, 
10% glycerol, 10 mM β-mercaptoethanol, 1%  Triton 
X-100, 0.5% NP-40 and 1 mM PMSF, and then lysed 
by sonication. GST-tagged proteins were freshly pre-
pared using a  glutathione-agarose column ( Amersham 
Biosciences) (Fig. 1). The  purified proteins were exten-
sively dialyzed against deionized water. His6-Ub and 

His6-UbcH5c proteins were  purified using nickel beads 
(Qiagen), and then  dialyzed against a buffer, contain-
ing 50 mM Tris (pH 7.0), 10 mM β-mercaptoethanol 
and 10% glycerol. Human His6-E1 enzyme was pur-
chased from Enzo Life Sciences.

preparation of the platinated BRCA1
Cisplatin (Sigma-Aldrich) was prepared as a stock 
solution (1 mM) in deionized water. Purified wild-
type and mutant BRCA1 RING domain proteins 
(1.67 µM) were mixed with cisplatin at concentration 
of between 0–100 µM. The reaction mixtures were 
incubated at 4 °C in the dark for 24 h, and subjected 
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Figure 1. Affinity purification of GST-BRCA1(1-304)wt, GST-BRCA1 
(1-304)D67e, GST-BRCA1(1-304)D67Y, and GST-BARD1(26-327) proteins 
(2 µg) that were used for the in vitro ubiquitin ligase assay, was identified 
by 12% SDS-PAGE with Coomassie blue staining. The molecular mass 
marker (kDa) was positioned.
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to extensive ultrafiltration using Macrosep centrifugal 
devices (Pall Life Sciences) to remove any unbound 
platinum. The amount of protein was then carefully 
determined by the Bradford assay, using BSA as a 
standard.

In vitro ubiquitin ligase activity assay
The ubiquitin ligase reactions (20 µl) contained 
20 µM Ub, 300 nM E1, 5 µM E2/UbcH5c, 2 µg 
BRCA1 or BRCA1 adducts and 2 µg BARD1 in 
a buffer, containing 50 mM Tris (pH 7.5), 0.5 mM 
DTT, 5 mM ATP, 2.5 mM MgCl2 and 5 µM ZnCl2. 
Two separate reactions were incubated at 37 °C for 
3 h, and then terminated by adding an equal volume 
of SDS-loading dye before electrophoresis on 8% 
SDS-PAGE and visualization of the protein bands 
using silver-staining. The relative E3 ligase activity 
of the mutant and their platinated BRCA1s was quan-
tified by normalizing the density of an apparent band 
of the ubiquitinated-protein conjugates to that of the 
control untreated BRCA1, using a Bio-Rad GS-700 
imaging densitometer.

Results and Discussion
The BRCA1 and BARD1 RING domains 
preferentially form a stable heterodimeric complex 
through an extensive four-helix-bundle interface.3,36 
This interaction provides the proper contact surface 
on BRCA1 in the first and second Zn2+ binding loops 
and in the central helix of the RING for binding E2/
UbcH5c. This RING heterodimer BRCA1-BARD1 
contained the E3 ubiquitin ligase activity, that 
promoted the formation of high molecular weight 
polyubiquitin species, that was obviously greater 
than those produced by the individual BRCA1 or 
BARD1 RING domains (Fig. 2A).37,38 The familial 
D67E BRCA1 mutation still maintained the E3 
ligase activity that was identical to the wild-type 
protein (Fig. 2B). A previous study demonstrated 
that this conservative missense mutation was shown 
to be slightly less thermostable, to suggest that 
a slight conformational change was present and 
this produced a proposed surface modification.8 
However, the mutation barely perturbed the native 
global structure of the BRCA1 RING domain that 
was consistent with a study, revealing that the D67E 
mutation could interact with its partners BARD1 and 
E2, and thus retained the ubiquitin ligase activity.38 

The mutation has recently been shown to inhibit 
estrogen signaling similar to the wild-type BRCA1, 
to indicate that it might be a neutral or mild cancer-
risk modifier of the other defective mechanisms, 
underlying BRCA1 mutation-related breast cancer.39 
Interestingly, the substitution of aspartic acid with 
tyrosine at this position exhibited only partial E3 
ligase activity (Fig. 2B). The bulky hydrophobic 
side-chain of tyrosine possibly disrupts the second 
Zn2+ binding loop and weakens the association with 
E2/UbcH5c, resulting in the reduced ubiquitination 
function. Recently, this substitution mutant has been 
tested for a function in the homologous recombinant 
pathway.12 It was shown that the D67Y BRCA1 still 
preserved DNA recombinant activity similar to the 
wild-type protein. However, it was identified as a 
variant of uncertain clinical significance based on the 
Myriad Genetic Laboratories database.40

To determine the functional consequence of the 
BRCA1 mutation on the response to cisplatin, the wild-
type and mutant BRCA1 RING proteins were treated 
with cisplatin in vitro at a number of concentrations 
between 0–100 µM. The BRCA1 E3 ligase function 
was inactivated in a platinum concentration dependent 
manner (Fig. 3). Both wild-type and D67E BRCA1 
had an identical response to the drug with an effective 
concentration of 100 µM that completely inhibited 
the activity (Fig. 3A and B). It was consistent with 
our previous result that showed the D67E mutation 
barely affected the native structure and function of 
the protein. Surprisingly, the D67Y BRCA1 that was a 
partially defective E3 ligase showed a promising out-
come with an effective dose of 50 µM (Fig. 3C). The 
IC50 value for the E3 ligase activity was approximately 
60 µM for the wild-type and mutant D67E BRCA1, 
and 32 µM for the D67Y BRCA1 RING domain pro-
teins, respectively (Fig. 3D). It indicated that this 
partial defective E3 ligase D67Y BRCA1 exhibited 
susceptible to the anticancer drug cisplatin. Although 
the cisplatin concentration used in the present study 
is comparable to that for inhibiting breast cancer cell 
proliferation,21 further investigations should be per-
formed with respect to the BRCA1 subcellular local-
ization and chemosensitivity of cells harbouring the 
D67E and D67Y mutations, together with the status 
of BRCA1 proteins being platinated and BRCA1 E3 
ligase activity upon cisplatin treatment in vivo for 
clinical relevance.
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Figure 2. (A) In vitro ubiquitin ligase activity of the mutant BRCA1 RING proteins. The mutant D67E and D67Y BRCA1 RING domain proteins were 
assayed for ubiquitin ligase activity for comparison to the wild-type protein. Complete reaction mixtures, containing 20 µM Ub, 300 nM e1, 5 µM Ubch5c, 
2 µg BRCA1 (residues 1-304) and 2 µg BARD1 (residues 26-327), were incubated at 37 °C for 3 h. Reactions were terminated by adding an equal volume 
of SDS-loading dye and heating at 95 °C for 5 min before resolving by 8% SDS-PAGE and staining with silver. The ubiquitinated products are indicated 
by a diamond. (B) An ubiquitinated product as indicatedby the open diamond in (A) and the two separate reactions were quantified by a Bio-Rad GS-700 
imaging densitometer. The relative E3 ligase activity is shown for each BRCA1 RING variant.
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It has recently been shown that cisplatin affects 
the conformation of the apo form of the BRCA1 
RING domain, forming intramolecular and intermo-
lecular adducts.41 A preferential platinum-binding 
site was located on the BRCA1 histidine 117, and an 
enhanced thermostability was observed after the pro-
tein was treated with cisplatin. Furthermore, the 
functional consequence of the platinated BRCA1 on 
the specificity of the ubiquitin ligase was that it inhib-
ited activity with:  transplatin .  cisplatin . 
 oxaliplatin .  carboplatin.35 The geometry and the 

properties of the leaving and non-leaving groups of 
the platinum complexes played an important role in 
controlling the reactivity towards BRCA1. It implies 
that the  platinum-BRCA1 adducts can affect the 
RING structure and the ubiquitination function. 
Recently, preclinical and clinical studies have 
attempted to exploit an advantage of the inherent 
weakness of BRCA1 dysfunction in DSB repair for 
an improved outcome in breast cancer treatment.42,43 
It revealed that the BRCA1-deficient cells displayed 
a defective DNA repair and a 100-fold increased 
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Figure 3. In vitro e3 ubiquitin ligase activity of the cisplatin-BRCA1 
adducts. Two µg of the wild-type (A), D67e (B) or D67Y (c) BRCA1 RING 
domain protein was incubated with a number of cisplatin concentrations 
between 0–100 µM, and assayed for the ubiquitin ligase activity. An 
apparent ubiquitinated product (as indicated by the open diamond) in 
gels was markedly reduced as the cisplatin concentration increased. 
The relative e3 ligase activity of BRCA1 adducts (%) was plotted as a 
function of the cisplatin concentrations (D).
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 sensitivity to  cisplatin than those containing the 
wild-type BRCA1.44  Inhibition of endogenous 
BRCA1 expression also promoted the hypersensitiv-
ity to cisplatin that was associated with decreased 
DNA repair and increased apoptosis.45 It indicates 
that the reduced BRCA1 expression observed in spo-
radic cancers might be exploited for DNA damage-
based  chemotherapy.46 This sensitivity was found to 
be reversed upon the correction of the open reading 
frames of the mutated BRCA1 by secondary intragenic 
mutations that restored the BRCA1 protein expres-
sion and function in DNA repair.47 Factors associated 
with a good cisplatin response also included young 
age, low BRCA1 mRNA expression, BRCA1 pro-
moter methylation, p53 mutations, and a gene expres-
sion signature of the activity of E2F3.31 The significant 
benefits of cisplatin treatment in the improved 
response and overall survival rate have been observed 
in the BRCA1- associated head and neck, bladder, 
ovarian and non-small cell lung (NSCL) cancer 
patients as a result of which larger-scale prospective 
clinical trials have to be designed for determining the 
clinical relevance of chemosensivity.48–52 Therefore, 
further investigation of the BRCA1 response to cis-
platin in a large number of defective BRCA1 muta-
tions is needed, particularly a relationship between 
the BRCA1-mediated ubiquitination and selective 
chemosensitivity (in BRCA1 carriers). This could 
raise the possibility of utilizing the BRCA1 muta-
tions as a potentially molecular  target for platinum-
based drugs in cancer chemotherapy.53–57
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