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Abstract: A widely held viewpoint in the field of predictive biomarkers for disease holds that no single marker can provide high enough discrimination 
and that a panel of markers, combined in some type of algorithm, will be needed. Motivated by a recent study where 27 additional markers for ovarian 
cancer, many of which had good predictive value alone, failed to substantially increase the predictive ability of the primary marker of CA125, we 
explore the effect of additional markers on the area under the ROC curve (AUC). We develop a statistical model based on the multivariate normal 
distribution and linear algorithms and use it to explore how the magnitude and direction of statistical correlation among the markers (in diseased 
and in non-diseased) is critical in determining the added predictive value of additional markers. We show mathematically and empirically that if the 
additional marker(s) is negatively correlated with the primary marker, then it will always be able to provide increased AUC when combined with the 
primary marker (as compared to that obtained with the primary marker alone), even if it has little predictive ability on its own. In contrast, if the addi-
tional marker(s) is positively correlated with the primary marker, then it is unlikely to substantially increase the AUC when combined with the primary 
marker, even when it has good predictive ability on its own. Thus, univariate analyses alone may not be the best approach in choosing which markers to 
combine in a predictive panel of markers; patterns of statistical correlation should be considered in ranking top-performing biomarkers.
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Introduction
For various diseases, including many types of cancer, 
population screening using markers in the blood or 
urine is thought to be a promising strategy for reduc-
ing disease-associated morbidity and mortality. A 
widely held viewpoint of research on early biomarkers 
of disease is that no single marker can provide high 
enough discrimination between cases and non-cases 
for a screening test destined for clinical applications 
and that the use of multiple markers, combined in 
some type of algorithm, will be necessary in order to 
produce the requisite level of predictive ability.1–3

In a recent ovarian biomarker study, five such 
algorithms, each combining 6–8 biomarkers, and 
representing in total 28 distinct markers, were evalu-
ated for their performance improvement over CA125 
alone. The results were both surprising and intriguing: 
additional biomarkers, including those with near-
comparable performance to CA125 by itself, added 
little to the predictive performance of CA125 alone 
when combined with CA125.4,5

In this report, we examine this phenomenon in more 
detail through statistical and mathematical analysis. 
We provide evidence, theoretical and confirmed with 
empirical data, that patterns of statistical correlation 
of a primary marker with other potential markers pre-
dict the extent to which those other markers will add 
value to a primary marker. Specifically, we show that 
a marker negatively correlated with a primary marker 
will tend to have good additive value and a marker 
positively correlated with a primary marker will tend 
to have poor additive value.

We first build a statistical framework for the prob-
lem and mathematically derive some basic results 
about the effects of correlations on added predictive 
value. We then use the ovarian cancer marker study 
referred to above to illustrate how our main theoreti-
cal findings play out with real-world data.

Statistical Framework for Analyzing 
the Effect of Marker Correlations  
on Added Predictive Value
The formal statistical framework that we develop 
here allows for a rigorous analysis of the effect of 
the pattern of correlations between markers on 
the added predictive ability of marker combina-
tions as measured by the area under the ROC curve 
(AUC), a common metric of predictive performance. 

Added predictive ability is defined as the increase in 
AUC over the level obtained with the primary marker 
alone. In order to derive analytic results, we make 
two assumptions, one concerning the distributions of 
the marker levels in the populations of interest and 
the other concerning the nature of the algorithm for 
combining the multiple marker values. Later, we will 
show that in practice the basic findings of this analy-
sis are still generally upheld even under deviations 
from these assumptions.

In biology, the term “correlation” is often used 
loosely to denote a relationship between two fac-
tors or effects. In statistics, correlation has a spe-
cific definition with respect to the values of a pair 
of quantitative variables (eg, concentrations of two 
markers). The level of correlation, as summarized 
in the correlation coefficient r, measures the extent 
or the tendency of one variable to increase (positive 
correlation) or decrease (negative correlation) as the 
other variable increases. The correlation coefficient r 
ranges from -1 to 1, with 1 indicating perfect correla-
tion, 0 no correlation or independence, and -1 perfect 
negative correlation. On a two dimensional scatter 
plot, the more closely the points cluster around a pos-
itively (negatively) sloped regression line, the higher 
the magnitude of positive (negative) correlation.

The first assumption we make, about the distribu-
tion of marker levels, is that, within cases and within 
controls, each marker is lognormally distributed, ie, 
the log of the marker concentration is normally dis-
tributed. For many, but not all, markers, levels are 
approximately lognormal. Further, we assume that the 
multivariate normal (MVN) distribution describes the 
distribution (in cases and in controls) of log values of 
a set of markers of interest. The MVN specifies not 
only the parameters (mean and standard deviation) of 
the normal distribution of each (log) marker, but also 
the correlations between the markers.

The second assumption concerns the nature of the 
multi-marker algorithm. Specifically, we assume that 
the algorithm is linear, ie, that it is a weighted sum of 
(log) marker concentrations. With a linear algorithm, 
along with the MVN assumption about marker distri-
butions, one can analytically compute the following: 
(1) the weights for the optimal algorithm involving all 
the markers in the set and (2) the AUC of the resulting 
optimal algorithm.6 Formulas for these are given in 
the Appendix.
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We now demonstrate, and also mathematically 
prove (in Appendix), several important qualitative 
properties relating the pattern of marker correlations 
with the ability of a multi-marker linear algorithm 
to provide increased predictive ability (AUC). We 
initially concentrate on the case with only two mark-
ers, but later sketch out how the results can be extrap-
olated to three or more markers.

With two population groups, cases and controls, 
there is a separate MVN distribution for each group; 
thus for any pair of markers there are two correlation 
parameters, one in cases (say r1) and one in controls 
(say r0). Note that, in practice, these two correlation 
coefficients are often quite different. The pivotal 
quantity in determining the ability of the 2nd marker 
to add predictive value to a primary marker turns out 
to be a weighted average of r1 and r0, which we denote 
by C. Specifically, C = [σ11σ12 r1+ σ01σ02r0]/A, where 
σij is the standard deviation of the distribution of (log) 
marker j (j = 1,2) in group i (1 = cases, 0 = controls) 
and A = σ11σ12 + σ01σ02. Note that because the weights 
are positive, both correlations being negative assures 
that C is negative and both being positive assures that 
C is positive.

Figure  1 illustrates, for the situations of C . 0, 
C = 0, and C , 0, how the increase in AUC of the opti-
mal two marker combination over that of the primary 

marker alone (denoted ∆AUC) is related to the AUC 
of the 2nd marker alone (denoted AUC-2). For C # 0, 
∆AUC is monotonically increasing as a function of 
AUC-2. Further, the greater the negative value of C, 
the higher the curves are throughout the entire range 
of AUC-2. In contrast, for C . 0, the curves have a 
quadratic shape. As AUC-2  increases from the null 
level (AUC = 0.5), ∆AUC decreases initially, eventu-
ally reaches the 0 mark, and finally begins increasing. 
Note that ∆AUC = 0 implies that the 2nd marker does 
not add at all to the AUC of the primary marker alone; 
in this case the optimal weight for the 2nd marker is 0. 
Unlike the C #  0  situation, the curves for different 
C  .  0 values intersect each other, with none being 
above another for the entire range of AUC-2.

From the figure, it is clear that the AUC of the 2nd 
marker alone does not by itself determine the level of 
increase in AUC with the combination. A marker with 
negative correlation (C , 0) may have lower AUC-2 
than a marker with positive correlation but still have 
substantially greater ∆AUC. Even for the same level 
of positive correlation, a lower AUC-2 value may 
give rise to a greater value of ∆AUC.

To illustrate how, in the C . 0 situation, a second 
marker with predictive ability of its own may fail to 
add anything to the AUC of the primary marker alone, 
suppose that the second marker is simply the primary 
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Figure 1. Relationship between correlation and ∆AUC for 2-marker combinations. ∆AUC for 2-marker combination is plotted against AUC of marker 2 
alone; each curve represents different values of the correlation of marker 1 with marker 2. Solid black line is 0 correlation in both cases and controls. 
Two red lines are correlations of -0.5 in cases and controls (solid line) and correlation of -0.5 in cases and 0 in controls (dotted line). Two blue lines are 
correlations of 0.5 in cases and controls (solid line) and correlation of 0.5 in cases and 0 in controls (dotted line). Direction of regulation is assumed the 
same for both markers (ie, both up-regulated in cases or both down-regulated in cases).
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marker plus some additive noise (eg, measurement 
error). Then, although the second marker has predic-
tive value, it clearly cannot add any predictive value 
to the noiseless version of itself. Note in this (added 
noise) situation the two markers will necessarily be 
positively, but not perfectly, correlated in cases and 
in controls.

Note also from the figure that both in the C . 0 and 
the C , 0 situation (but not with C = 0), a second marker 
with no predictive ability of its own (AUC-2 = 0.5) 
will necessarily add something to the AUC of the pri-
mary marker alone when optimally combined with 
it, a finding that may seem counter-intuitive. To help 
understand this phenomenon, consider predicting 
a person’s sex based on their own height (primary 
marker) and their father’s height (marker 2). Clearly, 
one’s father’s height is not at all predictive of sex, but 
is correlated with one’s own height. Consider an indi-
vidual who is 5 foot 10 inches. With that information 
alone, one would predict that the person is male, since 
there are many times more men than women of that 
height. However, suppose we had additional infor-
mation that the person’s father was 6 foot 6  inches. 
Then, such a man’s son would likely be much taller 
than 5′10″, and such a man’s daughter might likely be 
5′10″, which could shift the prediction to female.

All of the above results can be demonstrated 
and proven mathematically; this is described in the 
Appendix.

The effect of correlation on the ability of a second 
marker to add to the predictive ability of a primary 
marker can also be demonstrated with scatter plots. 
Figures 2A, B and C show the situation with C = 0, 
C . 0 and C , 0, respectively. Compared to the no 
correlation (C  =  0) situation, the ability of the two 
markers to differentiate between cases and controls is 
substantially diminished when C . 0 and is substan-
tially enhanced when C , 0 (note that the univariate 
AUCs of the markers are the same over all three plots). 
Also shown is Figure  2D, where the correlation in 
cases is the same as in Figure 2C but the correlation in 
controls is zero; the degree of differentiation between 
cases and controls is a bit less here than in 2C.

Some of the mathematical results described above 
for two markers can be extended to the realm of 
three or more markers. For example, if markers B 
and C each do not add value when linearly combined 
(optimally) with marker A, then B and C together 

will also not add any value when linearly combined 
(optimally) with A.

We note here a technical consideration. Heretofore, 
we have been assuming that each marker is up-
regulated in cases, ie, that it tends to have higher 
levels in cases than in controls. Mathematically, 
it can be shown that, for the purposes of assessing 
the increase in predictive value, positive correlation 
for a marker that is up-regulated is equivalent to 
negative correlation for a marker that is down-
regulated and vice-versa (note we are assuming that 
the primary marker is up-regulated). Therefore, all 
of the conclusions above about negative and positive 
correlation are reversed if the secondary marker(s) is 
down-regulated in cases (or more generally, has the 
opposite regulation of the primary marker). Thus, if 
a second marker is down-regulated in cases, posi-
tive correlation of it with a primary (up-regulated) 
marker will lead to greater added AUC and negative 
correlation to a lesser added AUC. Since most can-
cer biomarkers are up-regulated in cases, we stated 
in the abstract and introduction that negative corre-
lations are conducive to added predictive value; the 
caveat should be added that this is assuming that both 
markers have the same direction of regulation.

Analysis of Ovarian Biomarker Data
We applied the above statistical framework to the bio-
marker data from the recent ovarian cancer biomarker 
study discussed earlier. In this study, five investiga-
tor groups assayed 28 different biomarkers, including 
CA125 (Table 1).4,5 A total of 118 ovarian cancer cases 
and 951 controls who were enrolled in the Prostate, 
Lung, Colorectal and Ovarian (PLCO) Cancer 
Screening Trial were evaluated for five panels of bio-
markers, using the blood sample most proximate (and 
prior) to the cancer diagnosis in cases and matched 
controls. The current analysis uses marker data on the 
65 cases diagnosed within one year from the date of 
the serum sample and 439 general population controls 
for which results from all 28 assays were available.

We first calculated the AUC for CA125 and each 
of the 27 other markers, and then the AUC for all 
2-marker (CA125 plus one other marker) optimal lin-
ear combinations of log marker values. Figure 3 dis-
plays a AUC histogram of CA125 and the 27 other 
markers individually, as well as all 2-marker combi-
nations (CA125 plus another marker). A number of 
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Figure 2. (Continued)
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the markers, aside from CA125, had relatively high 
AUCs, with 8  markers having AUCs between 0.6 
and 0.8. However, the distribution of 2-marker AUCs 
clustered very closely at the AUC level of CA125 
alone. The majority of the markers added essentially 
zero to the AUC of CA125 alone. Algorithms with 
2–4 added markers also added relatively little to the 
AUC of CA125 (data not shown).

Next we explored whether the above observa-
tion could be explained by the patterns of correlation 
between the 2-marker pairs as analyzed in the prior 
section. Table  2 lists, for the top 15  markers, their 
individual AUCs, their correlations with CA125 and 
with the two other best performing markers (HE4 
and CA72-4), and the increase in AUC (∆AUC) over 
that of CA125, HE4 or CA72-4 alone when com-
bined in a linear algorithm with that marker. Note all 
correlations are computed using the log-transformed 
marker values. The highest ranked markers in terms 
of univariate AUC each showed very small values of 
∆AUC when combined with CA125, with the mark-
ers ranked 2–9  in univariate AUC (HE4 through 
MMP7; AUC range 0.598–0.797) each having 
∆AUC # 0.006. The largest ∆AUC value, of 0.011, 
was from prolactin, the 10th marker in AUC rank; 
this marker had a univariate AUC of only 0.598 but 

was slightly negatively correlated (r  =  -0.11) with 
CA125 in cases. In contrast, all but one of the markers 
ranked 2–9 had positive correlations with CA125 in 
cases of at least 0.43.

We included the 2nd and 3rd highest markers in 
terms of AUC, HE4 and CA72-4, in the table for 
illustrative purposes, supposing that these each were 
in fact the primary marker. The results were similar 
to those obtained for CA125, with the markers with 
highest univariate AUC giving very low ∆AUC val-
ues and prolactin, which was negatively correlated (in 
cases) with both HE4 and CA72-4, giving the great-
est ∆AUC value. Note that the largest ∆AUC value 
in the entire table, 0.034 for prolactin and HE4, cor-
responded to the largest negative correlation in the 
table (−0.25 in cases).

Also included in Table 2 are the predicted ∆AUC 
values (∆AUCPr ). These values were derived assum-
ing that the log marker distributions were actually 
MVN, and using the formulas described in the sta-
tistical framework section and Appendix to calculate 
∆AUC from the correlations of the markers (as well 
as the log means and variances). Note the ∆AUC 
values themselves (as opposed to the predicted 
∆AUC values) were derived non-parametrically and 
did not assume an MVN, or any, distribution for the 
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Figure 2. Scatter plots of marker 1 by marker 2 values for cases (blue triangles) and controls (red dots). Individual AUCs of marker 1 and 2 are 0.760 and 
0.714, respectively. Correlation (in both cases and controls) is 0.0 in (A), 0.7 in (B) and -0.7 in (C); in (D), correlation is 0 in controls and -0.7 in cases. 
AUCs for optimal linear combination are 0.817 in (A), 0.762 in (B), 0.950 in (C) and 0.869 in (D). Black line gives propensity score of optimal linear com-
bination by perpendicular projection of points onto line.
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Figure 3. Histogram of AUCs. Upper panel is histogram of AUCs of 28 individual ovarian markers; lower panel is histogram of AUCs of optimal combina-
tion of CA125 and an additional marker.

log marker values. Generally, ∆AUCPr agreed fairly 
closely with ∆AUC; the correlation coefficient of 
the two was r = 0.68 (P , 0.0001), and dichotomiz-
ing the ∆AUC values into whether they were above 
or below 0.005, ∆AUCPr agreed with ∆AUC 85% of 
the time.

We also examined combinations of greater than two 
markers. With CA125 fixed as the first marker, there 
were 351 possible combinations of 3 markers and 2925 
combinations of 4  markers. Therefore, finding the 
optimal combinations for all of the panels in a train-
ing set environment could give rise to significant over-
fitting. Nonetheless, the optimal 3 and 4 marker panels 
(including CA125) only gave ∆AUC values of 0.016 

and 0.026. This is likely due to the fact that many of the 
markers are highly positively correlated with CA125.

Discussion
The findings here show that univariate analyses alone 
may not be that useful in choosing which markers 
can be productively combined with a given primary 
marker. An additional marker with substantial pre-
dictive ability by itself may add little or no predic-
tive value to that achieved with the primary marker 
alone; conversely, additional markers with little or no 
predictive ability on their own may add substantial 
predictive value. To assess the potential for improve-
ment in predictive ability, the correlations of potential 

http://www.la-press.com


Pinsky and Zhu

90	 Biomarker Insights 2011:6

Table 1. Ovarian cancer biomarkers evaluated.

Marker name  
(Gene symbol)

AUC Marker #  
(Rank in AUC)

Apolipoprotein A-I (APOA1) 0.527 21
Beta-2-microglobulin (B2M) 0.508 27
B7-H4 (VTCN1 ) 0.662 7
CA125 (MUC16) 0.896 1
CA 15–3 (MUC1) 0.668 5
CA 19–9 0.502 28
CA 72–4 0.753 3
CTAPIII (PPBP) 0.525 23
EGFR (EGFR) 0.529 20
Eotaxin (CCL11) 0.569 14
HE4 (WFDC2) 0.797 2
Hepcidin-25 (HAMP) 0.511 25
IGFBPII (IGFBP2) 0.571 13
IGF-II (IGF2) 0.584 12
ITIH4 (ITIH4) 0.522 24
Kallikrein-6 (KLK6) 0.685 4
Leptin (LEP) 0.509 26
Mesothelin (MSLN) 0.665 6
MIF (MIF) 0.600 9
MMP-3 (MMP3) 0.540 19
MMP-7 (MMP7) 0.604 8
OPN (SPP1) 0.527 22
Prolactin (PRL) 0.598 10
SLPI 0.558 16
Spondin 2 (SPON2) 0.597 11
sVCAM-1 (VCAM1) 0.559 15
Transferrin (TF) 0.548 17
Transthyretin (TTR) 0.543 18

secondary markers with a primary marker should 
be examined.

Biologically, the finding that the greatest improve-
ment in predictive ability comes from combining 
markers with negative correlation (at least in cases) 
is intuitive. Essentially, this is the situation where the 
multiple markers are picking up different facets of the 
disease process. A simple, concrete example of this is 
where there are two sub-types (recognized or not) of 
the disease and two markers, with each marker dif-
ferentially expressed in only a single (and different) 
sub-type. Over both disease sub-types combined, 
the two markers will then typically show a pattern 
of negative correlation. The fact that most cancers, 
including ovarian cancer, are quite heterogeneous, 
is what has, in part, led many to the conclusion that 
multiple markers will be needed to identify a high 
percentage of the cases. Unfortunately, it is often dif-
ficult to find such complementary markers.

For diseases with known sub-types (eg, cancers 
with different histologies), research studies should 
examine marker levels by sub-type. However, the dif-
ferences among marker levels across sub-types need 
to be quite substantial to translate into negative cor-
relations of any magnitude. For example, Minoo et al 
found significantly greater expression of CDX2  in 
distal colorectal (CRC) cancers (mean expression 
87%) than in proximal CRC (mean expression 70%), 
whereas they found significantly greater expression 
of CD44s in proximal CRC (40%) than in distal 
CRC (25%).7 These differences alone, though, would 
translate only into a very slight negative correlation 
(less than 0.05) for these two markers. Mean marker 
levels need to be markedly different across subtypes 
to generate substantial negative correlations.

For the ovarian cancer marker data set analyzed 
here, about half of the cases were the same histology, 
serous cystadenocarcinoma, with the others being a 
grab-bag of various histologies. For CA-125, HE4 
and the other top markers, no significant differences 
were observed in mean marker levels between the 
serous cystadenocarcinomas and the other histologies 
(taken as a whole). Thus, these markers do not appear 
to be complementary in terms of the histologies in 
which they are over-expressed.

Marker correlation in non-diseased populations is 
likely of small magnitude, as observed in the ovar-
ian cancer biomarker data set. For all 378 pairs of 
markers, only 3% had correlations in non-diseased 
of magnitude 0.25 or more, with most of those being 
positive correlations. In contrast, among the diseased, 
19% of pairs had positive correlations of at least 0.25, 
but only 6% had negative correlations of that magni-
tude or more. This is not surprising as the majority of 
the markers are over-expressed in cases, and may be 
up-regulated under the same pathogenic mechanism. 
Note for marker pairs with opposite directions of 
effect, the signs of the correlations were reversed for 
the above statistics.

Although the current analysis focuses on continu-
ous-valued markers, the same principles with respect 
to correlation hold for binary markers. In the litera-
ture, correlations among binary markers are often not 
described directly but may be inferred. For example, 
Ries et  al examined 12 MAGE-A antigens for oral 
squamous cell carcinoma (OSSC).8 They reported 
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that singly, six of these markers were positive at rates 
between 40% and 55% for OSSC; each was negative 
in all control subjects. They further reported that with 
the best combination of six markers, the proportion of 
subjects with at least one positive marker was 69%. 
A relatively simple calculation shows that if the six 
markers were un-correlated, the expected propor-
tion of subjects with at least one positive would be 
98%. Strong positive correlations among the mark-
ers would be needed to reduce this probability to the 
observed 69%.

The theoretical findings described here were 
derived assuming the MVN distribution for the log 
marker values, and assuming a linear algorithm for 
combining log marker values. However, we have 
shown with experimental data that qualitatively, and 
to a large extent quantitatively as well, these findings 
hold with real-world marker distributions, not all of 
which are even approximately lognormal. It should 
also be noted that the findings assuming an MVN 
distribution for the log marker values will also hold 
if the non log-transformed marker values are MVN 
distributed, as long as the linear algorithm is also 
defined based on the non-transformed values (in this 
case, the relevant correlations are computed using the 
non log-transformed values as well). Of the 28 ovar-
ian cancer markers considered here, 20 were closer to 
lognormally than normally distributed in both cases 
and controls, so it is likely that in general for these 
types of markers, lognormal distributions are more 
common than normal distributions.

We also explored, with these experimental data, 
the dependence of our theoretical findings on the 
assumption of a linear algorithm. Specifically, for 
the data in Table  2, we additionally fit the optimal 
quadratic algorithm (note this involves squares and 
products of log concentrations). We found that the 
overall results agreed quite well with those obtained 
using the linear algorithm. The rank correlation of the 
∆AUCs (derived with the linear compared with the 
quadratic algorithm) was 0.76, indicating that those 
2-marker combinations with greatest AUC increases 

with the linear algorithm also tended to yield the 
greatest increase with the quadratic algorithm. Further 
research is needed to analyze more generally the rela-
tion between marker correlations and AUC increase 
when non-linear algorithms are employed.

In conclusion, univariate analyses alone may not 
be the best approach in choosing which markers to 
combine in a predictive algorithm; patterns of statisti-
cal correlation should also be considered.
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Appendix
MVN distribution and AUC increase
For a normally distributed variable in cases and con-
trols, with mean u1 and u0 and variance σ1

2 and σ0
2, the 

area under the ROC curve (AUC) is equal to Φ(|u1-u0|/
(σ0

2 + σ1
2)1/2) where Φ is the normal cumulative dis-

tribution function.6 If X1 … Xn are a group of markers 
that have a multivariate normal distribution (in both 
cases and controls), then the above formula applies 
to any linear combination of the markers, since any 
such linear combination, eg, a1X1 … + … anXn, or aX 
in vector form, where the ai are parameters (weights), 
is also normally distributed.

Denoting by Σ0, Σ1 the variance/covariance matrix 
of the vector X in controls and cases, and µ0, µ1 the 
mean vectors of X in controls and cases, respectively, 
the optimal linear combination vector A* is propor-
tional to (Σ0 + Σ1)

−1 (µ1-µ0) and the optimal AUC is 
given as Φ( [(µ1-µ0)

T(Σ0 + Σ1)
-1(µ1-µ0)] 

½ ).6

For two markers, denote (d1,d2)  =  (µ1-µ0)
T; ie, 

these are the differences in means between cases and 
controls for markers 1 and 2. It is straightforward to 
show in the 2-marker case that the derivative of the 
square of the argument of the optimal AUC generat-
ing function Φ with respect to d2, denoted d2′, is as 
follows:

d2′  =  [-2(Σ0(1,2) + Σ1(1,2))d1  +  2d2(Σ0(1,1) + 
Σ1(1,1)) ]/Det(Σ0+ Σ1), where the denominator is the 
determinant of the matrix Σ0 + Σ1.

Since Φ is monotone increasing, as is the square 
root function, then d2′ , 0 (.0) indicates that the AUC 
must be decreasing (increasing). Assuming d1 . 0 (ie, 
marker 1 is up-regulated), then d2′ . 0 for d2 $ 0 if 
Σ0(1,2) + Σ1(1,2) , 0. Setting σij = Σi(j,j)

1/2, and noting 
that the correlations ri = Σi(1,2)/(Σi(1,1) Σi(2,2) )1/2, it 
is seen that Σ0(1,2) + Σ1(1,2) = σ11σ12 r1 + σ01σ02r0. For 
Σ0(1,2) + Σ1(1,2) . 0, d2′ will be negative for small d2; 
for d2 large enough, with d1 fixed, d2′ . 0.

Again for two markers, and setting A1* = 1, it can 
be shown that A2* = (d2[Σ0(1,1) + Σ1(1,1)]-d1[Σ0(1,2) + 
Σ1(1,2)])/(d1[Σ0(2,2) + Σ1(2,2)] - d2[Σ0(1,2) + Σ1(1,2)]). 
Setting d2[Σ0(1,1) + Σ1(1,1)] - d1[Σ0(1,2) + Σ1(1,2)] = 0 
and solving for d2 gives the level where A2* = 0, indi-
cating no possible AUC improvement. Assuming 
d1 . 0, then for d2 . 0, such a d2 exists if and only if 
Σ0(1,2) + Σ1(1,2) . 0. If d2 = 0, the argument of the 
AUC generating function Φ can be shown to be equal 
to d1/[ Σ0(1,1) + Σ1(1,1)-(Σ0(1,2) + Σ1(1,2))2/(Σ0(2,2) 
+ Σ1(2,2))]1/2. For the AUC of marker 1 alone, the 
corresponding argument is d1/[Σ0(1,1) + Σ1(1,1)]1/2, 
which is smaller as long as Σ0(1,2) + Σ1(1,2) ≠ 0.
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