
Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Clinical Medicine Insights: Oncology 2011:5 265–314

doi: 10.4137/CMO.S7685

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Clinical Medicine Insights: Oncology

R e v I e w

Clinical Medicine Insights: Oncology 2011:5 265

Inhibitors of Glioma Growth that Reveal  
the Tumour to the Immune system

Manuel Nieto-Sampedro1,3, Beatriz valle-Argos1,3, Diego Gómez-Nicola1,3, 
Alfonso Fernández-Mayoralas2 and Manuel Nieto-Díaz3

1Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain. 2Instituto de Química Orgánica General, CSIC, 28006 
Madrid, Spain. 3Hospital Nacional de Parapléjicos, SeSCAM, 45071 Toledo, Spain.  
Corresponding author email: mns@cajal.csic.es

Abstract: Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer 
stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radi-
ation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well 
as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited 
at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.
The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our labora-
tory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, 
the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but 
cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors 
do not affect neurons or fibroblasts up to concentrations of 4 µM or higher.
At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neo-
vascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). 
The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because 
neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
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Glioma Genomics
Central nervous system tumors
Gliomas belong to a group of diverse tumors that 
affect the brain and spinal cord, known as central 
nervous system neoplasms. A brain tumor is a mass 
of abnormal cells in the brain that have grown and 
multiplied in an uncontrolled fashion. Brain tumors 
developing from the various types of cells that make 
up the brain, are called primary brain tumors. Brain 
tumors are usually confined to the brain itself and 
only rarely spread to other parts of the body. Approxi-
mately 50% of all primary brain tumors originate from 
the specialized neural cells called glial cells and are 
called gliomas. Other types of glial cells, susceptible 
to develop primary brain tumors, include oligoden-
drocytes and ependymal cells. Primary brain tumors 
that develop from astrocytes are referred to as astro-
cytomas and they are the most common gliomas. In 
their fourth edition of the World Health Organization 
(WHO) classification of tumours of the central ner-
vous system, published in 2007, astrocytomas, were 
classified depending on their growth rate and their 
likelihood to spread (infiltrate) to nearby brain tissue, 
into the following four types or grades (Fig. 1):

•	 Grade I = Pilocytic Astrocytoma - This is a slow-
growing astrocytoma that usually does not spread 
to other parts of the central nervous system.

•	 Grade II = Low-Grade Astrocytoma - This is also 
a relatively slow-growing type of astrocytoma, but 
grows faster than pilocytic astrocytoma (Grade I). 
It may or may not invade the surrounding normal 
brain tissue and tends to recur after treatment.

•	 Grade III = Anaplastic Astrocytoma - This malig-
nant astrocytoma grows faster than grade II astro-
cytoma. Invades normal brain tissue and recurs 
after treatment.

•	 Grade IV = Glioblastoma Multiforme (GBM). 
This is the most malignant and fastest growing 
 astrocytoma. Several different cell types can be 
observed in the tumor under a microscope, includ-
ing astrocytes and oligodendrocytes. Areas of necro-
sis can also be observed at the center of the tumor. 
GBM invades very rapidly normal brain tissue.

About 22,000 people were diagnosed with a malig-
nant (cancerous) primary brain tumor in the United 
States in 2010. GBM, the most common type of 
 primary malignant brain tumor in adults, accounted 

Figure 1. Chromosomal and genetic abnormalities involved in glioblastoma. The figure shows the relationships between survival, pathobiology, and the molec-
ular lesions that lead to the formation of primary (de novo) and secondary (progressive) glioblastomas. Grade Iv gliomas are histologically  indistinguishable, 
occur in different age groups and present distinct genetic alterations affecting similar pathways. Thus, inactivation of p53 function may be due to direct muta-
tion in progressive GBMs, or INK4aARF mutation/decrease in expression or MDM2 amplification in de novo GBMs. Similarly, activation of the PI3K pathway 
can be achieved by several cooperative mechanisms, including EGFR amplification and mutation, as well as PTEN mutation, although underexpression of 
PTeN in the absence of mutation is frequently seen as well.
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for 25% of all cases. GBM is most common in adults 
50 to 70 years of age and accounts for less than 10% 
of childhood brain tumors. It is more frequent in males 
than females, by an approximate ratio of 3:2.

Although malignant brain tumours make up only 
about 1.5 percent of all forms of cancer, GBM is almost 
always fatal. We are not much better at treating them 
than we were 5 or 10 years ago. GBM have small, 
microscopic extensions in the brain, that cannot be 
removed surgically without sacrificing a large amount 
of normal brain tissue. Even then, unseen tumour cells 
are left behind. Therefore, the role of surgery is lim-
ited to: (1) obtaining biopsy tissue to characterize the 
tumour and (2) removing as much of the tumour as can 
be done safely, without causing  further neurological 
damage. Surgery alone cannot cure these tumours.

Researchers have learned a great deal about the 
molecular and genetic events involved in the transfor-
mation of a “normal” cell to a “malignant” or cancer-
ous cell.1 Brain tumors, like other types of cancers, are 
caused by genetic mutations, some inherited and other 
acquired, ie, developing after exposure to risk factors, 
such as smoking or chemicals, that cause damage to 
the genetic material of the cells. Despite extensive 
research to identify major risk factors, it appears that 
most primary brain tumors develop for no apparent rea-
son. Radiation therapy to the head for the treatment of 
other types of cancers, is currently the only established 
risk factor for developing a primary brain tumor. For 
example, children with leukemia, who receive radia-
tion therapy to the brain as part of their treatment, are 
at risk of developing a brain tumor later in life.

Most people who develop a primary brain tumor 
do not have a family history of brain tumors, ie, 
inherited mutations do not appear to play a major role 
in the development of brain cancer. With the excep-
tion of exposure to ionizing radiation during radia-
tion therapy to the head for the treatment of other 
types of cancers, there is no clear-cut association 
between exposure to other environmental risk fac-
tors and the development of brain tumors. It appears 
that most primary brain tumors develop for no appar-
ent reason, and the role in the development of pri-
mary brain tumors of environmental factors, genetic 
factors, and certain types of viruses, continues to be 
investigated.

Although the exact cause remains elusive, there is 
growing evidence that only a minor population of cells 

in primary brain tumors (GBM, medulloblastoma, 
and ependymoma), are capable of forming a tumor when 
orthotopically  transplanted into immunocompromised 
mice.2

Cancer stem cells
There is no clear-cut association between exposure 
to environmental risk factors and the development of 
brain tumors. The link between exposure to certain 
chemicals (eg, vinyl chloride), petroleum products, 
and chemicals used in the production of synthetic 
rubber, has been suspected but not proven, as a risk 
factor for brain tumors. More recently, the expansion 
of wireless cellular telephones has raised the concern 
about a possible link between radiofrequency expo-
sure from cellular phones and the development of 
brain tumors. Research in this area is ongoing, but 
an association between the use of cellular phones and 
brain tumors has not been found to date. Exposure 
to electromagnetic fields from high-tension wires has 
also been suspected as a risk factor for brain tumors. 
However, most studies have concluded that there is 
no strong evidence clearly proving an association.

With the exception of exposure to ionizing radiation 
during radiation therapy to the head for the treatment of 
other types of cancers, there is no clear-cut association 
between exposure to environmental risk factors and the 
development of brain tumors. Also, most primary brain 
tumors are developped by people who do not have a 
brain tumor family history, ie, inherited mutations do not 
appear to play a major role. It appears that most primary 
brain tumors develop for no obvious reason. Although 
the exact cause remains elusive, it appears that only a 
minor population of the cells in solid tumors, includ-
ing primary brain tumors (GBM, medulloblastoma, and 
ependymoma), are capable of forming a tumor when 
orthotopically transplanted into an immunocompro-
mised mouse.2 The concept of brain cancer stem cells 
(CSC)3 is based on the observation that only a small frac-
tion of primary leukemic cells are capable of initiating 
and sustaining clonogenic growth and inducing leuke-
mia in immunocompromised mice.4,5 Importantly, these 
leukemic subclones share cell surface markers (CD43+, 
CD38−) with “normal” hematopoietic stem cells (HSCs), 
while the progeny of these leukemic clones, the blast cells, 
often express more differentiated lymphoid or myeloid 
lineage markers and are not capable of producing leuke-
mic disease. At present it is unclear whether CSC derive 
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from a normal stem cell compartment or from a more 
differentiated progenitor, that dedifferentiates into a 
stem cell-like state. The identification of the “cell of ori-
gin” remains an area of active research for both hemato-
logical malignancies and solid tumors.2,6–14

The CSC hypothesis was independently proposed for 
GBM15 and pediatric gliomas.16 There were two critical 
findings in these studies. First, from a variety of pri-
mary CNS tumors (including GBM,  medulloblastoma, 
ganglioglioma, ependymoma, and pilocytic astrocy-
tomas), only a minor population of cells, identified in 
cell cultures, was able to self-renew and form clono-
genic neurospheres (Fig. 2). These self-renewing brain 
tumor cells were identified15 by the expression of the 
cell surface marker CD133+ (prominin 1, PROM1, 
1%–35% of total population). In contrast, the CD133− 

population failed to proliferate and remained as an 
adherent monolayer and expressed mature lineage spe-
cific markers. Second, CD133+ tumor neurospheres 
under neural stem cell (NSC) culture conditions, 
expressed the stem cell marker Nestin and, upon expo-
sure to serum, differentiated into a mixed population 
of neurons (Tuj1+), astrocytes (GFAP+), and oligo-
dendrocytes (PDGFR+), which mirrored the mixed 
cell types found in the original patient’s tumor. These 
observations supported a hierarchical CSC hypothesis, 
suggesting that only CD133+ brain tumor cells can self-
renew and undergo lineage-specific differentiation.

Subsequently, it was shown that FACS-sorted 
CD133+ cells had enhanced tumor-forming ability 
(as few as 100 implanted cells were able to produce 
orthotopic tumors) following in vitro expansion.2 

Figure 2. Cancer Stem cells. CD133+ tumor cells show marked stem cell features. (A) CD133 immunohistochemistry shows plasma membrane staining in 
cells scattered within a medulloblastoma. Brain tumor stem cell from both medulloblastomas and pilocytic astrocytomas immunostained for CD133. (B) flow 
cytometry histogram in medulloblastoma tumor cells, the first peak representing cells negative for CD133 expression, and the second peak representing CD133 
positive cells. (c) CD133+ tumor cells proliferated in culture as nonadherent spheres, whereas CD133− tumor cells adhered to culture dishes, did not proliferate 
and did not form spheres.
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In contrast, CD133− cells failed to form tumors, even 
following injection of a much larger cell innoculum. 
The orthotopic tumors mirrored the original tumor het-
erogeneity, with CD133+ cells forming a minor fraction 
and the CD133− cells failing to form tumors on serial 
transplantation. These data suggest that loss of CD133 
expression reflects an  “irreversible” loss of cellular 
ability to propagate a tumor. Whether CD133+ cells are 
only important for tumor initiation and are less critical 
for tumor progression, will require a genetic strategy 
similar to that used to monitor skin stem cells in vivo, 
using a doxycyline-inducible H2B-eGFP reporter tag, 
to permit selection of CD133+ cells over time.17

Cancer-forming ability in vivo is very much 
increased in CD133+ cells for GBM2,18,19 and colon 
cancer.10,20 There are, however, a number of reports 
suggesting a less clear distinction between the abil-
ity of CD133+ and CD133− cells to form orthotopic 
tumors.21–24 Thus, Beier et al23 reported that CD133− 
cells isolated from primary GBM tumors were as 
capable of forming orthotopic tumors as CD133+ cells, 
whereas under the same conditions none of the second-
ary GBM tumors (zero of seven) produced viable neu-
rosphere cultures.23 The same authors also reported that 
in 4 of 11 primary GBM tumors, CD133− cells grew as 
an adherent monolayer, yet were able to produce ortho-
topic tumors. Similarly, CD133− primary GBM tumor 
cells, maintained as an adherent monolayer by addition 
of serum to stem cell culture media, were also able to 
produce highly infiltrative orthotopic tumors.22 These 
data indicate that even brief ex vivo manipulations may 
alter the molecular and phenotypic properties of freshly 
 isolated tumor cells and complicate the conclusions that 
can be drawn from this type of experiments, pointing to 
the need for studies using directly isolated tumor cells 
from fresh specimens and immediate implantation into 
immunocompromised mice. While the GBM-stem cell 
idea is in its infancy and many questions remain, its 
potential for our understanding of tumor development 
and therapy design and  selection is exciting indeed. 
Tumour relapse often occurs after conventional therapy, 
whereas therapy specific for cancer stem cells will lead 
to complete tumour regression (Fig. 3).

Genomic alterations in clinical  
GBM subtypes
The Cancer Genome Atlas (TCGA) Research 
 Network was established to generate the catalogue 

of genomic abnormalities driving tumorigenesis. 
TCGA provided a detailed view of the genomic 
changes in a large GBM cohort containing 206 
patient samples.24 Sequence data of 91 patients and 
601 genes were used to describe the mutational 
spectrum of GBM (Fig. 1), confirming previously 
reported TP53 and RB1 mutations and identify-
ing GBM-associated mutations in such genes as 
PIK3R1, NF1, and ERBB2. Projecting copy number 
and mutation data on the TP53, RB, and receptor 
tyrosine kinase pathways, showed that the majority 
of GBM tumors harbor abnormalities in all of these 
pathways, suggesting that this is a core requirement 
for GBM  pathogenesis. Human cancer cells typically 
harbour multiple chromosomal aberrations, nucle-
otide substitutions and epigenetic modifications 
that drive malignant transformation. This  analysis 
 provides new insights into the roles of ERBB2, 
NF1 and TP53, uncovers frequent  mutations of the 
phosphatidylinositol-3-OH kinase regulatory sub-
unit gene PIK3R1, and provides a network view of 
the pathways altered in the development of glioblas-
toma. Furthermore, integration of mutation, DNA 
methylation and clinical treatment data reveals a link 
between DNA methyltransferase promoter methyla-
tion and a hypermutator phenotype consequent to 
mismatch repair deficiency in treated glioblastomas, 
an observation with potential clinical implications.

Thirty heterozygous deletions in NF1 were 
observed among the sample set of 206 cases, 6 of 
which also harbour point mutation.24 Some samples 
also exhibited loss of expression without evidence 
of genomic alteration. Overall, at least 47 of the 206 
patient samples (23%) harboured somatic NF1 inac-
tivating mutations or deletions, definitively address-
ing NF1’s relevance to sporadic human glioblastoma. 
It was concluded that NF1 is a human glioblastoma 
suppressor gene.

EGFR is frequently activated in primary glioblasto-
mas. Variant III deletion of the extracellular domain (‘vIII 
mutant’) has been the most commonly described event, 
in addition to extracellular domain point mutations and 
cytoplasmic domain deletions.24 Here, high-resolution 
genomic and exon-specific transcriptomic profiling read-
ily detected vIII and carboxy-terminal deletions with 
correspondingly altered transcripts. Among the 91 glio-
blastoma cases with somatic mutation data, 22 harboured 
focal amplification of wild-type EGFR with nopoint 
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mutation, 16 had point mutations in addition to focal 
amplification, and 3 had EGFR point mutations but 
no amplification. Collectively, EGFR alterations were 
observed in 41 of the 91 sequenced samples.24

ERBB2 mutation has previously been reported in 
only one glioblastoma tumour.24 In the TCGA cohort, 
11 somatic ERBB2 mutations in 7 of 91 samples 
were validated, including 3 in the kinase domain and 
2 involving V777A, a site of recurrent missense and 
in-frame insertion mutations in lung, gastric and colon 
cancers. The remaining eight mutations (including 
seven missense and one splice-site mutation) occurred 
in the extracellular domain of the protein, similar to 
somatic EGFR substitutions in glioblastoma. Unlike 
in breast cancers, focal amplifications of ERBB2 were 
not observed in glioblastomas.

Various somatic mutations of the PI(3)K complex 
are relevant in human glioblastoma. PI3Ks catalyze 
the mitogen-stimulated phosphorylation of phos-
phatidylinositol-4,5 bisphosphate [PtdIns(4,5)P2] to 
produce PtdIns(3,4,5)P3. The PI(3)K complex con-
sists of a catalytically active protein, p110a, encoded 
by PIK3CA, and a regulatory protein, p85a, encoded 

by PIK3R1. Frequent activating missense mutations of 
PIK3CA have been reported in multiple tumour types, 
including glioblastoma.25,26 These mutations occur pri-
marily in the adaptor binding domain (ABD) as well 
as the C2 helical and kinase domains. Indeed, PIK3CA 
somatic nucleotide substitutions were detected in 6 of 
the 91 sequenced samples.24 Apart from the four muta-
tions already reported in the COSMIC database,27 two 
novel in-frame deletions were detected in the adaptor 
binding domain of PIK3CA (‘L10 del’ and ‘P17 del’). 
Those deletions may disrupt interactions between 
p110a and its regulatory subunit, p85a.28

Somatic mutations in the genes  
IDH1 and IDH2
Sequencing of matched tumor and normal gene sam-
ples led to the unexpected finding of somatic point 
mutations in the genes for two isocitrate dehydroge-
nase isoenzymes, IDH1 and IDH2. The IDH enzymes 
play a key role in cellular metabolism, catalyzing the 
conversion of isocitrate to α-ketoglutarate and gen-
erating NADPH from NADP in the process. Mutated 
IDH1 was found in 12% of glioblastoma multiforme 

Cancer stem cell
specific therapy

Conventional
cancer therapy

Tumor regression

Tumor relapse

Figure 3. Conventional vs. specific glioma therapies. Cancer stem cells (CSCs) may generate tumors through processes of self-renewal and  differentiation. 
CSCs may persist in tumors as a distinct population and cause relapse and metastasis, giving rise to new tumors. Because CSCs form a very small propor-
tion of the tumor, conventional chemotherapies may not necessarily act specifically on the stem cells, killing differentiated or differentiating cells, that form 
the bulk of the tumor, whereas CSCs may remain untouched and cause a relapse.
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samples analyzed29 and mutations at arginine 132 
(R132) of IDH1 were found in more than 80% of 
secondary GBMs. These mutations strongly reduced 
the ability of the enzyme to convert isocitrate to 
α-ketoglutarate, compared with the wild-type enzyme 
and further kinetic analyses revealed a dramatically 
reduced affinity for isocitrate in the mutants. On exam-
ining gliomas negative for IDH1 mutations, recurrent 
somatic mutations of IDH2 at the analogous R172 
residue were identified.30,31 Not only were the IDH1 
and IDH2 mutations frequent, but studies by several 
laboratories established that the mutation in IDH1 
occurred early in glioma progression.32 Notably, the 
mutations affected only one allele of the IDH locus 
(of the two alleles of either IDH1 or IDH2, but not 
both in the same tumor), which is puzzling consider-
ing that they are selected for early in tumorigenesis.

The IDH enzymes play a key role in cellular 
metabolism. The crystal structure of IDH134 predicts 
that the amino acid substitutions at the R132 posi-
tion will impair the interaction of the enzyme with 
its isocitrate substrate, Zhao and colleagues34 evalu-
ated the in vitro enzymatic activities of three tumor-
derived IDH1 mutants and observed that they had a 
more than 80% reduced ability to convert isocitrate to 
α-ketoglutarate, compared with the wild-type enzyme. 
Kinetic analyses revealed a dramatically reduced 
affinity for isocitrate in the three mutants. As IDH1 
functions as a homodimeric complex, Zhao et al34 iso-
lated IDH1 dimers expressed from the R132H mutant 
and wild-type genes introduced into Escherichia coli. 
Three dimer combinations were identified, the wild-
type:R 132H heterodimer exhibited only 4% of the 
wild-type dimer enzyme activity, while R132H:R132H 
homodimers were almost completely inactive.

What are the metabolic consequences of IDH1 muta-
tions? Using the U-87MG human glioblastoma cell 
line, Zhao et al34 demonstrated a concomitant reduc-
tion in cellular α-ketoglutarate levels after knocking 
down endogenous IDH1. Because α-ketoglutarate is 
required by prolylhydroxylases, enzymes that hydroxy-
late and promote the degradation of hypoxia-inducible 
factor 1α (HIF-1α), the intracellular levels of HIF-1α 
were also reduced. Zhao et al34 showed that when 
wild-type IDH1 was knocked down by RNA interfer-
ence, HIF-1α was elevated, and when IDH1 was over-
expressed, HIF-1α levels were reduced. HIF-1α is a 
component of HIF-1, a transcription factor that regu-

lates the expression of genes related to glucose metab-
olism, angiogenesis, and other signaling pathways, by 
sensing low cellular oxygen levels. Using quantitative 
PCR to measure the transcripts of three known HIF-1 
target genes—glucose transporter 1 (Glut1), vascu-
lar endothelial growth factor (VEGF), and phospho-
glycerate kinase (PGK1)—Zhao et al34 demonstrated 
induced expression of these genes as a consequence of 
either the knockdown of wild-type IDH1 or the expres-
sion of the IDH1 R132H mutant. On staining glioma 
samples for HIF-1α, the tumors with previously iden-
tified R132H mutations showed a statistically stronger 
staining signal than those without mutations. Thus, the 
function of mutated IDH1 was reduced and the down-
stream impact of that reduced function (the consequen-
tial upregulation of HIF-1α) contributed to the cell’s 
progression to cancer, indicating that a likely function 
of IDH1 is that of a tumor suppressor gene and that 
IDH2 may have a similar role.35

Building on the initial characterizations of 
IDH1 mutations in gliomas, Dang et al36 took a metab-
olomics-based approach to identify additional changes 
in metabolite levels when an IDH1 mutation was 
 present.36 They found 2-hydroxyglutarate to be the only 
metabolite with significantly increased abundance in 
cells expressing the R132H mutant IDH1. The increase 
in 2-hydroxyglutarate resulted from the NADPH-
 dependent reduction of α-ketoglutarate by mutant 
IDH1, a new function enabled by the mutation at R132. 
The authors demonstrated a similar gain of function for 
the R132C, R132L and R132S  mutations. Their X-ray 
crystallographic studies showed that the R132H muta-
tion in IDH1 results in the formation of an active site 
distinct from that of the wild-type enzyme. With the aim 
of improving diagnostic efficacy, Dang et al36 examined 
12 GBM tumors with various R132 mutations in IDH1, 
and found 2-hydroxyglutarate levels 100-fold greater 
or more than in tumors with wild-type IDH1; the mea-
sured decrease in α-ketoglutarate was, however, not 
statistically different in mutant versus wild-type IDH1 
tumors. This finding indicates that in the clinic, detect-
ing patients with increased 2-hydroxyglutarate levels 
would identify GBMs with IDH1 mutations, predicting 
an overall longer survival time. Indeed, since secondary 
GBMs develop from lower-grade gliomas, therapeutic 
inhibition of 2-hydroxyglutarate production might slow 
the transition time to GBM development, offering an 
improved survival benefit as a result.
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Mardy’s laboratory used a whole-genome shotgun 
approach to sequence tumor genomes. In the sec-
ond case of acute myeloid leukemia sequenced, they 
discovered an IDH1 R132 mutation that was subse-
quently found in about 8% of our 187 banked acute 
myeloid leukemia patient samples, showing that this 
mutation was not restricted to gliomas.37 A subse-
quent study by Gross et al38 examined an additional 
145 acute myeloid leukemia biopsies, identifying 11 
IDH1 R132 mutant samples.38 Four IDH1-mutant pri-
mary samples had relapse samples that also carried the 
IDH1 mutation. Acute myeloid leukemia cells carrying 
the R132 mutant of IDH1 were found by gas chroma-
tography-mass spectrometry to have 2-hydroxyglu-
tarate levels around 50-fold greater than in samples 
with wild-type IDH1. Similarly, higher 2-hydroxy-
glutarate levels were detected in sera from patients 
positive for the IDH1 R132 mutation. Two wild-type 
IDH1 samples had elevated 2-HG levels and were 
found to be carrying IDH2 R172 mutations, the first 
report of these in acute myeloid leukemia. Because of 
the apparent predominance in acute myeloid leukemia 
of the IDH1 R132C mutation over R132H (which is 
more predominant in gliomas), Gross et al38 looked at 
the kinetics of the R132C mutant enzyme. The R132C 
enzyme showed a dramatic loss of affinity for isoci-
trate (resulting in a reduction in KM) and a drop of 
more than six orders of magnitude in net efficiency 
(Kcat/KM) of isocitrate metabolism.

Another recent study has extended our under-
standing of IDH mutations and their detection. Ward 
et al39 have shown that the gain of function seen in 
the IDH1 R132 mutants (that is, the ability to reduce 
α-ketoglutarate) is also found in the IDH2 R172K 
mutant. Metabolic profiling of cells expressing IDH2 
R172K revealed an approximately 100-fold increase in 
intracellular 2-hydroxyglutarate compared with cells 
overexpressing wild-type IDH2, and this finding was 
extended to leukemia cells carrying the IDH2 R172K 
mutation. Ward et al39 also screened acute myeloid leu-
kemia samples with normal cytogenetics but unknown 
IDH mutational status for increased levels of 2-hydrox-
yglutarate, and then evaluated the mutational status 
based on the result of the screening assay. In this test, 
2-hydroxyglutarate measurement was found to predict 
mutational status with high accuracy.39

This work, aiming to characterize the impact of 
IDH mutations on tumor cell biology, has led to the 

conclusion that all mutations discovered so far, enable 
a gain of function in α-ketoglutarate reduction with a 
concomitant increase in the tumor-specific metabolite, 
or oncometabolite, 2-HG. Although the contribution 
of 2-hydroxyglutarate to tumor cell biology remains 
speculative, Ward et al39 noted that all IDH mutation-
containing tumor types identified so far (leukemias and 
gliomas) are distinguished by proliferation of a rela-
tively undifferentiated cell population. In this context, 
the effect of 2-hydroxyglutarate on the tumor and its 
microenvironment is to block cellular differentiation.39

DNA methyltransferase methylation and 
mismatch repair in treated glioblastomas
Tumour cell-derived gelatinases (matrix metallopro-
teinase-2, matrix metalloproteinase-9, MGMT) can be 
considered prime factors in glioma  invasiveness: their 
expression correlates with the progression and the 
degree of malignancy.40 Alkylating agents are the most 
widely used chemotherapeutic agents to treat GBM. 
Among the chemotherapeutic compounds used in its 
treatment, temozolomide (TMZ), a cytotoxic alkylating 
agent, has shown activity in recurrent glioblastoma.41–44 
Epigenetic silencing of O6- methylguanine-DNA-
methyltransferase (MGMT) gene by promotor methy-
lation was among the strongest predictors of survival 
in the European-Canadian study for newly diagnosed 
GBM.45 Patients with tumors harboring MGMT pro-
moter methylation clearly benefit most from com-
bined RT/TMZ. Cancer-specific DNA methylation of 
CpG dinucleotides located in CpG islands within the 
promoters of 2,305 genes, was measured relative to 
normal brain DNA.24 The promoter methylation sta-
tus of MGMT, a DNA repair enzyme that removes 
alkyl groups from guanine residues,46 is associated 
with glioblastoma sensitivity to alkylating agents.47,48 
Among the 91 sequenced cases, 19 samples were found 
to contain MGMT promoter methylation (including 
13 of the 72 untreated cases and 6 of the 19 treated 
cases; see below, chemotherapy).24 When juxtaposed 
with somatic mutation data, an intriguing relation-
ship between the hypermutator phenotype and MGMT 
methylation status emerged in the treated samples. 
Specifically, MGMT methylation was associated with 
a profound shift in the nucleotide substitution spectrum 
of treated glioblastomas. Among the 13 treated sam-
ples without MGMT methylation, 29% (29 out of 99) 
of the validated somatic mutations occurred as GNC to 
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ANT transitions in CpG dinucleotides (characteristic 
of spontaneous deamination of methylated cytosines), 
and a comparable 23% (23 out of 99) of all mutations 
occurred as GNC to ANT transitions in non-CpG dinu-
cleotides. In contrast, in the six treated samples with 
MGMT methylation, 81% of all mutations (146 out of 
181) turned out to be of the GNC to ANT transition 
type in non-CpG dinucleotides, whereas only 4% (8 out 
of 181) of all mutations were GNC to ANT transition 
mutations within CpGs. That pattern is consistent with 
a failure to repair  alkylated guanine residues caused 
by treatment. In other words, MGMT methylation 
shifted the mutation spectrum of treated samples to a 
preponderance of GNC to ANT transition at non-CpG 
sites. Notably, the mutational spectra in the mismatch 
repair (MMR) genes themselves reflected MGMT 
methylation status and treatment consequences. All 
seven mutations in MMR genes found in six MGMT 
methylated,  hypermutated (treated) tumours occurred 
as GNC to ANT mutations at non-CpG sites, whereas 
neither MMR mutation in non-methylated, hypermu-
tated tumours was of this characteristic. Hence, MMR 
deficiency and MGMT methylation together, in the 
context of treatment, exerted a powerful influence 
on the overall frequency and pattern of somatic point 
mutations in glioblastoma tumours, an observation of 
potential clinical importance. In some Phase II clini-
cal trials, the combined therapy with marimastat (MT), 
a broad spectrum matrix metalloproteinase inhibitor, 
plus other chemotherapeutic agents, compared to con-
ventional therapy for glioma, has provided promising 
antitumor effects, although musculoskeletal toxicity 
was observed.49,50

Mitogenic pathways in Glioma
Cell cycle dysregulation and enhanced 
glioma cell proliferation
Cell cycle regulatory genes have a great importance 
for glioma growth, as underscored by the frequent 
mutations of these genes in cellular proliferation and 
senescence. The RB and p53 pathways, that gov-
ern the G1-to-S-phase transition in the cell cycle, 
suffer inactivating mutations in GBM (Fig. 4). The 
absence or misfunction of these guardians of the cell 
cycle, renders tumoral cells susceptible to cell divi-
sion driven by constitutively active mitogens, such as 
phosphoinositide 3-kinase (PI3K) and mitogen-acti-
vated protein kinase (MAPK).

The Rb pathway
In quiescent cells, hypophosphorylated RB blocks 
proliferation by binding and sequestering the E2F 
family of transcription factors, which prevent the 
transactivation of genes essential for progression 
through the cell cycle.51 Upon mitogenic stimula-
tion, the activation of the MAPK cascade leads to the 
induction of cyclin D1 and its association with the 
cyclin-dependent kinases CDK4 and CDK6, as well 
as the degradation of the CDK2/cyclin E inhibitor, 
p27 Kip1.52–54 These activated CDK complexes in 
turn phosphorylate RB, enabling E2F transactivation 
of its direct transcriptional targets governing S-phase 
entry and progression55,56 (Fig. 4).

Gliomas circumvent RB-mediated cell cycle inhibi-
tion through any of several genetic alterations. The Rb1 
gene, which maps to chromosome 13q14, is mutated in 
nearly 25% of high-grade astrocytomas and the loss 
of 13q typifies the transition from low- to intermedi-
ate-grade gliomas.57,58 Moreover, amplification of the 
CDK4 gene on chromosome 12q13–14 accounts for 
the functional inactivation of RB in 15% high-grade 
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Figure 4. Cell division checkpoints. The cell cycle proceeds by a defined 
sequence of events that ensures that complete and accurate replicas 
of the genome reach daughter cells. To monitor this process, cells are 
equipped with checkpoints at various stages of the cycle. DNA damage 
activates at least 3 checkpoints, that arrests cell cycle: in G1/S (G1) check-
point, intra-S phase checkpoint, and G2/M checkpoint. Perturbation of 
DNA replication by drugs that interfere with DNA synthesis, DNA lesions, 
or obstacles on DNA, activate the DNA replication checkpoint, that arrests 
cell cycle at G2/M transition, until DNA replication is complete. Additional 
checkpoints, such as the morphogenesis checkpoint, detect abnormality 
in cytoskeleton and arrests the cell cycle at the G2/M transition.
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gliomas, and CDK6 is also amplified but at a lower 
frequency.59,60 RB activity is also frequently lost through 
the inactivation of a critical negative regulator of both 
CDK4 and CDK6, p16Ink4a.61 This gene is one of two 
transcripts generated at the CDKN2A locus on chro-
mosome 9p21 (in addition to p14 ARF, p14 alternate 
reading frame), which is  predominantly inactivated by 
allelic loss or hypermethylation in 50%–70% of high-
grade gliomas and about 90% of cultured glioma cell 
lines.62–66  Consistent with its role as an important glioma 
tumor suppressor, p16Ink4a is also a critical inhibitor 
of progenitor cell renewal in the subventricular zone 
of aging mice.67 The importance of the inactivation of 
the RB pathway in glioma progression is evidenced 
by the near-universal, and mutually exclusive, altera-
tion of RB pathway effectors and inhibitors, in both 
primary and secondary GBM.68,69 However, numerous 
in vitro and in vivo assays have demonstrated that the 
neutralization of this pathway alone is insufficient to 
abrogate cell cycle control, to the extent needed for 
cellular transformation. Therefore, other important cell 
cycle regulation pathways probably complement their 
activities in preventing gliomagenesis.70–78

The p53 pathway
The p53 tumor suppressor prevents the propagation of 
cells with unstable genomes, predominantly by halting 
the cell cycle in the G1 phase or instigating a program 
of apoptosis or proliferative arrest.79 P53 achieves these 
ends primarily through its function as a transcription 
factor: upon being post-translationally modified by 
various genotoxic and cytotoxic stress-sensing agents, 
p53 is stabilized, then binds and transcriptionally regu-
lates the promoters of more than 2500 potential effec-
tor genes.80,81 The best characterized of these effectors 
is the transcriptional target CDNK1A, that encodes the 
protein for the CDK2 inhibitor p21.82,83 Although this 
gene has not been found to be genomically altered in 
gliomas, its expression is frequently abrogated by p53 
functional inactivity, as well as by mitogenic signaling 
through the PI3K and MAPK pathways.

The p53 pathway is almost invariably altered in 
sporadic gliomas. Loss of p53, through either point 
mutations that prevent DNA binding or loss of chro-
mosome 17p, is a frequent and early event in the 
pathological progression of secondary GBM.84,85 The 
importance of p53 in gliomagenesis is also underscored 
by the increased incidence of gliomas in Li-Fraumeni 

 syndrome, a  familial cancer-predisposition associated 
with germline p53 mutations.86,87 This genetic linkage 
has been reinforced by a glioma-prone condition in mice 
engineered with a p53  mutation commonly observed in 
Li-Fraumeni,88 as well as in p19 ARF-null mice.89

The finding that a second promoter drives an alterna-
tively spliced transcript at the CDKN2A locus prompted 
the discovery of an additional tumor suppressor gene 
that is inactivated at this locus.90 The second protein 
encoded by CDKN2A, p14 ARF, was subsequently 
shown to be an important accessory to p53 activation, 
under conditions of oncogenic stress due to neutraliza-
tion of the p53 ubiquitin ligase, MDM2.91–94 This onco-
gene was originally found amplified in a spontaneously 
transformed murine cell line, and later discovered to be 
a key negative regulator of p53 during normal devel-
opment and in tumorigenesis.95–102 Concordantly, the 
chromosomal region containing MDM2, 12q14-15, 
was amplified in about 10% of primary GBM, the 
majority of which contained intact p53.59 The discov-
ery of the MDM2-related gene, MDM4 (chromosome 
1q32), which inhibits p53 transcription and enhances 
the ubiquitin ligase activity of MDM2, prompted the 
finding that the p53 pathway is also inactivated by 
the amplification of MDM4 in 4% of GBM with nei-
ther TP53 mutation nor MDM2 amplification.103–106 
 Additionally, the tumor suppressor gene CHD5 (chro-
modomain helicase DNA-binding domain 5), which 
maps to chromosome 1p36 and is therefore, frequently 
hemizygously deleted in those human gliomas that 
have 1p loss, has been shown to maintain p53 levels 
by facilitating expression of p19 Arf (mouse p14 Arf 
ortholog), and thus presents an additional mechanism 
for inactivation of this critical pathway.68

Mitogenic signaling pathways
Many mitogens and their specific membrane receptors 
are present in overactive form in gliomas. Proliferation 
of normal cells requires activation of mitogenic signal-
ing pathways through diffusible growth factor binding, 
cell–cell adhesion, and/or contact with extracellular 
matrix (ECM) components. These signals are trans-
duced intracellularly by transmembrane receptors that 
typically activate the PI3K and MAPK signaling path-
ways. In contrast, tumor cells acquire genomic altera-
tions that greatly reduce their dependence on exogenous 
growth stimulation, enabling their inappropriate cell 
division, survival, and motility through the constitutive 
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activation of these pathways. While gliomas overcome 
the normal impositions on the control of mitogenic 
signaling through multiple mechanisms, activation of 
receptor tyrosine kinases (RTKs), discussed in detail 
below, appears to be the predominant mechanism.

MAPK
The MAPK pathway can transduce proliferation sig-
nals by both integrins and receptor tyrosine kinases 
(RTKs). Integrins are membrane-bound extracellular 
matrix (ECM) receptors, that mediate the interaction 
between the ECM and the cytoskeleton. Upon  adhesion 
to ECM, integrins bind cytoplasmic anchor proteins 
that coordinate the binding of integrins to actin fila-
ments, thus creating a focal adhesion complex.

Multiple molecules of focal adhesion kinase (FAK) 
cluster at these complexes and become activated by 
crossphosphorylation, whereupon FAK activates a 
signal transduction cascade that leads to extracellular 
signal regulated kinase (ERK) phosphorylation. This 
takes place either through activation of Ras, recruiting 
the adaptor protein Grb2 and the Ras guanine nucleotide 
exchange factor SOS to phospho-FAK at the plasma 
membrane, or through Src-dependent phosphorylation 
of p130Cas.107–109 Ras-GTP, in turn, phosphorylates 
Raf kinase, which phosphorylates MEK, which phos-
phorylates ERK. The phosphorylated kinase enters 
the nucleus and phosphorylates nuclear transcription 
factors, that induce the expression of genes promot-
ing cell cycle progression, such as cyclin D1 (Fig. 4). 
RTKs activate the MAPK pathway when activated 
by growth factor signaling, mutation, or overexpres-
sion. RTK activation results in receptor dimerization 
and cross-phosphorylation, creating binding sites for 
adaptor protein complexes such as Grb2/SOS, which 
in turn activates Ras. Whereas mutated forms of Ras, 
constitutively activated, are found in about 50% of all 
human tumors, few Ras mutations have been found 
in gliomas. However, high levels of active Ras-GTP 
are found in advanced astrocytomas,110 suggesting 
that a more relevant mechanism for MAPK-dependent 
mitogenic signaling in GBM is through inappropriate 
activation of RTKs and/or integrins.

PI3K/PTeN/AKT
Class I kinases (PI3Ks) catalyze the mitogen-
 stimulated phosphorylation of phosphatidylinositol- 
4,5-bisphosphate [PtdIns(4,5)P2] to produce Ptd 

Ins(3,4,5)P3. This creates docking sites for a  multitude 
of  signaling proteins containing domains capa-
ble of binding either PtdIns(3,4,5)P3 itself or the 
5- dephosphorylated product, PtdIns(3,4)P2.111,112 Class 
IA PI3Ks are heterodimers, recruited to activated RTKs 
and adaptor proteins via their regulatory subunit, of 
which there are five isoforms encoded by three genes: 
p85 (PIKR2), p55 (PIKR3), and p50 (PIK3R1).

Because the regulatory subunits appear function-
ally equivalent, class IA PI3Ks are currently defined 
by their catalytic isoforms p110, encoded by the 
PIK3CA, PIK3CB, and PIK3CD genes,  respectively.112 
Evidence for the importance of p110 in transforma-
tion, derives from the discovery of a vPIK3CA onco-
gene in avian sarcoma virus with potent transforming 
activity in chicken embryo fibroblasts.113 PIK3CA 
gain-of-function point mutants have been detected 
in a variety of cancers, including malignant gliomas 
such as GBM, in which the frequency of mutation has 
been cited in some studies to be as high as 15%.25,26 
Elevated expression of the PIK3D gene has also been 
reported in GBM.114,115

The p110 subunits can be activated by binding both 
p85 and GTP-bound Ras.116,117 Recently, the study of 
mice bearing a p110 point mutant unable to bind Ras, 
revealed that this interaction is essential both, for nor-
mal development and for Ras-driven tumorigenesis, 
as assessed both by transformation of mouse embry-
onic fibroblasts by H-Ras and by using a mouse model 
of K-ras-induced lung adenocarcinomas.118

The action of class I PI3K enzymes is directly 
antagonized by the PtdIns(3,4,5) P3 3-phosphatase 
encoded by the PTEN gene, located at 10q23.3.119–121 
PTEN is a major tumor suppressor that is inactivated 
in 50% of highgrade gliomas by mutations or epi-
genetic mechanisms, each resulting in uncontrolled 
PI3K signaling in these tumors.114,122 In mouse mod-
els, brain-specific inactivation of PTEN caused over-
growth of the mouse brain and aberrant proliferation 
of astrocytes, both in vivo and in vitro.123 An elegant 
mouse model of astrocytoma has been developed in 
which the Rb family of proteins are inactivated by 
GFAP-directed expression of SV40 T antigen.78 In 
this model system, PTEN inactivation was associ-
ated with increased angiogenesis—a close parallel 
to the progression of high-grade glioma in humans, 
coincident with loss of PTEN.78,124 While regulation 
of PI3K signaling is critical for controlling cell 
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growth and survival, a number of recent studies have 
pointed to additional levels at which PTEN may act 
to suppress transformation and tumor progression. 
Differentiated and quiescent cells harbor high lev-
els of nuclear PTEN, which appears to fulfill impor-
tant roles in the maintenance of genomic integrity, 
through centromere stabilization and promotion of 
DNA repair.124 Importantly, a number of PTEN point 
mutations found in familial cancer predisposition 
syndromes have no effect on enzyme activity, but 
instead lie within sequences important for regulating 
PTEN localization. Analysis of such mutants has con-
firmed that aberrant sequestration of PTEN into either 
the nucleus or the cytoplasm compromises its tumor 
suppressor function.125,126

The phosphoinositide-dependent kinase (PDK1) 
and Akt/PKB (the cellular homolog of a viral onco-
protein), are two of the many signaling proteins 
recruited to the membrane and activated by bind-
ing to PtdIns(3,4,5)P3, required for tumorigenesis in 
PTEN+/− mice and for growth of PTEN−/− embryonic 
stem (ES) cells as tumors in nude mice. In response 
to PI3K activation, PDK1 and the mammalian target 
of rapamycin mTOR, acting in the rapamycin-insen-
sitive TORC2 complex, activate Akt via phospho-
rylation of two key residues, T308 and S473.127,128 
Assessment of the phosphorylation status of these 
residues is often the method of choice for monitor-
ing PI3K pathway activity in cell lines and primary 
tumors, including GBM samples, 85% of which have 
been reported to display activated Akt.129 In addi-
tion to aberrant PI3K signaling, there are a number 
of other possible mechanisms by which Akt activa-
tion may become dysregulated in GBM. PHLPP (PH 
domain leucine-rich repeat protein phosphatase), 
which dephosphorylates S473, is expressed at very 
low levels in certain GBM cell lines, as is CTMP 
(C terminal modulator protein), which binds to Akt 
and inhibits its phosphorylation.130–132 PIKE-A, a 
small GTPase highly expressed in GBMs and glioma 
cell lines, binds directly to phosphorylated Akt and 
enhances its anti-apoptotic function.133,134

Akt phosphorylates many proteins involved in the 
regulation of cell growth, proliferation, metabolism, 
and apoptosis. A recent study on v-H-ras-induced trans-
formation of MEFs and skin carcinogenesis, indicates 
that activation of mTOR in the rapamycin-sensitive 
TORC1 complex via inhibition of the TSC2 tumor 

suppressor, is a key pro-oncogenic function of Akt.135 
Because H-ras mutation is seldom seen in human 
tumors, it will be important to determine whether Akt/
TSC/TORC1 signaling is similarly required down-
stream from glioma-relevant perturbations, such as 
EGFR mutation and overexpression and/or PTEN 
loss. Evidence that this may indeed be the case is 
provided by the efficacy of PI-103, a small molecule 
inhibitor of both p110 and mTOR, which potently 
blocks the growth of glioma cell lines and of U87EG-
FRvIII xenografts following subcutaneous injec-
tion in nude mice, without discernable toxicity to the 
animals.136 The use of TSC2−/− cells, which display 
constitutive phosphorylation of the TORC1 substrates 
S6 K1 and 4E-BP1, revealed the existence of a nega-
tive feedback loop, whereby inhibitory phosphoryla-
tion of the insulin receptor substrate (IRS-1) by S6 K1 
causes a reduction in Akt activation.137–140 Treatment of 
glioma cells with TORC1-specific inhibitors, such as 
rapamycin, disrupts such feedback control, resulting 
in increased Akt activity.136 Dual inhibition of PI3K 
and TORC1 by PI-103 overcomes these problems 
and likely explains its increased efficacy. In addition, 
phosphorylation of the FOXO transcription factors by 
Akt, which promotes their exclusion from the nucleus, 
reduces the expression of a number of important target 
genes, including the CDK inhibitors p21 WAF1/CIP1 
and p27KIP1 (both of which are also directly targeted 
by Akt) and the RB family member p130.141–143 Recent 
data on context-specific actions of FOXO on differ-
ent cell types and tissues, suggest the need to validate 
these FOXO targets in glioma.144

PI3K-MAPK-p53-RB pathway 
interactions
PI3K, MAPK, p53, and RB pathways are often con-
sidered as distinct entities, but there is significant 
cross-talk among them. Such cross-talk reinforces the 
inappropriate regulation of any single pathway per-
turbation. For example, because p53 enhances PTEN 
transcription and represses the expression of p110,145,146 
the loss of p53 in cells with constitutively active RTK 
signaling, can further potentiate PI3K pathway acti-
vation. Therapies aimed at reactivating p53 in GBM, 
may be compromised by MAPK and PI3K interven-
tion in the activity of p53 and its effectors. MAPK 
signaling activates c-myc, which binds the miz-1 tran-
scriptional repressor to block p21 gene induction,147,148 
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while Akt impacts on p53 function by phosphorylation 
of Mdm2,149–151 in addition to the direct inhibition of 
p21. Moreover, these pathways can negate each other: 
p53 can inhibit activated FOXOs by inducing the 
expression of the kinase SGK1, which phosphorylates 
and exports FOXOs from the nucleus.152 Conversely, 
FOXOs can inhibit p53 transcriptional activity, by 
increasing its association with nuclear export recep-
tors that translocate it to the cytoplasm.153 The recent 
finding that Sprouty 2, a gene involved in suppres-
sion of Ras signaling during oncogene-induced senes-
cence, is also a direct transcriptional target of FOXO, 
emphasizes the complexity of cross-talk that exists 
between the Ras/MAPK and PI3K pathways.144,154 The 
complicated interplay among these critical molecules 
highlights the need for detailed dissection of aberrant 
pathways in each tumor, to accurately guide the choice 
of combination therapies that can simultaneously tar-
get multiple pathways.

Receptor tyrosine kinases (RTKs)
Gliomas may activate receptor-driven pathways by 
different mechanisms: overexpression of both ligands 
and receptors leading to an autocrine loop, genomic 
amplification, and/or mutation of the receptor leading 
to constitutive activation in the absence of ligand. The 
EGF and platelet-derived growth factor (PDGF) path-
ways play important roles in both CNS development 
and gliomagenesis, and targeted therapy against these 
potentially critical signaling pathways is currently 
under vigorous basic and clinical investigation.

eGFR
EGFR gene amplification occurs in −40% of all 
GBMs, and the amplified genes are frequently 
rearranged.155–159 An EGFR mutant allele with dele-
tion of exons 2–7 (known variously as EGFRvIII, 
EGFR, or EGFR*) occurs in 20%–30% of all human 
GBM (and in 50%–60% of those that have amplified 
wild-type EGFR), making it the most common EGFR 
mutant.160,161 EGFRvIII is a highly validated glioma 
target as evidenced by the capacity of activated EGFR 
mutants to enhance tumorigenic behavior of human 
GBM cells by reducing apoptosis and increasing pro-
liferation162–165 and to malignantly transform murine 
Ink4a/Arfnull neural stem cells (NSCs) or astrocytes 
in the mouse brain.70,74 Thus, EGFR has been a prime 
target for therapeutic intervention in GBM with 

small molecule kinase inhibitors, antibody-based 
 immunotherapy and immunotoxins,166–169 and, more 
recently, small interfering RNA (siRNA)-directed 
neutralization of either wild-type EGFR or the unique 
junction present in the EGFRvIII allele.170,171

Transcriptional profiles of GBM with EGFR over-
expression have revealed distinct gene expression 
profiles that have enabled classification of molecular 
subgroups among phenotypically undistinguishable 
tumors.172 Along similar lines, immunohistochemi-
cal studies have demonstrated that GBM could be 
stratified according to PI3K pathway activation status 
and that these activation profiles are associated with 
EGFRvIII expression and PTEN loss.173 Such efforts 
to stratify patients appear to be important in the opti-
mal deployment of small molecule EGFR inhibitors as 
only a small fraction of GBM patients show meaning-
ful responses to such agents.174,175 Thus far, in respon-
sive cases, patients with coexpression of EGFRvIII176 
or wild-type EGFR,177 together with PTEN presence 
or low Akt activation levels in their GBM cells, exhib-
ited the most favorable outcomes to EGFR inhibitors. 
In accordance with findings of multiple activated 
pathways in GBM, addition of the mTOR inhibitor, 
rapamycin, has been shown to enhance the sensitivity 
of PTEN-deficient tumor cells to the EGFR kinase 
inhibitor, erlotinib.178–180 Consistent with enhanced 
apoptosis resistance by EGFRvIII, activated EGFR 
has also been shown to confer radio- and chemo-
resistance to GBM cells.181,182 These experimental 
observations and the capacity of EGFR inhibitors to 
sensitize GBM cells to radiation and chemotherapeu-
tic agents,168,183,184 predict improvent of therapeutic 
outcome by disruption of EGFR function at the time 
of ionizing radiation and subsequent chemotherapy, 
instead of at the time of recurrence.185 These results, 
coupled with the identification of EGFR-activating 
ectodomain mutations in 14% of GBMs convey-
ing sensitivity to erlotinib,186 are beginning to detail 
tumor molecular profiles and therapeutic regimens 
that will best benefit tumor patients with EGF recep-
tor and downstream pathway genetic lesions.

PDGF receptor (PDGFR)
In addition to the EGFR signaling axis, PDGFR and 
its ligands, PDGF-A and PDGF-B, are expressed 
in gliomas, particularly in highgrade tumors, and 
strong expression of PDGFR occurs in  proliferating 
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 endothelial cells in GBM.187–190 PDGF-C and PDGF-D, 
which require proteolytic cleavage for activity, are also 
frequently expressed in glioma cell lines and in GBM 
tissues.191 In contrast to EGFR, amplification or rear-
rangement of PDGFR is much less common, and a 
relatively rare oncogenic deletion mutation of PDGFR 
(loss of exons 8 and 9) has been described192 that, sim-
ilar to EGFRvIII, is constitutively active and enhances 
tumorigenicity. Given the tumoral  coexpression of 
PDGF and PDGFR, autocrine and paracrine loops may 
be the primary means by which this growth factor axis 
exerts its effects. Supportive evidence for a paracrine 
circuitry initiated by PDGF-B secretion, that enhances 
glioma angiogenesis, has been shown through stimu-
lation of endothelial cells displaying PDGFR, in part, 
to express VEGF.193 Besides glial precursor cells, neu-
ral stem cells (NSCs) in the adult subventricular zone 
have been shown to express PDGFR and PDGF could 
stimulate these NSCs to form glioma-like lesions in 
the mouse.194  Furthermore, mice transgenic for neural 
progenitor PDGF-B expression resulted in the forma-
tion of oligodendrogliomas and elevation of PDGF-B 
levels increased overall tumor incidence,195,196 sug-
gesting that targeted therapy against this pathway 
could have therapeutic potential.197 To this end, an 
orally active kinase inhibitor of the 2-phenylamin-
opyrimidine class such as STI571 (imatinib mesylate, 
Gleevec) has been shown to be a potent inhibitor of 
these oncogenic loops198,199 and, when combined with 
hydroxyurea in a phase II study, has been shown to 
achieve durable anti-tumor activity in some patients 
with recurrent GBM.200 In contrast, when used alone, 
imatinib has minimal activity on malignant glioma.201

RTK coactivation and cooperation
An explanation for the failure of EGFR and PDGFR 
inhibitors to elicit significant clinical outcomes, is that 
additional RTKs may cooperate to provide a signal-
ing threshold that prevents the inhibition of mitogenic 
and survival signals through the inactivation of any 
single RTK. This hypothesis is supported by work 
that  demonstrates that multiple RTKs, in addition 
to EGFR and PDGFR, are activated simultaneously 
in primary GBM patients.202 Oncogenic signaling, 
survival, and anchorage-independent growth, were 
not fully abrogated until cell lines with endogenous 
coactivation of RTKs were treated with pharma-
cological agents or siRNAs targeting at least three 

 different receptors. The significant cross-talk among 
mitogenic pathways, serves to reinforce the inappro-
priate regulation of any single pathway perturbation. 
Importantly, these effects were observed irrespective 
of PTEN status, indicating that the presence of a tumor 
suppressor may not be a critical determinant of thera-
peutic success, as long as upstream signaling effectors 
are sufficiently inhibited. The discovery of receptor 
coactivation or cooperation suggests that tumor RTK 
profiling may be an important step in the development 
of a personalized GBM therapeutic regimen. Glioma 
cells engineered to overexpress EGFRvIII to levels 
observed in GBM caused increased c-MET phos-
phorylation, that was dependent on the kinase activ-
ity and levels of this mutant EGFR.203 The cross-talk 
between two receptors could be targeted with specific 
inhibitors to both, resulting in enhanced cytotoxicity 
of EGFRvIII-expressing cells, compared with either 
compound alone. It appears that the initially disap-
pointing clinical trials using RTK-targeted agents in 
GBM should be reanalyzed with respect to the RTK 
activation profiles of responders and nonresponders 
and that, when selecting combination inhibitor regi-
mens in future trials, RTK coactivation should be 
taken into account.

cell Death, Migration  
and Angiogenesis
Apoptosis
A hallmark feature of malignant glioma cells is an 
intense resistance to death-inducing stimuli, such as 
radiotherapy and chemotherapy. This biological prop-
erty has been linked to genetic alterations of key regu-
latory molecules involved in mitogenic signaling, most 
prominently RTKs and the PI3K–PTEN–Akt signaling 
axis, as well as regulatory and effector molecules resid-
ing in classical cell death networks of both extrinsic 
(death receptor-mediated) and intrinsic (mitochondria-
dependent) apoptosis signaling pathways.

The “death receptors” are cell surface molecules 
that, upon binding their cognate ligands, recruit adapter 
molecules to provide a molecular scaffold for the auto-
proteolytic processing and activation of caspases.204 
The most important death receptor systems include 
TNFR1 (DR1/CD120a), TRAILR1 (DR4/APO-2), 
TRAILR2 (DR5/KILLER/TRICK2), and CD95 (DR2/
Fas/APO-1) (Fig. 5). Several lines of evidence support 
important roles for these death receptors in glioma 
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pathogenesis. First, various human glioma cell lines 
and primary glioma-derived cell cultures are sensi-
tive to death ligand-mediated apoptosis in vitro and in 
xenograft model systems in vivo.205–210 Second, expres-
sion levels of these death receptors and in particular 
of their corresponding (antagonistic) decoy receptors, 
seem to correlate with susceptibility of glioma cells to 
death ligand-induced apoptosis. A prominent example 
is the decoy receptor for CD95 ligand (CD95L), the 
soluble decoy receptor 3 (DcR3). It is expressed on 
malignant glioma cell lines, and its expression pat-
tern correlates with the grade of malignancy in human 
glioma  specimens.211 Interestingly, infiltration of CD4+ 
and CD8+ T cells and microglia/macrophages was sig-
nificantly decreased in DcR3-driven xenografts, sug-
gesting that glioma cells escaped CD95L-dependent 
immune-cytotoxic attack by expressing a decoy recep-
tor, that neutralized CD95L by preventing its interac-
tion with the receptor.211

The TRAIL death receptor system (Fig. 5), has 
considerable interest as a specific inducer of cancer 
cell apoptosis, as its expression has been positively 
correlated with survival of patients with primary 

GBM.212 In this regard, loco-regional administration 
of TRAIL inhibited growth of human glioma cell 
xenografts,213 and acted synergistically with chemo-
therapeutic drugs,208,210 in part through up-regulation 
of TRAIL-R2 and Bak protein and down-regulation 
of the caspase-8-specific inhibitor cFLIPs.214,215 In 
addition, peptides derived from the second mitochon-
dria-derived activator of caspases (Smac), a potent 
antagonist of members of the IAP family of caspase 
inhibitors, acted synergistically with TRAIL to induce 
tumor cell apoptosis in vitro and in vivo, without 
demonstrable neurotoxicity.216 Mechanistically, these 
peptides abrogate IAP-binding activity and, conse-
quently inhibition of effector caspase-9, caspase-3, 
and caspase-7 activity downstream from mitochon-
drial membrane disintegration. This underscores the 
importance of post-mitochondrial caspase activation 
for apoptosis propagation in glioma cell lines and its 
validity as a therapeutic target.216

The role of the Bcl-2 family in gliomagenesis and 
active cell suicide (apoptosis) has also been exten-
sively studied. The apoptosis regulators Bcl-2, BH 
(Bcl homology) are a family of evolutionarily related 
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Figure 5. The TNF-related apoptosis-inducing ligand, TRAIL. Also designated CD253, this protein, with homology to other members of the tumor necrosis 
factor superfamily, binds to the death receptors TRAIL-R2 and TRAIL-R1 and causes caspase-8-dependent apoptosis. Caspase-8 activates downstream 
effector caspases, including procaspase-3, -6, and -7, leading to activation of specific kinases.
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proteins that govern mitochondrial outer membrane 
permeabilization and can be either pro-apoptotic 
(Bax, BAD, Bak and Bok) or anti-apoptotic (includ-
ing Bcl-2 proper, Bcl-xL, and Bcl-w, among a total 
of 25 Bcl-2 family genes known to date). The mem-
bers of the Bcl-2 family share one or more of the four 
characteristic domains of homology entitled the BH 
domains (BH1 through BH4). The BH domains are 
crucial for function and deletion of these domains by 
cloning affects survival/apoptosis. The anti-apoptotic 
Bcl-2 proteins, such as Bcl-2 and Bcl-xL, conserve 
all four BH domains. The Bcl-2 family has a general 
structure that consists of a hydrophobic helix sur-
rounded by amphipathic helices.217 Many members of 
the family have transmembrane domains. The site of 
action for the Bcl-2 family is fundamentally the outer 
mitochondrial membrane.218–220 Apoptogenic factors 
within the mitochondria (cytochrome c, Smac/ Diablo 
homolog, Omi) if and when released, activate the 
executioners of apoptosis, the caspases.

On the mechanistic level, classical anti-apoptotic 
Bcl-2 family members (BAK, BAD, BID, BAX, 
BCL-XL, MCL-1) modulate apoptosis by preserving 
mitochondrial membrane integrity and preventing the 
release of cytochrome C, the caspase cascade and the 
apoptotic program.221 On the clinical level, tumor grade 
correlates with the expression of anti-apoptotic Bcl-2 
proteins (BCL-2 and MCL-1).222,223 In general, Bcl-2 
regulation is shifted toward an anti-apoptotic balance 
during the transition from initial to recurrent GBM.224 
Additionally, Bcl-XL is up-regulated by overexpres-
sion of EGFRvIII in glioma cells and this upregula-
tion confers resistance to the chemotherapeutic agent 
cisplatin.181 In addition to their classical roles, Bcl2 
family members may contribute to gliomagenesis 
through enhancement of migration and invasion, by 
altering the expression of metaloproteinases and their 
inhibitors.225–227 Due to their central role and impor-
tance in apoptosis signaling, neutralization of anti-
apoptotic Bcl-2 proteins by antisense technology,228 
small molecules that block BcL2 interactions with 
other families,229 or by viral-mediated delivery of 
select proapoptotic members,230 may represent prom-
ising future avenues of therapeutic intervention.

Necrosis
GBM cells are highly resistant to therapeutic 
 apoptotic stimuli. However, they exhibit a  paradoxical 

 propensity for extensive cellular necrosis, which is 
the most prominent form of spontaneous cell death in 
GBM. It shows as foci of micronecrosis, surrounded 
by broad hypercellular zones contiguous with nor-
mal tissue or parenchymal infiltrates.231,232 Impor-
tant causes of necrosis are limited blood supply and 
anoxia, due to microthrombotic processes. These are 
the molecular bases for necrosis that, in the context of 
high apoptotic therapy resistance, has recently come 
into focus with the discovery and characterization of 
the Bcl2-like 12 (Bcl2 L12) protein.

Bcl2L12 is a potent inhibitor of the post-mito-
chondrial apoptosis signal transduction, that is signif-
icantly overexpressed in primary GBMs.233 Bcl2L12 
is a proline-rich protein characterized by a C-terminal 
14-amino-acid sequence with significant homology 
with BH2 domain, found in several members of the 
Bcl-2 protein family.234 Overexpression of Bcl2L12 in 
primary cortical astrocytes inhibited apoptosis, and its 
RNAi-mediated knockdown sensitized human glioma 
cell lines to drug-induced apoptosis and reduced tumor 
formation in an orthotopic transplant model in vivo.233 
The anti-apoptotic actions of Bcl2L12 relate signifi-
cantly to its capacity to neutralize effector caspase 
activity downstream from mitochondrial dysfunction 
and apoptosome activity, probably by interacting spe-
cifically with effector caspase-7.233 These activities 
of Bcl2L12 are highly relevant to the necrotic pro-
cess, considering that suppression of caspase activity 
downstream from mitochondria redirects the death 
program from apoptosis to necrosis (reviewed in),235 
indicating that post-mitochondrial caspase activation 
acts as a molecular switch between apoptotic and 
necrotic cell death paradigms.235

In support of this model, germline deletion of 
postmitochondrial apoptosis signaling components, 
such as the caspase activator Apaf-1, or blockade of 
effector caspase maturation by pan-specific caspase 
inhibitors, results in decreased apoptosis yet causes 
increased necrosis.235 Mechanistically, oxidative phos-
phorylation and consequently intracellular ATP lev-
els, decrease due to extensive cytochrome C release 
and mitochondrial dysfunction, rendering cells unable 
to maintain ion homeostasis and provoking cellular 
edema, dissolution of organelles, and plasma mem-
branes.235 That apoptosis and necrosis signaling path-
ways are interconnected, is evidenced by the ability 
of enforced Bcl2L12 expression to provoke necrotic 

http://www.la-press.com


Glioma growth inhibition

Clinical Medicine Insights: Oncology 2011:5 281

cell morphology, evidenced by substantial plasma 
membrane disintegration and enhanced nuclear and 
subcellular organelle swelling in apoptosis-primed 
astrocytes.233 Therefore, up-regulation of Bcl2L12 as 
a novel regulator of the apoptosis/necrosis balance in 
glial cells, may represent an important event in malig-
nant glioma pathogenesis.

Angiogenesis
GBMs are among the most highly vascularized solid 
tumors. Microvascular hyperplasia is the defining 
histopathological phenotype of both primary and sec-
ondary GBM. It consists of proliferating endothelial 
cells, emerging from normal parent microvessels as 
microaggregates (glomeruloid bodies), accompanied 
by stromal elements, including pericytes and basal 
lamina.236 Microvascular density, a measure of micro-
vascular proliferation, is an independent prognostic 
factor for adult gliomas.237,238 The idea that angiogen-
esis is rate limiting for tumor growth, and therefore 
a rational therapeutic target, is strongly supported by 
animal studies that have shown that angiogenesis is 
vital for macroscopic solid tumor growth.239

One common feature in the transition from low-
grade or anaplastic astrocytomas to secondary GBM, 
is a dramatic increase in microvascular proliferation 
(Fig. 1). An equivalently robust microvasculature 
proliferation phenotype is observed in primary GBM. 
Since there are marked genomic differences between 
primary and secondary GBM,240 it is likely that dif-
ferent genetic programs converge on a final common 
angiogenesis pathway, involving hypoxia-inducible 
factor (HIF) and non-HIF-dependent downstream 
effectors, including positive (VEGF, PDGF, bFGF, 
IL-8, SDF-1) and negative (thrombospondin1, throm-
bospondin2, endostatin, tumstatin, interferons) regula-
tors of this process.241 A comprehensive understanding 
of the molecular mechanisms driving angiogenesis in 
GBM will be necessary for the rational development 
and deployment of anti-angiogenesis therapies. It is 
becoming increasingly evident that tumor-associated 
angiogenesis is not simply a physiological adaptation 
to hypoxia as a result of an increasing tumor cell mass. 
Rather it appears to be the result of critical genetic 
mutations that activate a transcriptional program for 
angiogenesis, with local tumor oxygen status further 
modifying this response. The relative contributions of 
these two mechanisms are not yet fully defined, but 

it is likely that both may operate to different extents 
in different tumors or even in different regions of the 
same tumor. Several experimental studies have shown 
that key glioma-relevant mutations—including those 
in the PTEN, EGFR, and CMYC genes—may act as 
an “angiogenic switch” by stabilizing HIF-1 or one of 
its downstream targets, VEGF.242–245 The distinction 
between microvascular proliferation being an adap-
tive response to hypoxia, or it being an epiphenom-
enon of critical genetic mutations that also activate 
a cascade of proangiogenesis pathways, has clinical 
and therapeutic importance.

Another issue, are the functional consequences of 
tumor angiogenesis with respect to tissue perfusion.246 
Tumor microvessels are highly tortuous, with sluggish 
flow and diminished gradient for oxygen delivery, 
increasing susceptibility to thrombosis and microhe-
morrhages.247 Thus, GBM microvasculature prolif-
eration may provide little increase in oxygen/nutrient 
delivery, paradoxically contributing to exacerbate a 
metabolic mismatch between “supply and demand,” 
leading to progressive hypoxia and eventual  necrosis. 
This scenario is supported by the experience with 
anti-angiogenesis drugs, where their limited clinical 
benefit seems to be the result of “pruning” immature 
vessel growth and allowing “normalization” of the 
pre-existing vasculature.248 In addition to the poor 
vascular architecture, endothelial cells associated with 
tumor vessels fail to form tight junctions and have 
few associated pericytes or astrocytic feet, compro-
mising the integrity of the BBB, increasing interstitial 
edema. Interstitial edema may further compromise 
regional blood flow and exacerbate tumor hypoxia, 
leading to areas of necrosis. In addition to these mal-
adapted biophysical properties of GBM microvascu-
lature, specific genetic mutations in GBM probably 
contribute to compromised tumor bioenergetics, spe-
cifically the shift in energy production from oxidative 
phosphorylation to glycolysis.249,250 These interrelated 
mechanisms lead to a level of metabolic demand that 
exceeds the ability of the cerebrovascular system to 
maintain adequate blood flow to prevent hypoxia and 
necrosis.

Anti-angiogenesis therapies
The hypothesis that interruption of blood supply 
to the tumor will cause the regression or dormancy 
of the tumor, has led to the development of several 
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drugs, that target multiple steps in angiogenesis 
(Table 1). Three approaches, in advanced stages of 
clinical testing, aim to target VEGF/VEGFR signaling 
pathways: (1) monoclonal antibodies against VEGF 
or its receptor(s);251–253 (2) small molecule inhibitors 
of VEGFR-2 tyrosine kinase activity,254 and (3) solu-
ble decoy receptors created from VEFGR1 receptor, 
that selectively inhibit VEGF.239 Two new approaches, 
one of them targeting V3 and V5 integrin receptors 
on endothelial cells255 and another using umbilical 
cord blood stem cells256 are also being tested as anti-
angiogenesis therapy for GBM. Inhibition of glioma 
angiogenesis by human umbilical cord blood stem 
cells (hUCBSC), has been tested in vitro and in nude 
mice. Downregulation of FAK gene is correlated with 
downregulation of many angiogenesis-related genes, 
including Ang1, VEGFA and Akt. Neovasculariza-
tion and intracranial tumor growth of glioma cells 
in  athymic mice was inhibited by hUCBSC in vivo. 
Similar to in vitro results, downregulation of FAK, 

VEGF and Akt molecules was observed, leading to 
inhibition of angiogenesis in hUCBSC-treated mice 
brains. Therefore, hUCBSC have the potential to 
inhibit growth of glioma both in vitro and in vivo.256

Clinical studies that used anti-angiogenesis drugs 
as “single” agents to treat GBM, have shown little 
efficacy. This may reflect the fact that these drugs have 
no direct effect on the pre-existing stable microvascu-
lature that may be co-opted to support tumor growth, 
especially at the infiltrating tumor edge. Recent data, 
however, suggest that anti- angiogenesis drugs may be 
more effective when combined with cytotoxic therapy 
(Table 1). Recently a phase II study of bevacizumab 
(Avastin; Genentech, Inc.),253 a recombinant human-
ized monoclonal antibody targeting VEGF, plus irino-
tecan (CPT-11) in patients with recurrent high-grade 
gliomas, reported dramatic rates (63%) of radio-
graphic response and a near doubling of 6 month and 
median progression free survival (PFS) in patients with 
GBM (30% and 20 week, compared with  historical 

Table 1. examples of targeted therapies for cancer.

Drug in clinical use commercial name Drug target cancer type
Bevacizumab Avstin veGF Colorectal, breast, lung, renal
Bortezomib velcade Proteasome Myeloma, lymphoma
Colecoxib Onsenal COX 2 Adenomatous polyposis
erlotinib Treceva
Gefitinib Iressa
Cetuximab erbitux eGFR Colrectal, lung, head and neck
Panitumumab vectibix
RAD 001 Certican
Temirolimus Torticel mTOR Renal
Imatinib Gleevec
Dasatinib Sprycel PDGFR, BCR ABL, Leukemia, gastrointestinal
Nilotinib Tasigna cKIT
Sorafenib Nexavar veGFR, RAF, cKIT, Renal, hepatic
Sunitinib Tasigna PDGFR

Topotecan
Irinotecan

Hycamtin
camptosar

Topoisomerase I Multiple cancer types

Trastuzumab Herceptin eRBB2
Lapatinib Tykerb HeR2, eGFR
Tamoxifen Nolvadex eRα
exemestane Aromasin Aromatase cytochrome P450 Breast
Anastrozole Arimidex
Letrozole Femara
Rituximab MabThera
Tositumomab Bexxar CD20 Lymphoma
Abbreviations: BCR-ABL, fusion protein of breakpoint cluster region and tyrosin kinase ABL 1; CD20, B-cell phosphoprotein CD20; c-KIT, tyrosine kinase 
cKIT; COX-2, cyclooxygenase 2; eGFR, epidermal growth factor receptor; eRα, estrogen receptor α; eRBB2, erythroblastic leukemia viral oncogene 
homolog 2; ΗΕR _epidermal growth factor receptor 2; mTOR, mammalian target of rapamycin; PDGFR, platelet-derived growth factor receptor; RAF, small 
GTPase RAF; veGF, veGFR, vascular endothelial growth factor, receptor.
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 controls of 15% and 9 week). The  therapeutic  benefits 
in the setting of combination therapy (radiation 
and/or  conventional chemotherapy) could be attributed 
to: (1) improved drug delivery, because of improved 
blood flow; (2) improved drug penetration into the 
tumor, because of reduced interstitial pressure, and/
or (3) improved radiation/chemotherapy response, as 
a result of reducing tumor hypoxia. Hypoxia is well 
known to create radiation resistance and reduce effi-
cacy of chemotherapies.257 Overall, the clinical data 
for the anti-angiogenic drugs, when used in combina-
tion with radiation or conventional chemotherapies, 
are encouraging. The possibility that anti-angiogenic 
drugs may enhance intratumoral concentration of 
conventional chemotherapeutics, raises the intrigu-
ing possibility that these drugs may improve the effi-
cacy profile of some available antimitotics. A possible 
mechanism for such synergy could be enhanced drug 
delivery, although off-target drug effects and/or poorly 
understood pharmacological mechanisms remain pos-
sible. The full benefit of anti-angiogenesis will derive 
from an improved understanding of the molecular 
basis of tumor angiogenesis, how tumor cell metabo-
lism drives angiogenesis versus cooptation of normal 
brain microvascular networks, and definition of those 
patients that are likely to benefit from various types of 
anti-angiogenic therapies operating on different levels 
of the process.

GBM can be roughly separated into an angiogenic 
component, and an invasive or migratory component. 
Although the latter component seems insensitive to 
anti-angiogenic therapy, it is of major importance for 
disease progression and survival. Clinical symptoms 
seem to be tempered by anti-angiogenic treatment, 
but tumour invasion continues. Unfortunately, cur-
rent imaging modalities are affected by antiangiogenic 
treatment too, making it very hard to define tumour 
margins, as shown by MRI, biopsy and autopsy of bev-
acizumab-treated patients. Moreover, while treatment 
of other tumour types may be improved by combin-
ing chemotherapy with anti-angiogenic drugs, inhibit-
ing angiogenesis in GBM may antagonise the efficacy 
of chemotherapeutic drugs by normalising the blood-
brain barrier function.258 In summary, although angio-
genesis inhibition is of considerable value for symptom 
reduction in GBM patients, lack of proof of a true anti-
tumour effect has raised concerns about the place of 
this type of therapy in the treatment of GBM.

Tumor cell invasion
Infiltration throughout the brain is prominent in low- 
and high-grade malignant glioma259 and is the prin-
cipal reason for the failure of surgical cure. In more 
than 90% of the cases, the recurrent tumor develops 
 immediately adjacent to the resection margin or within 
several centimetres of the resection cavity. Invasion 
by glioma cells into regions of normal brain is driven 
by a process involving cell interactions with the ECM 
and with adjacent cells, as well as biochemical pro-
cesses supportive of proteolytic degradation of ECM 
and active cell movement. These processes bear a 
striking resemblance to the robust intrinsic migration 
potential of glial cells during embryogenesis.260

The most frequent route of invasion of glial tumor 
cells is along white matter tracts and basement mem-
branes of blood vessels. Whether this route offers a 
path of least resistance or there are biochemical sub-
strates that mediate adhesion and promote migration, 
or both, is unclear. Invasion and migration of glial 
tumors differs from other tumors where local spread 
is very limited and dissemination occurs hematog-
enously or via the lymphatic system. In fact, glioma 
cells lack the ability to penetrate the basement mem-
brane of blood vessels,261 and cells gaining access to 
the blood through a disrupted blood vessel within the 
tumor are unable to establish robust tumor growth 
outside the CNS. The molecular basis for this curious 
inability of glioma cells to metastasize outside of the 
CNS is not known and warrants further investigation.

Several genes involved in glioma invasiveness 
have been identified, including members of the fam-
ily of metalloproteases (MMP) and their endogenous 
tissue inhibitors (TIMPs). Expression of MMP-2 and, 
to a lesser extent, MMP-9 correlate with invasiveness, 
proliferation and prognosis in astrocytomas.262 Other 
non-MMP proteases, including urokinase-type plasmi-
nogen activator (uPA)263–265 and cysteine proteases (eg, 
cathepsinB),266 are elevated in high-grade malignant 
gliomas.267 Despite these findings, the role of proteases 
in glioma invasion remains unclear, since low-grade 
astrocytomas infiltrate diffusely throughout the brain, 
despite their relatively normal levels of proteases.

Integrins, especially V3 complexes, are elevated in 
GBM and appear to be relevant to processes of glioma 
invasion and angiogenesis.268 Several studies have 
also reported potential novel glioma invasion genes. 
 Invasion inhibitory protein 45 (IIp45), a potential tumor 
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suppressor gene on chromosome 1p36, is frequently 
down-regulated in GBMs. Its product inhibits invasion 
through the binding of IGFBP2.269 In contrast, IGFBP2 
promotes invasion in GBM by up-regulating a panel of 
genes involved in invasion, one of which is MMP-2.270 
Other proteins are overexpressed in invasive areas of 
GBM, such as angiopoietin-2, which in addition to its 
involvement in angiogenesis also plays a role in induc-
ing tumor cell infiltration by activating MMP-2.271 
 Ephrin receptors and their ligands, the ephrins, mediate 
neurodevelopmental processes such as axon guidance 
and cell migration and regulate migration and invasion 
of glioma. Compared with low grade astrocytoma or 
normal brain, GBMs migratory tumor cells overexpress 
EphB2,271 which has been linked to poor survival.272

Other novel invasion- and migration-associated genes 
have been identified using oligonucleotide microarray 
technology273,274 on RNA isolated by laser-captured 
microdissection of cryostat sections from human glioma 
biopsy tumor cores and invasive edges. These genes 
include P311, a 68-amino-acid polypeptide described 
in embryonic neuronal migration; death-associated 
protein 3 (DAP3), which conferred protection from 
Fas-induced, ionizing radiation-induced, and streptoni-
grin-induced cell death;275 and FN14, which encodes a 
cell surface receptor for the tumor necrosis factor super-
family member named TWEAK, all of which modulate 
glioma cell migration and apoptosis.276–278

Since migrating glioma cells show increased levels 
of phosphorylated Akt, PI3K inhibitors have been tested 
experimentally on these cells, resulting in a decrease in 
migration and increased apoptosis sensitivity.279 In con-
junction with this, a PTEN mutation has been impli-
cated in an invasive phenotype, not only as contributing 
to deregulated PI3K signaling, but also in its ability to 
stabilize E-cadherin and modulate cell matrix adhesion 
complexes.280 These findings highlight the multitude of 
ways in which glioma adopt a broad spectrum of the 
tumor phenotypes, ranging from aberrant cell prolifera-
tion to invasion and resistance to apoptosis.

Glioma chemotherapy, 
Immunoresistance
Glioma, blood-brain barrier  
and immunoresistance
Untreated, GBM patients survive less than 6 months. 
Even after intensive therapy, combining gross total 

resection, radiation, and chemotherapy, the mean 
 survival time is only 14 months. The lack of effectivity 
of standard therapies is due to several reasons, includ-
ing robust tumour cell proliferation, neo-angiogenesis, 
genetic instability, and immunosuppression. A factor 
that contributes to GBM malignancy is its high degree 
of genetic instability, that generates cellular heteroge-
neity. The various cell types in a glioma population 
do not respond equally to radiation and chemotherapy, 
causing further relapses. In addition, chemotherapy 
has generally been unsuccessful because of poor drug 
delivery. The presence of active efflux transporters in 
the blood-brain barrier (BBB), prevents systemically 
administered drugs from entering the brain, highlight-
ing the need for new comprehensive strategies to over-
come this functional obstacle.

A most important and lethal property of gliomas 
is their immune invisibility. Malignant brain gliomas 
are able to evade and suppress the immune system. 
Glioma evasion from the immune system occurs at 
different levels of antigen recognition and immune 
activation.281–284 First, by limiting effective signaling 
between glioma and host immune cells, glioma cells 
evade immune detection. An important component of 
this efficient immune escape is the complexity of the 
self-sustaining glioma microenvironment. Gliomas 
generate several immunosuppressive mechanisms 
(Fig. 6) that acting simultaneously, create positive 
feedback loops that enhance their effects.281–284

In order to evade immune detection, many glioma 
cells express low levels of human leukocyte antigens 
(HLA; major histocompatibility complex, MHC) or 
express defective MHC.285 A recent report by Facoetti 
and colleagues286 described that approximately 50% 
of 47 glioma samples had lost MHC type I antigen. 
Among these, 80% showed evidence of selective loss 
of HLA-A2 antigen. It should be noted that loss of 
HLA type I antigen was more common with higher 
grade tumors, suggesting a role of deficient antigen 
presentation in glioma progression. Inhibition of anti-
gen presentation by microglia and macrophages in 
the tumor microenvironment, also contributes to the 
tumors’ ability to escape immune detection (Fig. 6). 
The presence of glioma cells caused monocytes to 
reduce their phagocytic activity in vitro.287 In addi-
tion, microglia found within glioma tissue appeared 
deficient in proper antigen presentation for cyto-
toxic and helper T-cell activation.288 Schartner and 
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 colleagues289 demonstrated that MHC-II induction 
by stimulation was significantly less in microglia and 
infiltrating macrophages derived from gliomas than 
in those isolated from normal brain.

The CNS is considered immune privileged relative 
to other organs, by the virtue of the BBB restricting 
the migration of immune cells and cytokines into the 
brain, the absence of a lymphatic drainage system, 
the presence of a high concentration of immunosup-
pressive factors, and the lack of major histocom-
patibility complex (MHC) molecule expression in 
normal CNS cells. However, newer data indicate 
that the CNS is a perfectly adequate environment for 
immune responses, as evidenced by the presence of 

both humoral and cell-mediated CNS immunity.290–292 
In addition, lymphocytes have been shown to traffic 
to normal brain (both naive lymphocytes and acti-
vated T cells)293 by crossing the BBB without antigen 
specificity.293–295 Furthermore, many types of lympho-
cytes appear in the CNS during illness, such as infec-
tion or autoimmune processes.296–298

Many tumors, including GBM, create an immuno-
suppressive local environment to shield themselves 
from the body’s normal immune response. The immune 
microenvironment created by GBM likely plays a much 
larger role in immune evasion than the general BBB, 
which is typically compromised by the tumor. The 
strategies used by GBM to evade the immune  system 
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Figure 6. Strategies used by glioma cells to evade host immune system. Glioma inhibited T-cell activation and proliferation by interfering with antigen 
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include : (1) aberrant antigen recognition, leading to 
insufficient immune cell activation, (2) promotion of 
suppressor immune cells, inducing T-cell tolerance or 
apoptosis, (3) upregulation of co-inhibitory molecules, 
(4) secretion of immune inhibiting molecules, (5) 
recruitment of suppressor immune cells, and (6) acti-
vation of immunosuppressive pathways.

Glioma-induced abnormalities in antigen 
recognition and immune cell activation
One mechanism by which GBM evades the immune 
system is by preventing normal antigen recognition, 
a process orchestrated by the major histocompatibil-
ity complex (MHC). The MHC, known in humans as 
human leukocyte antigen (HLA), displays fragmented 
pieces of self or non-self-antigens on the surface of 
host antigen presenting cells. Normally, T cells inter-
act with MHC via T-cell receptor molecules, to deter-
mine if the antigen is self or foreign. A second signal, 
the costimulatory signal, is also required for T cells to 
become fully activated. If this process occurs prop-
erly, T cells will react appropriately to foreign pep-
tides and ignore self-peptides (Fig. 6).

Parney and colleagues299 found that most GBM 
expressed low levels of class I MHC and no class 
II MHC. These data were supported by Lampson’s 
finding that class I MHC could be upregulated in 
gliomas after interferon γ (IFNγ) exposure in  vitro.300 
There are several reasons why class I and class II 
MHC molecules are not expressed on the glioma cell 
surface. First, gliomas have been reported to express 
immunoinhibitory factors, such as transforming 
growth factor β (TGF-β)301 and prostaglandin E2 
(PGE2),302 that downregulate class II MHC on glioma 
cells (Fig. 6). Second, most GBM lesions express 
mutated class I HLA molecules. Loss of HLA class 
I antigen significantly correlates with tumor grade3 
and with tumors refractory to immunotherapy.303 The 
components of the antigen processing machinery 
(APM) were also investigated, and tapasin expres-
sion was found to be downregulated in GBM lesions. 
Tapasin is an endoplasmic reticulum (ER) mole-
cule uniquely dedicated to tether HLA class I mol-
ecules, jointly with the chaperone calreticulin (Crt) 
and the oxidoreductase ERp57, to the transporter 
associated with antigen processing (TAP).304 These 
changes seem to be linked with mutations of HLA 
class I antigen expression, and significantly correlate 

with the clinical course of the disease. Mutations in 
HLA class I antigen and in APM components may 
provide a mechanism for GBM to escape immune 
recognition and killing by cytotoxic T lymphocytes 
(CTLs). These findings emphasize the need to moni-
tor expression of HLA class I antigen and APM com-
ponents in GBM lesions, when selecting patients for 
T-cell–based immunotherapy treatment.

Co-stimulatory molecules
Co-stimulation of T-cells is necessary for their pro-
liferation, differentiation, and survival. Activation 
of T cells without co-stimulation may lead to T-cell 
anergy, T-cell deletion, or development of immune 
tolerance. CD28, one of the best characterized 
costimulatory molecules expressed by T cells, inter-
acts with CD80 (B7.1) and CD86 (B7.2) on the mem-
brane of antigen presenting cells (APCs). Besides 
expressing low levels of MHC peptide (Fig. 6), can-
cer cells downregulate the co-stimulatory molecules 
required for activating a proper immune response. 
Lack of T-cell co-stimulation is another mechanism 
used by GBM to avoid immune surveillance. So far, 
B7 molecule expression has been found to be absent 
from glioma cells.305 In addition, peripheral blood T 
cells from patients with glioma typically show a high 
degree of anergy to GBM antigens that results from 
the absence of co-stimulatory molecules (see Fig. 6). 
The receptors for the co-stimulatory molecules on 
tumor-infiltrating APCs are downregulated. Human 
glioma-infiltrated microglia or macrophages (GIMs) 
completely lack CD80/CD40 expression and show 
minimal CD86 expression, which could explain their 
inability to properly activate naive T cells.306 GIMs 
from brain tumors in intracranial RG2 glioma-bear-
ing rodents, responded differently to general activa-
tors, such as CpG oligodeoxynucleotides (CpG ODN) 
and IFNg/lipopolysaccharide (LPS), when compared 
with GIMs from normal brain. CpG ODN induced 
the upregulation of B7 molecules but had little effect 
on MHC-II expression, whereas IFNg/LPS had the 
opposite effect. Both upregulations were significantly 
lower in tumor-associated GIMs, in comparison with 
GIMs from normal brain. Further studies are neces-
sary to understand if these diminished effects result 
from local GBM immunocompromising environment, 
abnormal signaling, or mutated receptor expression 
on the tumor-infiltrating GIMs.289
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The B7 costimulatory family includes activat-
ing and inhibiting molecules that regulate immune 
response positively and negatively. Among the latter 
group, B7-H1, one of the newly identified B7 fam-
ily members, provides negative signals that control 
and suppress T-cell responses.307 The regulation of 
B7-H1 seems to be pivotal in shaping the immune 
response to tumors, because it can exert costimula-
tory and immune regulatory functions.308 Although 
B7-H1 has been shown to mediate tumor evasion 
by binding to programmed death-1 (PD-1) receptor, 
additional counter receptors can also control the func-
tions of B7-H1.309 Human and rodent cancer cells and 
immune cells in the cancer microenvironment, have 
been shown to upregulate expression of inhibitory 
B7 molecules. Analysis of multiple glioma cell lines 
and human specimens have also shown high levels 
of B7-H1 (Fig. 1D).305,310 This high level of expres-
sion reduces glioma cell immunogenicity by sup-
pressing T-cell cytokine production and activation. 
A study by Parsa and colleagues311 demonstrates a 
potential relationship between B7-H1 and the phos-
phatase and tensin homolog-phosphatidylinositol 
3-kinase (PTENPI3K) pathway. The loss of PTEN 
and the activation of the PI3K-pathway, leading to 
elevated post-transcriptional expression of B7-H1, 
is a new mechanism of immunoresistance mediated 
by B7-H1, further demonstrating the importance of 
this molecule in tumor evasion of immune surveil-
lance.311 B7-H1 correlates with the malignancy grade 
of gliomas.312 These studies demonstrate the poten-
tial benefits of using neutralizing antibodies specific 
for B7-H1 and PD-1 in the treatment of patients with 
malignant brain tumors.

Glioma-induced deregulation  
of cell-mediated immunity
Many studies of patients harboring glioma, per-
formed during the past 3 decades, revealed that these 
individuals exhibit a broad suppression of cell medi-
ated immunity (Fig. 6). The immune cells from GBM 
patients appear to behave in a manner reminiscent 
of autoimmune diseases, showing cutaneous anergy 
to common bacterial antigens,313 lymphopenia,314 
impaired antibody production, and abnormal 
delayed-type hypersensitivity response to common 
recall antigens or neoantigens in vivo.314,315 It seems 
that the lymphocytes of patients with GBM present 

intrinsic cellular abnormalities that render potentially 
reactive T cells unresponsive. Peripheral blood lym-
phocytes (PBLs) from patients with GBM did not 
proliferate or proliferated minimally in response to 
mitogen stimulation in vitro. Elliott and colleagues 
showed that PBLs obtained from patients with GBM 
have approximately 6 times fewer phytohemaggluti-
nin (PHA)-responsive cells than PBLs from normal 
subjects.315 These lymphocytes failed to expand into 
a pool of proliferating cells in vitro. In addition, the 
supernatant fluids of PHA-stimulated lymphocytes 
obtained from patients, showed a substantial reduc-
tion of interleukin-2 (IL-2) and IFNγ, compared to 
lymphocytes obtained from normal donors. More-
over, T cells obtained from patients with GBM were 
unable to offer helper activity in allogeneic pokeweed 
mitogen cultures in vitro.316–318 This comprehen-
sive depression in cellular immune function was not 
typical of head trauma, or other tumors of the brain. 
Hence, it must be the complex GBM tumor microen-
vironment that compromised T-cell compartments 
and their functions.

In addition to alterations in the intrinsic activation 
pathways in T cells, GBM also induced accumulation 
of immunosuppressive cells in its microenvironment. 
GBM promoted impaired immunocompetence, using 
normal immunosuppressive mechanisms involv-
ing enhanced proliferation of the regulatory T cells 
(Treg). Tregs play an indispensable role in maintain-
ing immunological unresponsiveness to self-antigens 
and in suppressing excessive immune responses, del-
eterious to the host. In vivo depletion of Treg cells 
caused severe autoimmune disease, which could be 
reversed by reconstitution.319 Moreover, the regres-
sion of tolerogenic tumors after depletion of Treg 
cells has been observed in vivo.320

Fecci and colleagues321 reported an unbalanced 
ratio between CD41 T cells and Treg cells in GBM. 
Although both fractions were greatly reduced in 
patients with malignant glioma, Treg cells often rep-
resented most of the CD4 population. It is well known 
that Tregs can inhibit T-cell activation and prolifera-
tion by downregulating IL-2 and IFNγ production 
in the  target cells.286,289,305,319,322,323 This would also 
explain the shift from TH1 to TH2 cytokines, which 
propagate the regulatory phenotype. As a demonstra-
tion of this, depletion of Tregs in vitro reestablishes 
the normal CD4 functions of the T cells isolated 
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from patients with GBM and reverses the cytokine 
 production to the TH1 type.321 Tumor tolerance induced 
by Tregs is common in solid tumors other than GBM. 
In addition to Treg cells, there are other suppressive 
cell types in the tumor microenvironment. Recruit-
ment of suppressive myeloid cells, such as regulatory 
dendritic cells (DCs), characterized by indoleamine-
pyrrole 2,3 dioxygenase expression324 and myeloid-
derived suppressor cells at the tumor site, is another 
way of inhibiting immune responses.325

Glioma therapies: combined surgery, 
radiotherapy and chemotherapy
Any disease with an incidence of less than 50/100000 
is defined as an orphan disease. There are some 5,000 
orphan diseases and about 8% of the population are 
affected by these disorders. Orphan diseases are, by and 
large, disregarded by pharmaceutical companies, as the 
predictable financial incentive is small. Glioblastoma 
multiforme (GBM), the most common primary tumors 
of the central nervous system (CNS) in adults,326 with 
an incidence of about 5 per 100,000 belongs to this 
group of diseases.327 GBM, WHO grade IV, accounts 
for approximately 50% of all glial tumor types and 
shows a median survival of less than one year.326,328

Radiation, introduced some 30 years ago, was the 
first addition to surgery to treat glioma. The techniques 
have changed, so that radiation can be directed much 
more precisely at the tumour, sparing uninvolved 
brain tissue. However, the value of radiation alone is 
quite limited, extending life only for a few months.

Chemotherapy, involving various agents over 
the years, has been added next. The current drug 
of choice is temozolomide (Temodar),329,330 an oral 
drug that alters tumoral DNA, inducing tumour cell 
death. However, intense temozolamide chemother-
apy, increased the mutational load within the cancer 
genome 17-fold in comparison to untreated GBM 
cells.29 We have already mentioned anti-angiogenesis 
therapy. Recently, bevacizumab, a monoclonal anti-
body against VEGF331 used to treat other types of 
cancer (Avastin), has earned FDA approval for use 
in brain tumours. Avastin affects tumour blood ves-
sels, rather than the tumour cells251,332 and it is still too 
early to say whether this therapy will be a significant 
advance. While therapy directed against tumour blood 
vessels may limit tumoral growth, its efficacy against 
the invading tumour cells is unclear.333 The  latest 

recruit to the anti-glioma army is a neuronal micro 
RNA, mR-326.334 MicroRNA-326 was downregulated 
in gliomas via decreased expression of its host gene. 
Transfection of microRNA-326 into both established 
and stem cell-like glioma lines was cytotoxic.

Unfortunately, chemotherapy can also contribute 
to inhibit the immune response to the tumor. Thus, 
temozolomide can cause CD41 lymphopenia,335 which 
may negatively affect immunotherapeutic approaches 
that use a CD41 T-cell response. The current state of 
glioma therapy, in the best medical centers, include 
the conventional approaches of surgery, radiation and 
chemotherapy. However, this multimodal treatment 
still offers a poor prognosis for GBM patients. The 
therapeutic challenge now is to block the aberrant 
and complex individual signaling network present in 
most GBM. Given the extreme adaptability of GBM 
cells, the therapeutic challenge has to lead to tumor 
cell death, preventing sublethal hits of tumor cells 
leading to the growth of more malignant clonal cell 
populations. This crucial requirement explains the 
limitations of antiproliferative and antiangiogenetic 
approaches as therapies. Notwithstanding, blocking 
simultaneously proliferation and angiogenesis can be 
a powerful additive pro-apoptotic approach.

Glioblastoma subtypes and treatments 
adjusted to genomic abnormalities
The diagnosis of brain tumors has been based on a com-
plete clinicopathological assessment. This approach 
has permitted the distinction of different grades within 
categories of the same tumor type, such as astrocy-
tomas, that have predictive value in determining clini-
cal outcome. It has become evident from genetic and 
patient outcome studies, that subgroups are present 
within each grade. Large-scale gene expression pro-
file studies in glioblastoma have demonstrated that 
transcriptional profiles reflect the underlying tumor 
biology. This can be used to predict tumor classifi-
cation (eg, being a surrogate for pathological grad-
ing), patient outcome, and response to treatment. An 
additional outcome of these investigations has been 
to realize that each tumor is unique in its expression 
profile, and therefore biology, suggesting that medi-
cine needs to become more personalized. Although 
that is a distant goal, it was clear from these studies 
that it was already possible to cluster the profiles from 
glioblastoma patients into molecular subtypes defined 
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by combinations of genes that were over- or under-
expressed within each group. The Cancer Genome 
Atlas Network (CGAN) was established to generate 
a comprehensive catalogue of genomic abnormali-
ties driving tumorigenesis. CGAN provided a detailed 
view of the genomic changes in a large GBM cohort, 
containing 206 patient samples. Sequence data of 
91 patients and 601 genes were used to describe the 
mutational spectrum of GBM, confirming previously 
reported TP53 and RB1 mutations and identifying 
GBM-associated mutations in such genes as phos-
phatidyl inositol kinase regulatory subunit (PIK3R1), 
neurofibromatosis type-1 (NF1), and erythroblastic 
leukemia viral oncogene homolog (ERBB2).24 Based 
on gene expression and integrated multidimensional 
genomic data, GBM were classified into Proneural, 
Neural, Classical, and Mesenchymal subtypes, estab-
lishing patterns of somatic mutations and DNA copy 
number. The classical, mesenchymal, and proneu-
ral types depended on aberrations and gene expres-
sion changes of epidermal growth factor receptor 
(EGFR), NF1, and PDGFRA/IDH1 (platelet derived 
growth factor receptor alpha/isocitrate dehydrogenase 
1), respectively. Gene signatures of normal brain cell 
types showed a strong relationship between subtypes 
and neural lineages. The various subtypes differred in 
their response to aggressive therapy, the classical sub-
type receiving the greatest benefit and the proneural 
subtype showing no benefit.413 The work of Verhaak 
et al413 expanded on previous glioblastoma classifica-
tion studies, associating known subtypes with specific 
alterations in NF1 and PDGFRA/IDH1 and identify-
ing two additional subtypes, one of which is charac-
terized by EGFR abnormalities and wild-type p53. In 
addition, subtypes had specific differentiation charac-
teristics that, combined with data from mouse studies, 
suggested a link to alternative cells of origin.

To gain insight into the biological meaning of the 
subtypes, Verhaak et al336 used the data from the brain 
transcriptome database of Cahoy et al,337 to define 
gene sets associated with neurons, oligodendrocytes, 
astrocytes, and cultured astroglial cells. These mature 
cells may be of interest both, for their primary asso-
ciations with tumor subtypes, as well as for the inher-
ent signatures retained from progenitor cells. Using 
these four gene sets, a single-sample gene set enrich-
ment analysis score was calculated for all samples.338 
The enrichment score indicates the closeness in 

 expression of a sample to the expression pattern of a 
gene set. In their exploratory analysis, Verhaak et al336 
observed a number of patterns associating each sub-
type with expression patterns from purified murine 
neural cell types. The proneural class was highly 
enriched with the oligodendrocytic signature but not 
the astrocytic signature, whereas the classical group 
was strongly associated with the murine astrocytic 
signature. The neural class showed association with 
oligodendrocytic and astrocytic differentiation, but 
also showed strong enrichment for genes differen-
tially expressed by neurons. The mesenchymal class 
was strongly associated with the cultured astroglial 
signature. Interestingly, the majority of immortalized 
cell lines evaluated showed expression patterns most 
similar to the mesenchymal subtype. Additionally, 
well-described microglia markers, such as CD68, 
PTPRC (protein tyrosine phosphatase receptor type 
C), and TNF, were highly expressed in the mesen-
chymal class and the set of murine astroglial samples. 
Together, these data provide a framework for investi-
gating targeted herapies.

Concerns about anti-angiogenic and 
targeted therapies in GBM patients
GBM growth can be roughly separated into an angio-
genic component, and an invasive or migratory com-
ponent. Although the latter component seems inert to 
anti-angiogenic therapy, it is of major importance for 
disease progression and survival.258 Although clinical 
symptoms are tempered by anti-angiogenic treatment, 
tumour invasion continues. GBM patients benefit 
greatly from angiogenesis inhibition, because it reduces 
cerebral oedema and intracranial pressure. However, 
on its own, anti-angiogenesis cannot be considered as 
an effective anti-tumour treatment. Multiple angiogen-
esis inhibitors have been therapeutically validated in 
preclinical cancer models, and several in clinical trials. 
Páez-Ribes et al reported339 that angiogenesis inhibi-
tors targeting the VEGF pathway, showed antitumor 
effects in mouse models of pancreatic neuroendocrine 
carcinoma and glioblastoma. However, those inhibitors 
concomitantly elicited tumor adaptation and progres-
sion to stages of greater malignancy, with heightened 
invasiveness and in some cases increased lymphatic 
and distant metastasis. Increased invasiveness is also 
seen after genetic ablation of the Vegf-A gene, substan-
tiating the results of the  pharmacological inhibitors. 
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The realization that potent angiogenesis inhibition can 
alter the natural history of tumors by increasing inva-
sion and metastasis, has important implications for the 
development of enduring antiangiogenic therapies and 
warrants further investigation.

The invasive and migratory components of GBM 
are not affected by anti-angiogenic therapy. Although 
anti-angiogenic treatment relieves clinical symptoms, 
tumour invasion continues. Unfortunately, antiangio-
genic treatment affects current imaging modalities, 
making it harder to define tumour margins.258  Moreover, 
while treatment of other tumour types may be improved 
by combining chemotherapy with anti-angiogenic 
drugs, inhibiting angiogenesis in GBM may antago-
nize the efficacy of chemotherapeutic drugs, by nor-
malizing the blood-brain barrier. Thus, angiogenesis 
inhibition is of considerable value in GBM patients for 
symptom reduction, but lack of proof of a true anti-
tumour effect raises concerns about the place of this 
type of therapy in the treatment of GBM.

Gefitinib and erlotinib are small molecule inhibi-
tors belonging to the newly named “targeted thera-
pies”, designed to inhibit the epidermal growth factor 
receptor (EGFR) tyrosine kinase.340 Clinical trials have 
shown their effectiveness for the treatment of patients 
with advanced non-small cell lung cancer. They have 
been considered as relatively safe agents, common 
adverse reactions including mild and reversible diar-
rhea and skin rash. However, Yan et al341 reported that 
two cases of brain metastasis from non-small cell lung 
cancer, developed brain hemorrhage after gefitinib 
therapy.

Available antiproliferative and antiangiogenetic 
therapies show clear limitations below, we review the 
work of our laboratory during the past 20 years. It has 
led to the purification of a brain glycolipid, named 
neurostatin, that shows antiproliferative and antian-
giogenic activity two orders of magnitude better than 
temozolomide (Table 2). Experimental glioma treated 
with neurostatin became detectable to the immune 
system, allowing for its eradication.

Making Glioma Immunodetectable
Gangliosides, growth factor  
receptors and tumoral growth
Gangliosides are complex glycosphingolipid compo-
nents of the mammalian plasma membrane,  containing 

sialic acid. They were discovered by Ernst Klenk342 
and named on the basis of their isolation properties 
and high concentration in ganglion cells. Since 1956, 
when Svennerholm first showed the structural com-
plexity of gangliosides,343 his nomenclature based 
on the number of the sialic acid(s) and their chro-
matographic mobility has been commonly used. The 
structure of a representative ganglioside, GM1, is 
illustrated, along with similar representations of other 
gangliosides discussed in this review (Fig. 7). Since 
their discovery in the 1940s, gangliosides have been 
associated with a number of biological processes, such 
as growth, differentiation, and toxin uptake. Hypoth-
eses about regulation of these processes by ganglio-
sides are based on indirect observations and lack a 
clear definition of their mechanisms within the cell. 
The first insights were provided when a reduction in 
cell proliferation in the presence of gangliosides was 
attributed to inhibition of the epidermal growth factor 
receptor (EGFR). Since that initial finding most, if 
not all, growth factor receptors have been described 
as regulated by gangliosides.344 The effects of gangli-
osides on growth factor receptors may be understood 
based on three models: fibroblast growth factor recep-
tor (FGFR), platelet-derived growth factor receptor 
(PDGFR), and EGFR (Table 3). In the FGFR model, 
gangliosides can modulate ligand binding; in the 
second, PDGFR, gangliosides can regulate receptor 

Table 2. Inhibitory activity (ID50, mM) of O-acetylated 
(Compounds 2-5) and O-butyrylated (compounds 6-9) 
compounds on U373MG human astrocytoma and C6 rat 
glioma cell lines.

compounda ID50 (µM) on  
U373 cells

ID50 (µM)  
on c6 cellsb

TMZc 401.20 ± 15.30 434.92 ± 18.65
GD1b .50 .50
O-AcGD1b 2.00 ± 0.45 0.23 ± 0.12
Bi-O-AcGD1b 2.54 ± 0.41 1.65 ± 0.35
Tri-O-AcGD1b 2.97 ± 0.52 3.56 ± 0.74
Tetra-O-Ac GD1b 2.93 ± 0.49 4.01 ± 0.56
O-ButGD1b 0.83 ± 0.34 0.32 ± 0.17
Bi-O-ButGD1b 1.50 ± 0.46 1.31 ± 0.39
Tri-O-ButGD1b 2.46 ± 0.52 1.74 ± 0.44
Tetra-O-ButGD1b 2.57 ± 0.59 1.88 ± 0.61

notes: aAll O-acetylated and O-butyrylated compounds were generated 
from ganglioside GD1b (compound 1); beGF was used as the mitogen 
for human U373MG or rat C6 cells. Data are expressed as mean ± SD 
of ID50 of four independent experiments performed in quadriplicate;  
cTemozolomide (TMZ) is the best glioma inhibitor clinically available.
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pit internalization and ubiquitination, but ganglio-
sides may contribute to these functions and to sig-
nal transduction pathways. Gangliosides probably 
have a role in diverse biological structures that affect 
directly the duration of the signal and the localiza-
tion in the membrane of the growth factor receptor. 
For this purpose, the plasma membrane is organized 
into microdomains (lipid rafts) of unique ganglio-
side composition. Gangliosides were the first tumor-
 associated antigens described, and changes in cellular 
ganglioside composition were associated with altered 
growth properties.345 In other experiments, exog-
enous administration of gangliosides to Neuro-2A 
neuroblastoma cells stimulated neurite sprouting and 
enhanced axonal elongation.346 Therefore, ganglio-
sides are involved in controlling both, growth and 
differentiation, by modulating growth factor receptor 
activity.347 The original finding demonstrated that cell 
growth stimulated by fibroblast growth factor (FGF) 
was suppressed by exogenous addition of saturating 
amounts of gangliosides, that inhibited FGF receptor 
activity. The PDGFR348 and EGFR349 activities were 
also regulated by gangliosides, and the number of 
growth factor receptors found to be modulated by gan-
gliosides has been growing since 1990. References to 
studies of growth factor receptor activities regulated 
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Table 3. effects of gangliosides on growth factor receptors.

Growth factor Ganglioside References
FGFR GM1 426, 426–430

GM2 431
GM3 422, 432, 433
GD1b 426
GT1b 426

PDGFR GM1 423, 434–440
GM2 434, 438–440
GM3 423, 434, 438, 442
GD1a 434, 438–440
GD3 434
GT1b 434, 438–440

eGFR GM1 424, 436, 437, 444–447
GM2 444, 445, 447

notes: effects of gangliosides on growth factor activity. Gangliosides 
have been associated with a number of biological processes, such as 
growth, differentiation, and toxin uptake. Regulation of these processes 
by gangliosides are based on indirect observations and lack a clear 
definition of their mechanisms within the cell.

dimerization; and finally, in the EGFR, gangliosides 
may affect receptor activation state and subcellular 
localization. These three models may be extended to all 
growth factor receptors, bearing in mind that the three 
models may not be mutually exclusive. Gangliosides 
may not act independently of well- established mech-
anisms of receptor regulation, such as  clathrin-coated 
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by gangliosides are provided in Table 3. Gangliosides 
can now be appreciated for their structural role in 
the organization of plasma membrane lipid microdo-
mains, as well as for their role in regulating growth 
factor receptor signaling processes.350

Natural and synthetic regulators  
of glial proliferation
The number of glial cells in the mammalian brain 
remains stationary throughout adulthood,351,352 thanks 
to the concomitant presence of specific mitogens and 
mitogen inhibitors.353 Definite evidence for the exis-
tence in brain of specific inhibitors of astroblast divi-
sion was presented by Nieto-Sampedro354 and soon 
confirmed.355 The inhibitor had epitopes in common 
with both, the carbohydrate moiety of the epidermal 
growth factor receptor (EGFR) and with human blood 
groups. Determination of its structure was facilitated 
by realizing its glycolipidic nature,356 which led to 
preparation of brain ganglioside extracts. The inhibi-
tor was purified to homogeneity, using a combination 
of conventional and high performance ion-exchange 
chromatographies. A combination of bidimensional 
nuclear magnetic resonance (NMR), MALDI-TOF 
mass spectrometry and biochemical studies,  permitted 

us to conclude that the inhibitor was O-acetylated 
GD1b.357 This very scarce ganglioside was called neu-
rostatin, attending to its source and biological activity. 
It inhibited the proliferation in culture of both primary 
astroblasts and glioma cells (both rodent and human) 
at nanomolar concentrations, both in defined medium 
or in the presence of 10% foetal calf serum. Synthetic 
oligosaccharide analogues of neurostatin inhibited the 
division of astroblast, glioma and neuroblastoma cells 
in culture358,359 and promoted the destruction in vivo 
of an experimental rat brain glioma.360 Compounds 
like neurostatin probably arrest glioma growth by 
direct antimitotic action on the tumoral cells, affect-
ing lipid raft microdomains and interfering with mul-
tiple signals regulating cell cycle progression (Fig. 4). 
Neurostatin-like compounds may also act indirectly, 
by activating CD4 and CD8 positive immune cells. 
Neurostatins may be the new type of chemotherapeu-
tic agent that will permit glioma eradication.

Glioma growth inhibition by a synthetic 
tetrasaccharide, TS4
The synthetic tetrasaccharide α-D-GalNAc-(1-3)-
β-D-Gal-(1-4)-[α-L-Fuc-(1-3)]-β-D-GlcMe (TS4), 
structurally related to blood groups, was an analogue 
of the carbohydrate moiety of neurostatin (Fig. 9). 
It was the best first generation synthetic inhibitor of 
astroblast and astrocytoma growth, designed based on 
its immunological properties before neurostatin struc-
ture was known.358,359 TS4 inhibited the proliferation 
of C6 rat glioma cells in culture, as well as the growth 
of brain tumors formed after intracerebral transplan-
tation of C6 cells.360 As expected from the cytostatic 
action of TS4 on glioma cells in culture, TS4-treated 
tumors were substantially smaller than controls. This 
action was probably mediated by two plasma mem-
branes C-lectin type proteins of apparent molecular 
weight 250 kDalton and a 150 kDalton (isolated by 
affinity chromatography on immobilized TS4 from 
both C6 cells and brain tissue; Díaz- Mauriño and 
Nieto-Sampedro, unpublished). TS4-like or blood 
group-like cell surface molecules, together with 
their binding proteins, define a cell adhesion system 
involved in the control of cell division. These cell 
adhesion systems interact with tyrosine kinase path-
ways at more than one level, mediating growth or its 
inhibition.361–363 Interaction of soluble TS4 with cell 
surface glycan binding proteins, mimicked cell-cell 
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and astrocytoma division. Its structure and scarcity limits its stability and availability. Therefore, we prepared O-acetylated and O-butyrylated GD1b by 
chemical synthesis.

contact, and evoked inhibition of cell proliferation 
and tumor growth.

TS4 binding to glioma cells made  
them immunovisible
Because TS4 was cytostatic for C6 cells in culture, 
finding that TS4-treated tumors were smaller than con-
trols was expected. However, in addition, the tumors 
appeared necrotic. Tumor appearance suggested that 
the tumors had grown comparatively large and later 
had been destroyed (Figs. 10 and 11). C6 glioma cells 
originated from Wistar rats and, when transplanted on 
isogenic hosts, proliferated unhindered and migrated 
without causing vasculature disruption. The effects of 
TS4 treatment in vivo went beyond interference with 
cell division and caused transformed cell apoptosis and 
tumor destruction. Probably, TS4 binding activated indi-
rectly other tumour toxicity mechanism/s. At least four 
cell-mediated actions, not mutually exclusive, could lead 
to tumor destruction: (i) inhibition of tumor neovascu-
larization; (ii) activation of microglia; (iii) activation of 
natural killer (NK) cells and iv) activation of cytotoxic 
lymphocytes (CTL).360 The enhanced immunogenic-
ity of TS4-treated glioma cells seemed related to their 
increased expression of connexin 43, observed in glioma 
cell cultures treated with the oligosaccharide.361,362

Although CD8 positive (CD8+) cells with lym-
phocyte morphology infiltrated C6 tumors, both 
TS4-treated as well as untreated, they did not pre-
vent the growth of untreated glioma controls. There-
fore, simple recruitment of extra lymphocytes, not 
observed after TS4 infusion into normal brain, was 

not involved in TS4-induced tumor destruction. Two 
types of infiltrating CD8+ cells were observed which, 
judging by their size and morphology, may be NK 
cells and CTLs (Fig. 10).360 Activation of NK cells 
requires activator binding to the NK receptor protein, 
NKR-P1 and TS4-like oligosaccharides are ligands of 
this protein.364,365 The oligosaccharide activators must 
be presented as lipid or pseudolipid micelles,364 but 
this manner of presentation could be mimicked by 
TS4 bound to its C lectin receptors on the surface of 
C6 cells. The specificity of NKR-P1 and of the TS4 
receptor lectins is such, that each binds preferently 
to sugar sequences at opposite ends of the TS4 mol-
ecule (Fig. 13). Hence, TS4 bound to lectin receptor 
on C6 membranes could still associate to NKR-P1, 
leading to NK cell activation and glioma destruction.

Intercellular junctions, connexin 43 
expression and glioma growth
Transfection of C6 cells with cDNA coding for the 
gap junction protein Cx43, caused decreased prolif-
eration of glioma cells.361,362 Transfected cells showed 
molecular disturbances in the IGF system,366 which 
made the tumor cells detectable by host CD8+ cyto-
toxic lymphocytes.367 The possibility that TS4 could 
enhance Cx43 expression by glioma cells, was tested 
by treating equal numbers of exponentially growing 
C6 cells with either, TS4 solution (final concentration 
1 mg/ml or 1.4 mM), or with the same volume of PBS. 
TS4-treated cells showed complete arrest of cell divi-
sion, but maintained viability. Controls, continued to 
grow normally. Northern blots of RNA from control 
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Figure 10. CD-8 immunoreactive cells in and around a brain glioma. Saline-treated C6 glioma tumours, 21 days following transplantation of 105 cells into 
brain. (A–c) The tumors were infiltrated by CD8-positive cells of two types: (B), small, intensely staining, and (c), larger, less immunoreactive. (D), Tumors 
treated with TS4 were smaller than saline-treated controls and their appearance was necrotic. (e, F) CD8-positive cells in TS4-treated tumors were more 
numerous, stained more intensely, and were larger than similar cells in controls. High numbers of CD8-positive cells were observed infiltrating the tumor, 
forming a gradient of decreasing immunoreactivity towards adjacent tisue (star). The sections werecounter stained with cresyl violet. Magnification bars: 
A, D, 230 µm; B, C, e, F, 23 µm.

and TS4-treated cells, performed using a Cx43 cDNA 
probe, indicated a specific increase in expression of 
Cx43 mRNA in TS4-treated cells. The increase in 
Cx43 mRNA expression, ranged from 2.5 to 2.9-fold 
in four different experiments (average ±17%, n = 4). 
Cx43 expression in vivo, in tumors treated with 
TS4 solution (20 mg/ml) during 14 days, could not 

be observed by in situ hybridization with the same 
probe, as treated tumor cells were not viable.

New synthetic glioma inhibitors
The synthesis of the tetrasaccharide TS4 was rather 
long and labour-intensive. To overcome this limita-
tion, we designed a simpler synthesis of analogues 
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Figure 11. Infiltration of glioma by microglia or macrophages (GIMs). OX-42 (CD 11b) immunoreactive cells infiltrating C6 glioma tumors, 21 days after 
transplantation of C6 cells (104 cells/2 µl) into the parietal cortex. The tumors were treated during the 14 days previous to sacrifice with: (A), saline solution; 
(D), TS4 solution in saline. Immunoreactivity was intense in and near the tumor, sharply decreasing with distance (D, star). (B) Immunoreactive cells in 
normal tissue had the morphology of ramified microglia. (c), In saline-treated tumors, infiltrating immunoreactive cells were round (arrowheads), whereas 
(e), most CD11b-positive cells in TS4-treated rats were slightly elongated (arrowheads) and, frequently, particularly in cells near blood capillaries, had 
short processes (F). Sections were counterstained with cresyl violet. Bars: A, D, 230 µm; B, e, 23 µm; F, 47 µm.

exhibiting the main structural features of TS4.368–371 
An octyl N-acetylglucosaminide derivative with a 
pentaerythritol chain at position 6 (Compound 1, 
Chart 1) inhibited the growth of a neuroectodermic 
tumor implanted in rats and, when loaded on a slow-
delivery polymer disk, caused the destruction of cul-
tured human astroblastoma, obtained after surgical 

biopsy.369 Compound 1 also inhibited the division 
of human U-373 glioma cells in culture, although 
with a modest ID50 value (43 mM). A variety of 
di- and monosaccharides were readily synthesized 
and evaluated as inhibitors of neural tumor growth. 
In order to get compounds with improved activ-
ity, a new series of monosaccharides was obtained 

http://www.la-press.com


Nieto-Sampedro et al

296 Clinical Medicine Insights: Oncology 2011:5

2000

1800

1600

1400

1200

1000

800

600

800

200

0
12 15 18

Days post-implantation

21 24 27

+
++

++
**

**

+**

# &

## &&

*

+
*

30 33

T
u

m
o

r 
vo

lu
m

e 
in

cr
ea

se
 (

m
m

3 )

A

B

PBS

GD1b

O-AC GD1b

O-But GD1b

PBS GD1b O-Ac GD1b O-But GD1b

Figure 12. Neurostatins inhibit experimental glioma growth in nude mice. (A) Growth of C6 glioma cells xenografted on nude mice. effects of GD1b, O-Ac 
GD1b and O-But GD1b. when tumors reached the required size (120 mm3; day 12), they were treated with PBS or with the gangliosides GD1b, O-Ac 
GD1b or O-But GD1b (8 mg/kg animal in PBS, in 5 injections from day 12 to 24). Tumor growth was evaluated determining the tumor volume every three 
days. (B) Representative images of tumor appearance at the end of the experiment (day 33). Treatment with PBS was the vehicle control and GD1b was 
used as inactive ganglioside control. 
notes: Daily growth statistical differences: *P , 0.05 vs. PBS; **P , 0.01 vs. PBS; +P , 0.05 vs. GD1b; ++P , 0.01 vs. GD1b. Overall growth 
statistical differences: #P , 0.05 vs. PBS; ##P , 0.01 vs. PBS; &P , 0.05 vs. GD1b; &&P , 0.01 vs. GD1b, calculated by ANOvA followed by post-
hoc Tukey test.

by  systematic  modification of the substituents at 
positions 1, 2, 3, and 6 of the glucosamine back-
bone, and tested as inhibitors of proliferation on 
rat (C6) and human (U-373) glioma.370 The results 
obtained indicated that the activity was increased by 
a long hydrocarbon chain at position C-1 of the glu-
cosamine backbone, the most inhibitory compound 
being the oleyl  glycoside 2 (Chart 1). To obtain 
information about its mode of action, metabolite 
changes in C6 glioma cells were analyzed after treat-
ment with glycoside 2, using high-resolution magic 
angle spinning (HR-MAS) 1H NMR.371 The data 
obtained from the 1H NMR spectra of the different 
experiments suggest that glycoside 2 inhibited cell 

division (IC50 approx. 10 µM) by inhibiting de novo 
synthesis of fatty acids. At higher concentrations 
(above 40 µM), a significant ratio of cell death 
occurred through apoptosis.

Neurostatins, natural brain antimitotics
Neurostatin, purified from rat and bovine brain 
extracts,356,357 had epitopes in common with both, 
the carbohydrate moiety of the epidermal growth 
factor receptor (EGFR) and with human blood 
groups.354,355 This very low abundance modified 
ganglioside, like its synthetic oligosaccharide ana-
logues, inhibited in culture the division of astro-
cytes, glioma and neuroblastoma cells354,359 and 
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Figure 13. Cell adhesion systems interact with tyrosine kinase pathways at more than one level, mediating growth or its inhibition. Interaction of soluble 
neurosttin or analogues with cell surface glycan binding proteins, mimick cell-cell contact, and evoke inhibition of cell proliferation and tumor growth.

promoted, in vivo, the immune destruction of an 
experimental rat brain glioma.360 Determination 
of the precise structure of neurostatin required 
the purification of comparatively large amounts 
of the molecule. The  fractionation of the amounts 

of brain tissue required was facilitated by prepa-
ration of ganglioside extracts.371 Neurostatin was 
purified from such extracts, using a combina-
tion of  conventional and high performance ion-
exchange and reverse phase chromatographies.357  
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chart 1. A long hydrocarbon chain at position C-1 of the glucosamine backbone of synthetic glycolipids increased their inhibitory activity.
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The purification to  homogeneity of neurostatin per-
mitted the determination of the inhibitor structure, 
combining bidimensional nuclear magnetic reso-
nance (NMR), MALDI-TOF mass spectrometry and 
biochemical studies. We concluded that neurostatin 
was GD1b, 9-O-acetylated on the outer sialic acid 
residue (Fig. 9). The acetylated ganglioside inhib-
ited the proliferation in culture of both primary 
astroblasts and glioma cells (both rat and human) at 
nanomolar concentrations, either in defined medium 
or in the presence of 10% foetal calf serum.357

The O-acetylated forms of gangliosides GD3, GT3, 
GD1b, GT1b and GQ1b are present in neural tisue, 
at developmentally regulated concentrations.372–374 
The expression of O-acetyl-GD3 and O-acetyl-GT3 
is particularly high during the O2A precursor prolif-
erative stage.374 GD3 is overexpressed in many types 
of tumors,375 whereas O-acetylated GD3 is present 
in fast growing tumors, such as melanoma.376 In 
contrast, pure neurostatin was cytostatic for astro-
cytes and glial-derived cell lines, several of them 
capable of malignant growth. Thymidine incorpora-
tion into rat C6 glioma cells or human astrocytomas 
U-373 and U-118, was inhibited in a concentration-
dependent manner, like for TS4 (Fig. 8), but with 
IC50 values ranging from 200 to 450 nM (Table 2). 
In contrast, primary rat fibroblasts or the fibroblast 
line 3T3, mouse neuroblastoma N2A or human neu-
roblastoma SH-SY5Y, were not affected, suggesting 
that the antimitotic activity of neurostatin addressed 
selectively cells of glial lineage. Neurostatin inhib-
ited glial proliferation, regardless of whether or not 
the cells required mitogens to enter division. Thus, 
it inhibited proliferation of human U-373 astrocy-
toma, a cell line probably autocrine and capable of 
dividing in serum-free or growth factor-free culture 
medium.

New semi-synthetic inhibitors
When ganglioside GD1b was O-acetylated in its 
outer sialic acid, it became the potent inhibitor 
of astroblast and astrocytoma division, we called 
neurostatin.356,357 Because neurostatin showed speci-
ficity for cells of astroglial lineage, it was a suitable 
candidate for treatment of CNS astrocytomas.356,357 
However, the need to prepare and purify neurosta-
tin from brain extracts, limited the availability and 
purity of the compound.357,377 Moreover, the O-acetyl 

group of neurostatin was very labile to hydrolysis 
under physiological pH  conditions.357 These limita-
tions prevented the application of the compound to 
in-vivo studies and made its prospective clinical use 
virtually impossible. In order to overcome these lim-
itations, we proposed to use a semi-synthetic alterna-
tive to brain neurostatin, a method that permitted to 
obtain neurostatin in larger amounts.378 We hypothe-
sized that an O-acyl aliphatic chain longer than acetyl 
(ie, butyryl), may lead to neurostatin analogues more 
resistant to hydrolysis that neurostatin itself, also 
preventing the degradation of the natural compound 
by specific enzymes. Gangliosides O-Ac GD1b 
(Neurostatin; Galβ1-3GalNAcβ1-4[9-O-Ac Neu5Ac 
2-8Neu5Ac α 2-3]Galβ1-4Glcβ1-1′-ceramide) 
and O-But GD1b (Galβ1-3GalNAcβ1-4[9-O-But 
Neu5Acα2-8Neu5Acα2-3]Galβ1-4Glcβ1-1 ′-
ceramide) were obtained by chemical O-acetylation 
or O-butyrylation of GD1b,378,379 using a modifica-
tion for gangliosides380 of the original method of 
Ogura et al.381 Ganglioside GD1b (125 µg) was dis-
solved in dimethylsulfoxide (DMSO; 12.5 µl) and 
treated with either trimethyl orthoacetate (TMOA; 
Sigma-Aldrich) or trimethyl orthobutyrate (TMOB; 
Sigma-Aldrich, St Louis, MO) in 500 molar excess, 
in the presence of p-toluensulfonic acid (0.0125 mg; 
Sigma-Aldrich) as catalyst. The reaction mixture was 
maintained for 8 hours in the darkness at 18–21 °C 
and acylation was stopped by addition of methanol 
(1 ml). The mixture was desalted by reverse phase 
filtration382 and O-substituted gangliosides were puri-
fied by preparative thin layer chromatography.383

Both, O-Ac GD1b and O-But GD1b (Fig. 9), 
had similar inhibitory activities on rat C6 glioma 
cells (ID50, 230 and 320 nM, respectively) and rat 
C6 glioma cells transfected with green fluorescent 
protein (C6-GFP). Inhibition of division of C6 cells 
promoted by EGF and analyzed by flow cytometry, 
showed that the inhibitors maintained a large pro-
portion (60%) of the glioma cells in the resting G0 
phase, compared to 47% in the absence of inhibitor 
(Fig. 12). Inhibition of glioma proliferation occurred 
without toxic or inhibitory effects for fibroblasts or 
neuroblasts, at the maximal concentration tested 
(10 mM).378 Therefore, use in vivo was possible. The 
anti-tumoral activity in-vivo of compounds O-Ac 
GD1b and O-But GD1b was tested on two glioma 
models: (i) a glioma xenografts in Foxn1nu/nu nude 
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mice; (ii) intracranial glioma transplanted in rats (C6 
or C6-GFP).378

Female Foxn1nu/nu nude mice were subcutane-
ously injected in the right flank with a suspension 
of 3 ×	106 C6 cells in serum-free DMEM medium. 
Treatment with inhibitors was started when pal-
pable tumors reached a volume of about 120 mm3. 
The animals were treated by intratumoral injection 
(8 µg/kg animal in PBS in 5 injections, from day 
12 to day 24) of O-Ac GD1b and O-But GD1b, and 
the tumor volume was compared to those of con-
trols injected either GD1b or PBS (vehicle). Tumor 
dimensions were measured every 3 days, and tumor 
volume was calculated as (width)2 × length × π/6. 
Tumor volume index was calculated using the differ-
ence between the measured volume and the volume 
measured at the start of the treatment. Additionally, 
the time-course of growth was adjusted to a straight 
line to compare the slopes (tumor growth rate) 
after the various treatments (Fig. 12). The animals 
were sacrificed 33 days after tumor implantation 
and tumor progression evaluated. Two independent 
experiments were carried out (n = 8). Neither, the 
PBS solvent nor the parent ganglioside GD1b, had 
any inhibitory effect on tumor growth. On the other 
hand, one single intratumoral injection of low con-
centration of chemically substituted O-Ac GD1b 
and O-But GD1b, inhibited tumor growth signifi-
cantly (Fig. 12A), when compared to the vehicle 
(PBS) and the parent compound, GD1b, from day 
27 after cell implantation until the end of the exper-
iment (day 33). O-But GD1b showed the highest 
inhibitory activity (Fig. 12A and B), reducing tumor 
growth by 49% at day 33 compared with the PBS 
control and 45% when compared with the unmodi-
fied ganglioside (GD1b). O-Ac GD1b also inhib-
ited the tumor growth, but it was less effective than 
O-But GD1b (Fig. 12A and B). The overall tumor 
growth rate was assessed comparing the slopes of 
the time-course of tumor growth: compared to con-
trols (PBS and GD1b), both O-acyl compounds sig-
nificatively reduced tumor growth rate.378

Mechanisms of Growth Inhibition
Direct inhibition of glioma proliferation
Growth factor signal transduction pathways, 
often upregulated in brain tumors, may  contribute 

to  oncogenesis through autocrine and paracrine 
 mechanisms. The Ras signaling pathway is frequently 
overactive in gliomas. Receptor tyrosine kinase inhibi-
tors, antireceptor monoclonal antibodies and antisense 
oligonucleotides, are approaches under investigation 
to regulate aberrant growth factor signaling pathways 
in brain tumors.384 Inhibitors of tyrosine-kinase recep-
tors, that inhibit the Ras signaling pathway, also inhibit 
the growth of malignant gliomas. Cytokines PDGF 
and EGF play important roles in glial development 
and oncogenesis.155,385,386 The EGF receptor (EGFR) is 
mainly expressed in glioblastoma multiforme,155 while 
the receptor for PDGF (PDGFR) is expressed in most 
types of gliomas.385 PDGFR-A and PDGFR-B expres-
sion were observed in highly proliferating tumor cells, 
as well as in endothelial cells.385,387 Both growth fac-
tor signal transduction pathways are involved in can-
cer stem cell proliferation and glioma growth, but we 
do not know how neurostatin or TS4 interfere with 
them. The tetrasaccharide had receptors on the plasma 
membranes of neural cells. Two C-lectin type pro-
teins, of apparent molecular weight 250 kDalton and 
a 150 kDalton, respectively, were isolated by affinity 
chromatography of solubilized plasma membranes 
from either C6 cells or from brain tissue on immobi-
lized TS4.388 TS4-like molecules or membrane-bound 
neurostatin, together with their receptor proteins, 
define a cell adhesion system that may be involved 
in cell division control (Fig. 13). Cell adhesion sys-
tems interact with tyrosine kinase pathways at more 
than one level, mediating signaling of growth or its 
inhibition.361–363,389 Interaction of soluble TS4 or neuro-
statin with cell surface glycan binding proteins, mim-
icked cell-cell contact, and evoked inhibition of cell 
proliferation. Such inhibition was also observed as a 
significant decrease in the respose to mitogen, ie, dim-
inution of the number of cells incorporating bromode-
oxyuridine (BrdU), or showing inhibited expression 
of phosphohistone H3 (pHH3), a mitosis marker that 
is phosphorylated in the late G2 phase of the cell divi-
sion cycle. Valle Argos et al390 observed that tumors 
treated with O-Ac GD1b or O-But GD1b incorporated 
48% or 65% less BrdU, and expressed three times less 
pHH3, than tumors treated with PBS. The transition 
of G1 to phase S is regulated by cyclin D1, kinase 
CDK6 and the cell cycle inhibitors p21 and p27. The 
expression of both cyclin D1 and CDK6 was reduced 
1.7 and 2.8 times, respectively, in tumors treated with 
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neurostatin, and 3 and 3.4 times if the tratment was 
with O-But GD1b. On the other hand, the cell cycle 
inhibitor p27 was overexpressed after treatment with 
neurostatin (5-fold) or O-But GD1b (6.4-fold). Similar 
increases were observed for p21 inhibitor.390 Tumoral 
growth inhibition occurred with concomittant activa-
tion of pro-apoptotic proteases, such as caspase-3.

Indirect, immune cell-mediated  
glioma destruction
C6 glioma cells originate from Wistar rats and, 
when transplanted into isogenic hosts, proliferate 
unhindered and migrate without causing vasculature 
disruption. Because TS4 was cytostatic for C6 cells 
in culture, it was expected to find that TS4-treated 
tumors would be smaller than controls (Fig. 2C). 
However, in addition, the tumors appeared necrotic. 
Tumor appearance suggested that the tumors had 
grown comparatively large and, at a latter time, had 
been destroyed (Figs. 10 and 11). Destruction of 
tumors treated with neurostatin or TS4, suggested 
that the glycocompounds activated indirect toxicity 
mechanism/s. At least four cell-mediated actions, 
not mutually exclusive, may lead to tumor destruc-
tion: (i) activation of natural killer (NK) cells; (ii) 
activation of cytotoxic lymphocytes (CTL); acti-
vation of microglia, and (iii) inhibition of tumor 
neovascularization. Each of them will be briefly 
considered.

CD8+ cells with lymphocyte morphology infil-
trated all C6 tumors, both TS4-treated as well as 
untreated, but did not prevent the growth of controls. 
Tumor destruction induced by TS4 did not involve 
simple recruitment of extra lymphocytes, since it was 
not observed after TS4 infusion into normal brain. Two 
types of infiltrating CD8+ cells were observed which, 
judging by their size, may be NK cells and CTLs 
(Fig. 10). Activation of NK cells requires activator 
binding to NKR-P1, and TS4-like oligosaccharides 
are ligands of this protein.364,365 The oligosaccharide 
activators must be presented as lipid or pseudolipid 
micelles,364 but this manner of presentation could be 
mimicked by TS4 bound to its C lectin receptors on 
the surface of C6 cells. The specificities of NKR-P1 
and that of the TS4 receptor lectins are such, that each 
could bind preferently to sugar sequences at oppo-
site ends of the TS4 molecule. Hence, TS4 bound to 
 lectin receptor on C6 membranes could still associate 

to NKR-P1, leading to NK cell activation and glioma 
destruction.

Various reports suggest that TS4-induced Cx43 
expression could mediate CTL activation. Stable C6 
transfectants overexpressing Cx43, showed inhibition 
of proliferation391,392 and decreased tumorigenicity,393 
probably related to improved immune response.285 
The link between Cx43 expression and increased 
tumor immunogenicity, appears to be the IGF-I auto-
crine system. C6 transfectants overexpressing Cx43, 
showed altered expression of IGF-I-binding proteins 
(IGFBP)366 and transfection of C6 with antisense 
IGF-I cDNA also led to loss of tumorigenicity.394,395 
Antisense IGF-I cDNA transfected cells expressed 
reduced levels of growth factor, were not tumorigenic 
and, in addition, transplantation of transfectant cells 
caused the regression of tumors formed by wild type 
C6 cells. CD8+ cytotoxic lymphocytes that had previ-
ously ignored the tumor, were activated by transfec-
tant cells.394 It is conceivable that a similar chain of 
events could be triggered by TS4 infusion. Increased 
expression of Cx43 by TS4 treated C6 cells, would 
also lead to enhanced immunogenicity, cytotoxic 
lymphocyte activation and tumor destruction.

It has been reported that reactive microglia sur-
round experimental tumors formed by rat glioma cells, 
and that tumors are infiltrated by numerous microglia-
 derived macrophages.396 In agreement with these obser-
vations, we found numerous OX-42 (CD 11b) positive 
microglial cells both surrounding and infiltrating C6 
tumours (Fig. 11). It is well established that microglia 
are efficient antigen-presenting cells, and both Morioka 
et al391 and ourselves have shown, using different exper-
imental models, that these brain cells react strongly to 
tumoral growth. The number of reactive microglia/mac-
rophages infiltrating the tumour increased 5 to 10-fold 
in neurostatin-treated tumours.397

Finally, the cytostatic activity of TS4 and neuro-
statin was not limited to neural cells. Proliferation of 
other cell types such as endothelial cells or fibroblasts 
was also inhibited, though at concentrations much 
higher.398 Therefore, at the high TS4 concentrations 
used in vivo, endothelial cell division, and hence 
tumor vascularization, might have been inhibited. 
This would help to inhibit tumor growth and possibly 
lead to tumor necrosis.

The biological role of blood group carbohydrates 
has never been established, but the results reported in 
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previous papers suggested that they may be involved 
in controlling abnormal cell proliferation.355,359 
 Neurostatin and TS4-like analogues, in which glu-
cose was replaced by N-acetyl-glucosamine, or where 
N-acetyl-galactosamine was replaced by N-acetyl-
neuraminic (as in sialyl Lewis X, SiLex), had simi-
lar antimitotic properties.399 Sialic acid containing 
glycoproteins are common markers of transformed 
cells400 and SiLex has been found in tumors401 and 
in the sera of cancer patients.402 It has been proposed 
that interaction of SiLex with the endothelial selectin 
ELAM-1 mediates extravasation of tumoral cells and, 
hence, metastasis.403–406 Both fucose and sialic acid 
are absolute requirements for ELAM-1 binding,406 
but the effect of substituting sialic acid for GalNAc 
has not been tested. Neurostatin, TS4 and analogues 
could be also antimetastatic, if used at concentrations 
capable of competing for binding to the natural ligand 
of the selectin.

Glioma immunotherapy
The possibility of harnessing the potency and speci-
ficity of the immune system to destroy tumours, 
underlies the growing interest in cancer immunother-
apy of our and other groups.407–409 The compromised 
viability of glioma cells after binding neurostatin or 
analogues, like TS4, may engage the immune system, 
presumably by attracting numerous microglia-de-
rived macrophages or dendritic cells to glioma debris. 
Thus, glioma antigens would cease to be cryptic and 
its presentation to NK and T cells would follow, lead-
ing to glioma destruction.

Another approach has used dendritic cells (DCs) 
to present tumor-associated antigens (TAA) thereby, 
generating tumor-specific immunity.410–412 DCs are 
extremely potent antigen-presenting cells, special-
ized in inducing activation and proliferation of CD8 
cytotoxic T lymphocytes (CTL) and helper CD4+ 
lymphocytes.413 This unique property has prompted 
their application in therapeutic cancer vaccination. 
In the design and conduct of DC-based immunother-
apy trials, several important considerations influence 
induction of a successful protective response.414 First 
is the source of tumor antigen that can be loaded onto 
DC. In case of unknown tumor antigens, the source of 
antigen is, by necessity, a tumor cell lysate, apoptotic 
tumor cells, whole tumor–derived RNA, or tumor-
derived exosomes.415 Second, it is important the way 

in which DCs are activated, because immature DCs 
can tolerize the antitumoral response.416 Other impor-
tant variables are dose, frequency, timing, and route 
of administration.417–422 Taking into account all these 
variables, most studies have shown that injection of 
mature tumor antigen-treated autologous DCs into 
tumor-bearing hosts, induced protective and therapeu-
tic antitumor immunity in experimental animals and, 
for some malignancies, in patients.422,423 Mice receiv-
ing dendritic cells treated with tumor lysate before 
tumor implantation, demonstrated protective antitu-
mor immunity with prolonged survival (3 months) 
and even resisted a second tumor challenge. Tumor 
protection was associated with strong tumor-specific 
cytotoxic T-lymphocyte responses. Adoptive transfer 
of splenocytes or purified CD8 T lymphocytes trans-
ferred tumor protection to unimmunized mice in vivo. 
When given after tumor implantation in a therapeutic 
setting, pulsed dendritic cells prevented malignant 
mesothelioma growth. However, with higher tumor 
load and delayed administration after tumor implan-
tation, dendritic cells were not effective.407 Nearly 
twenty years of experimental immunotherapy for 
malignant glioma have yielded important insights 
in the mechanisms governing glioma immunology. 
However, although still considered promising, it is 
clear that immunotherapy, on its own, does notrepre-
sent the magic bullet in glioma therapy.

Genetically engineered models of glioma
There is little debate on the importance of murine 
models for advancing our understanding of the com-
plex biology of gliomas. Various types of in vivo 
model systems have been developed and utilized, 
including traditional orthotopic xenotransplants 
with established human glioma cell lines and, more 
recently, with primary human glioma cells enriched 
for surface expression of CD133.2,424 There is great 
interest in the further development of the CD133 pri-
mary tumor model system as this appears to be supe-
rior in recapitulating the diffuse infiltrative nature of 
the primary human disease. Whether the CD133 pri-
mary tumor system will prove to be a more accurate 
biological model or be more predictive in drug test-
ing than xenotransplant models with established cell 
lines is an area of current investigation.

In recent years, important advances have been made 
in the construction of genetically engineered mouse 
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(GEM) models, harboring glioma-relevant mutations 
or combinations of mutations. In several cases, such 
GEMs predictably develop gliomas with many of 
the features of the human disease.1,14,425,426 Given the 
experimentally tractable nature of the mouse, these 
glioma-prone GEM models are beginning to shed 
light on a number of key issues such as, for example, 
the glioma cells of origin,427 the ordering of mutations 
and whether such events underlie various glioma sub-
types428 and the cooperative and epistatic relationship 
of such mutations. The complex heterotypic interac-
tions between the evolving tumor cell and the host 
microenvironment, among other issues central to the 
problem of gliomagenesis, may also be approached 
with GEMs. With further refinement, there is now 
increasing evidence that these GEM model systems 
will provide an additional vantage with which to 
test the timing, dosing, and combination of drugs in 
the pipeline and assist in the development of drug 
response biomarkers.124,429 These models are ideal for 
investigating the biological mechanisms underlying 
tumorigenesis and for the functional validation of can-
didate genes identified through large-scale genomic 
analysis of tumor specimens. The need for accurate 
models is perhaps most acute in preclinical testing, 
where experimental data often determine the fate of 
a drug in development. Although additional study 
is needed, it is widely anticipated that refined GEM 
models of glioma should enable the identification of 
tumor maintenance genes and the testing of agents 
targeting such mission critical lesions, thereby identi-
fying key targets, the best agent, and the right patient 
population ie, genotype; Sharpless and Depinho.430 
Thus, GEM models may permit culling of ineffective 
drugs and improve the design of trials for those enter-
ing phase I/II clinical trials. In addition, the availabil-
ity of refined GEM models that evolve through stages 
may help define the tumor grade where an agent or 
combination of agents may be most effective.

Micro RNA and glioma growth
MicroRNAs (miRNAs) are short single stranded 
RNA molecules, that serve as master regulators 
of gene expression in a sequence-specific fashion. 
miRNAs bind to 3’untranslated regions (UTRs) of 
mRNAs and affect the translation and/or stability 
of that mRNA, leading to a reduction in the levels of 
protein. Tumors analyzed by miRNA profiling have 

exhibited significantly distinct miRNA signatures 
compared to normal cells from the same tissue.431 The 
abnormal levels of miRNAs in tumors have impor-
tant pathogenetic consequences. Some miRNAs are 
over-expressed in tumors and act as oncogenes, pro-
moting tumor aggravation by down-regulating tumor 
suppressors.432 Thus, the miR-17- miR-92 cluster 
in T-cell acute lymphoblastic leukemia, reduces the 
level of the transcription factor E2F1; miR-21 in lung 
cancer cells downregulates the tumor-inhibiting fac-
tor PTEN; and miR-125b is an important repressor 
of p53, inhibiting p53-induced apoptosis in human 
neuroblastoma cells.433 On the other hand, tumors lost 
miRNAs generally participate in oncogene overex-
pression. For example, the let-7 family represses Ras 
and Myc oncogenes in cancers,434 and the miR-15-
miR-16-1 cluster down-regulates Bcl-2 and induces 
apoptosis in a leukemic cell line model.435

miR-26b is one of the miRNAs involved in the 
response to hypoxia, a well documented tumor 
microenvironment factor. A recent study confirmed 
that the expression of miR-26b was changed in sev-
eral human cancer cell lines including glioma cells.436 
miRNA profile analyses revealed that miR-26b was 
one of the significantly decreased miRNAs in glioma 
cells compared to normal brain tissues.436 However, 
the role of miR-26b in glioma development has not 
been well documented and little is known about its 
target genes. Additionally, the effect of abnormal 
expression of miR-26b on tumor grade needs to be 
addressed. Erythropoietin-producing hepatocellular 
(EPH) receptors and their Ephrin ligands constitute 
the largest sub-family of receptor tyrosine kinases 
(RTKs), which are involved in many biological 
processes and play important roles in disease and 
 development.437 To date, fourteen Eph receptors have 
been found in mammals. They were divided into two 
distinct classes, A and B, based on the sequence homol-
ogy of their extracellular domains. More recently, 
EphA receptors and their corresponding ligands 
have been implicated in numerous  malignancies.438 
Among them, EphA2 and ephrinA1 are the most 
widely studied with respect to development, tum-
origenesis, angiogenesis, and metastasis, and they 
may represent potential therapeutic targets because 
of their diverse functions in several types of cancer. 
Activation of the EphA2 receptor tyrosine kinase by 
ephrinA1 ligands plays important roles in cellular 
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signal  transduction.439 EphA2 is functionally altered 
in a number of cancers and has potential roles in the 
regulation of cancer cell growth, survival, migration, 
invasion, and angiogenesis.440–442 Increased expres-
sion of EphA2 has been demonstrated in most  cancers 
of epithelial origin, like breast,443 ovarian,441,444,445 
prostate,445 melanoma,446 esophageal,447–449 lung car-
cinomas450 and brain.451,452 Immunohistochemical 
analysis has revealed that EphA2 was strongly over-
expressed in 90% of GBM patient tumors,451 85% 
of prostate adenocarcinomas and 76% of ovarian 
 cancers.442  Furthermore, the frequent over-expression 
of EphA2 in human cancers correlates with poor 
prognosis and increases metastatic potential.442 In 
epithelial cells, ectopic expression of EphA2 has been 
shown to result in a malignant phenotype in both in 
vitro and in vivo experiments.443 EphA2 has been pro-
posed as an attractive target for developing novel anti-
cancer therapeutic agents. Wu et al453 studied, using 
real-time PCR analysis, the expression of miR-26b in 
glioma cells and the tissues from glioma patients of 
defined grades. Proliferation, migration, and invasion 
were analyzed to confirm the effects of miR-26b in 
glioma cells. The regulation by miR-26b of EphA2 
was confirmed by the experiments of luciferase anal-
ysis, Western blotting, and Vasculogenic mimicry 
(VM) network formation. They found that ectopic 
expression of miR-26b in U251 and C6 glioma cells 
resulted in diminished proliferation, migration and 
invasion activity, accompanied by a low level expres-
sion of EhpA2. VM formation was also abolished in 
glioma cells transfected with the miR-26b duplex. 
This study provides evidence that miR-26b acts as 
an antioncogene in glioma cells and is an important 
negative regulator of the EphA2 gene.

Future directions
The progress and depth of understanding of the 
biology and genetics of glioma, together with truly 
manipulable experimental models, now offer real 
opportunities for the development of effective thera-
pies. Despite significant gaps in our understanding, 
a wealth of information now exists about the clini-
cal and biological behavior of the tumors, the genetic 
pathways involved in gliomagenesis, the nature of the 
disease and how its heterogeneity contributes to its 
untractability. The therapeutic resistance is a hallmark 
of their malignancy, which raises the question of which 

genetic alterations should be targeted as drivers of 
tumor maintenance, which could be ignored because 
they are initially needed for tumor establishment, and 
which drive the glioma stem cell niche, thus provid-
ing a reservoir from which therapeutically resistant 
cells can emerge. To fully understand the relevance 
of this niche in driving therapeutic resistance, many 
critical questions remain to be answered, including 
whether CD133+ cells are equivalent to the actively 
proliferating tumor cells seen in routine histological 
analysis, or whether they represent a quiescent popu-
lation activated by ex vivo manipulations. It is also 
not yet clear whether there is a prognostic correlation 
between CD133+ and patient outcome, and whether 
CD133+ cells are selectively spared by radiation and 
chemotherapeutic drugs.

Our ability to isolate and culture neural and CSCs, 
astrocytes and oligodendrocytes and the creation of 
faithful models of this disease, coupled to enormous 
advances in genomic characterization of gliomas and 
functional validation of causative mutations, offer 
the very real prospect of rapid and thorough preclini-
cal testing of compounds and other agents to directly 
answer the relevant questions. By identifying the weak-
nesses of the tumor, useful treatments for patients with 
these devastating diseases will become a reality. Thus, 
Chirasani et al431,454 reported very recently that endog-
enous neural precursor cells perform an anti-tumour 
response by specifically targeting stem-like brain 
tumour cells. Neurospheres of neural precursor cells 
constitutively release in vitro, bone morphogenetic 
protein-7 (BMP-7) and induce canonical bone mor-
phogenetic protein signalling in stem-like glioblastoma 
cells. Exposure of human and murine stem-like brain 
tumour cells to neurosphere-derived BMP-7 induces 
tumour stem cell differentiation, attenuates stem-like 
marker expression and reduces self-renewal and the 
ability for tumour  initiation. Neurosphere derived or 
recombinant BMP-7 reduces glioblastoma expansion 
from stem-like cells by down-regulating the transcrip-
tion factor Olig2. In vivo, large numbers of BMP-7-
expressing neural precursors encircle brain tumours 
in young mice, induce canonical BMP signalling in 
stem-like glioblastoma cells and can thereby attenu-
ate tumour formation. This anti-tumour response is 
strongly reduced in older mice. The results of Ketten-
mann and Glass groups431,454 indicate that endogenous 
neural  precursor cells protect the young brain from 
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glioblastoma by releasing BMP-7, which acts as a 
paracrine tumour suppressor, repressing proliferation, 
self-renewal and tumour-initiation of stem-like glio-
blastoma cells.

The main goal of any drug approach has to be 
induction of apoptosis of tumor cells given the hyper-
mutability of GBM as a response to the therapeutic 
challenge. Antiangiogenic, antiproliferative, and 
antiinvasive strategies represent adjuvant strategies. 
Although treatment of glioma may be improved 
by combining chemotherapy with anti-angiogenic 
drugs,258 inhibiting angiogenesis in GBM may antago-
nise the efficacy of chemotherapeutic drugs by normal-
ising the function of the blood-brain barrier. Although 
it is unlikely that a single magic bullet will cure GBM 
and it is likely that multiple drug approaches may be 
needed, neurostatin and its analogues look like the 
experimental compounds closest to the magic bullet: 
a single compound inhibits division of both tumoral 
and endothelial cells, while making the tumor immu-
novisible and engaging the immune system to fight 
it. The development of enzymatic methods for the 
synthesis of neurostatin and related compunds in 
high yield,432,455 will make possible continuous intra-
tumoral injection of high concentrations of a chemo-
therapeutic agent capable of inducing multimodal 
glioma destruction. Together with new advances in 
surgical treatment and radiotherapy,433,456 neurostatin 
chemotherapy will significantly prolong life of a rea-
sonably quality.
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