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Abstract
Motivation: RNA-Seq is a novel technology that provides read counts of RNA fragments in each gene, including the mapped positions 
of each read within each gene. Besides many other applications it can be used to detect differentially expressed genes. Most published 
methods collapse the position-level read data into a single gene-specific expression measurement. Statistical inference proceeds by 
modeling these gene-level expression measurements.
Results: We present a Bayesian method of calling differential expression (BM-DE) that directly models the position-level read counts. 
We demonstrate the potential advantage of the BM-DE method compared to existing approaches that rely on gene-level aggregate data. 
An important additional feature of the proposed approach is that BM-DE can be used to analyze RNA-Seq data from experiments with-
out biological replicates. This becomes possible since the approach works with multiple position-level read counts for each gene. We 
demonstrate the importance of modeling for position-level read counts with a yeast data set and a simulation study.
Availability: A public domain R package is available from http://odin.mdacc.tmc.edu/~ylji/BMDE/.

Keywords: clustering, false discovery rate, mixture models, next-generation sequencing

http://dx.doi.org/10.4137/CIN.S7473
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10
http://www.la-press.com
mailto:yuanji@mdanderson.org
http://odin.mdacc.tmc.edu/~ylji/BMDE/


Lee et al

206	 Cancer Informatics 2011:10

1 Introduction
1.1 RNA-Seq experiments
RNA-Seq is a high-throughput sequencing technol-
ogy that has recently emerged as a popular methodol-
ogy to measure gene expression with high accuracy. 
It generates millions of short reads of mRNA or 
cDNA. The short reads are mapped to the genome, 
resulting in a sequence of read counts at millions of 
genomic positions.1,2 RNA-Seq exhibits a high level 
of reproducibility,1 and mitigates many limitations 
of microarrays.3 Consequently, RNA-Seq enables 
researchers to investigate more complex aspects of 
the trancriptome, such as allele-specific expression 
and the discovery of novel promoters and isoforms,4 
and to develop new approaches to old but fundamen-
tal biological questions. An example of the latter is 
the identification of differentially expressed genes 
between two conditions.

RNA-Seq experiments produce data on millions 
of short reads. The data report the base sequence 
of the reads and the positions on the genome to 
which the reads are mapped. Most current methods 
collapse the position-level read counts into a single 
gene-level summary, such as the number of reads 
that map per kilobase of exon model per million 
mapped reads (RPKM), or simply the sum of all the 
read counts across positions within each gene. Simple 
hypothesis testing based on the gene-level summaries 
implements inference on differential gene expression 
under two biological conditions. We take a different 
approach. We start by modeling the position-level 
read counts within a gene. This enables us to account 
for position outliers among position-level counts. We 
demonstrate that failure to identify and downweight 
outliers can bias gene-level summaries. Our hierar-
chical modeling approach then proceeds with bor-
rowing information across genes for the inference of 
differential expression. Furthermore, we specifically 
model systemic biases such as total RNA amount in 
each experiment to achieve better accuracy in calling 
differentially expressed genes.

Ji and Liu5 illustrated how inference with a Bayesian 
hierarchical model can improve statistical inference for 
high-throughput experiments. They also highlighted 
that borrowing information across loci through a hier-
archical model can improve statistical inference even 
in the case without biological replicates. We follow 
this advise and propose a Bayesian hierarchical model 

to effectively utilizes position-level information and 
accounts for the variabilities in all the position-level 
read counts mapped to each gene. We demonstrate the 
superior performance of the BM-DE method, even 
when the RNA-seq data are generated from experi-
ments without biological replicates. Due to the still 
elevated cost of RNA-Seq many studies are carried 
out without replicates. In such experiments, only one 
biological sample is prepared per condition for a sin-
gle run of RNA sequencing. We show that the BM-DE 
method reduces the false positive findings. Note that 
this does not imply that the BM-DE method can account 
for the biological variation in such experiments. This 
is impossible without replicates. We recommend to 
use sound and efficient experimental designs6 with 
biological replicates for RNA-Seq experiments. For 
existing data, some without replicates, the proposed 
BM-DE approach can be used to increase the preci-
sion of calling differentially expressed genes.

1.2 Inference for RNA-Seq data
RNA-Seq data are usually normalized across librar-
ies to adjust for different total read counts by lanes 
or by samples. In early work, researchers simply 
used cumulative counts, summing up read counts 
across positions, followed by minor normalization 
to account for gene length and the total number of 
reads.7 Recently, more sophisticated normalization 
methods were proposed. For example, see Robinson 
and Oshlack8 and Balwierz et al.9

With the single expression summary per gene 
per condition, most statistical modeling and infer-
ence for differential expression has been based on 
classical hypothesis testing, such as Fisher’s exact 
test, likelihood ratio tests, or t-tests. For example, 
Marioni et  al10 modeled read counts with a Poisson 
distribution, and used a likelihood ratio test to iden-
tify differentially expressed genes. Similar to Marioni 
et al,10 Wang et al1 used a Poisson distribution to test 
differential expression for experiments without bio-
logical replicates. Robinson and Smyth11 developed a 
negative binomial model to account for the variation 
across replicate samples. They estimated a common 
dispersion using all tags, and shrinks dispersions of 
tags toward the estimated common dispersion similar 
to empirical Bayes approach. edgeR12 implemented 
the model for application for RNA-Seq data. Bullard 
et al13 compared the performance of various hypothesis  
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tests, and found poor performance of the t-test, in par-
ticular for genes with low counts. They also studied 
biases introduced by gene-length and the normaliza-
tion procedure. They observed that the t-test tends 
to yield significant test statistics more frequently for 
longer genes. This is due to the dependence of the 
estimated standard error on the mean read counts.

Oshlack and Wakefield14 further investigated the 
transcript length bias in RNA-Seq data for differ-
ential expression. They illustrated that the standard 
approaches that use aggregate read counts for each 
gene in differential expression are subject to signifi-
cant bias, and that a simple adjustment, dividing by 
the transcript length, does not entirely remove this 
bias. Young et al15 accounted for the transcript length 
bias in RAN-Seq data, and developed a statistical 
model for gene ontology analysis.

Bayesian approaches for differential expression 
in RNA-Seq data have been developed by many 
researchers, such as Anders and Huber,16 Hoen et al,3 
Taub17 and Wu et  al.18 Wu et  al18 took an empirical 
Bayes approach to detect differential expression for 
RNA-Seq data when biological replicates are not 
available. They developed a hierarchical model with 
aggregate counts at gene level to estimate log fold 
change in gene expression, and mitigated the limita-
tion of experiments without replicate by borrowing 
strength across all genes.

Differently from the previous approaches, the 
methods proposed in Jian and Wong,19 Salzman et al,20 
and Li et al21 used models to estimate gene expression 
at the isoform level. Oshlack et al4 provided a broad 
review on current research in preprocessing RNA-Seq 
data and identifying differentially expressed genes.

In this paper, we propose a novel method for the 
inference on differential gene expression with three 
distinct features:

•	 We explicitly model the read count at each genomic 
position within a gene. The proposed model can 
reduce the false positive rate by accounting for 
the dispersion in the position-specific counts. As 
another desirable consequence of position-level 
modeling the length bias disappears. We show sig-
nificant improvements over existing models that 
only use gene-level summaries.

•	 The proposed method does not require prior nor-
malization of the mapped read counts. Instead we 

simultaneously carry out the normalization and the 
inference on differential expression.

•	 We borrow strength across genes in a hierarchi-
cal model. Thus, the detection of differentially 
expressed genes is informed by the expression 
measurements in the entire data set.

A related important feature is that borrowing 
strength across genes in the hierarchical model allows 
meaningful model-based inference without replicates, 
if desired.

Section  2 describes the proposed Bayesian 
model. Section 3 reports the data analysis for the yeast 
data. Section  4 describes a small simulation study. 
The last section concludes with a final discussion. 
The manuscript and R programs with a simple exam-
ple are available at http://odin.mdacc.tmc.edu/~ylji.

2 Probability Model
RNA-Seq data contains millions of read counts, with 
each read mapped to a genomic position within a 
gene. Such count data can be easily assembled from 
the standard output of upstream read alignment, eg, 
using SOAP or BOWTIE.22 We consider counts, nij 
and mij, of mapped reads starting at position j of gene 
i under two different experimental conditions, 0 and 
1, respectively. Here i = 1, …, I and j = 1, …, Ji. Let 
Nij = nij + mij denote the total count over the two con-
ditions at position j of gene i. For ad-hoc inference 
about differential expression we may consider the 
empirical fraction, rij  =  nij /Nij as the position-level 
ratio or ri = ∑j nij / ∑j Nij as the gene-level ratio. The 
proposed model-based inference improves on these 
empirical estimates by modeling the position-level 
read counts.

To start, we characterize sampling variation as 
binomial sampling. Conditional on the total count 
Nij, we assume nij ∼ Bin(Nij, pij), independently across 
positions j. Therefore, pij represents the true propor-
tion of the read count under condition 0 relative to 
the total read count under both conditions at location 
j of gene i. One could use rij as an empirical estimate 
of pij. For example, a value of rij = 0.5 implies that 
the observed numbers of reads mapped into position 
j of gene i are the same across the two conditions. 
Typically, most rij’s cluster around a particular value 
representing a relative expression level of gene i. 
Often the data includes some outliers closer to 0 or 1, 
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due to random noise. One of our modeling aims is 
to downweigh these outliers in quantifying the gene 
expression.

To this end, we introduce a mechanism to down-
weigh outlying pij in the inference for differential 
expression. We achieve this by introducing a latent 
indicator wij for each position, with wij = 0 represent-
ing an outlier at position j. We assume that pij follows 
a mixture of beta distributions Ji et al.23
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where Be(a, b) represents a beta distribution with 
mean a = (a + b): When wij = 0 the j-th position is an 
outlier, and the expected ratio is given a Be(1/2, 1/2) 
prior which assigns most probability mass close to 0 
or 1. We assume wij follows a Bernoulli distribution 
with with probability π i

w ie, wij i
w~ Ber π( ), in which 

π i
w represents a gene-specific proportion of outliers. 

The parameters (αi, βi) characterize the expression of 
gene i, excluding the outliers. This formal accounting 
for outliers in the mixture robustifies inference in criti-
cal ways. Later, in the application to a yeast RNA-Seq 
data set, we will show that failure to downweigh such 
outliers could even flip the reported inference on dif-
ferential expression for some genes (Fig. 6).

We reparameterize αi and βi for easier interpre
tation and computation. We follow Robert and 
Rousseau,24 and let ηi = log(αi + βi) and ξi = log(αi /βi). 
Note that ξi is the logit of the mean αi/(αi + βi) of the 
beta distribution. In the (ξi, ηi) parametrization an 
unusually large or small value of ξi indicates differ-
ential expression, whereas ηi allows for varying lev-
els of heterogeneity across genes. This interpretation 
leaves ξi as the main parameter of interest. Figure 3(b) 
shows the posterior means of all ξi for a yeast RNA-
Seq data set (see Section 3). While the cloud in the 
middle represents the majority of nondifferentially 
expressed genes, the genes with values ξi outside the 
cloud are those with differential expression. We use a 
mixture of normal distributions for ξi to formalize the 
notion of differential expression. That is,
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We introduce a latent trinary indicator λi ∈ {0, −1, 1} 
to represent normal, under-, and over-expression, 
and rewrite the mixture model (1) as a hierarchical 
model
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We complete the model with priors for 
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I
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2. 
We use a beta distribution π i

w ∼ Be(aw, bw), indepen-
dently across i, a Dirichlet prior πλ ∼ Dir(a−1, a0, a1), 
and a gamma prior sξ

−2 ∼ (as, bs). Finally, we use inde-
pendent gamma priors δ δ δ

l l lGa a b~ ( , ), l = −1, 1, and 
π ξ( ) ∝ 1.

The hyperprior distribution on ξ , allows for 
imbalance between the overall counts under the two 
conditions.

In contrast to fixing ξ , for example, at ξ  = 0.5, 
the hierarchical extension with the hyperprior allows 
for a systematic bias (such as different sequencing 
depth) across the two conditions. Using possibly dif-
ferent δ−1 and δ1 allows for varying deviation from the 
mean ξ  for of over- versus under-expressed genes. 
For simplicity, we fix ηi in the analysis for the yeast 
data. If a prior on ηi were desired, one could easily 
extend the model accordingly, using, for example the 
prior model from Robert and Rousseau.24 The model 
is summarized in Figure 1.
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Figure 1. Hierarchical model for RNA-Seq data.
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3 Yeast Data Analysis
3.1 Data
We illustrate the proposed approach with an RNA-
Seq data set from Ingolia et al.25 Specifically, mRNA 
were extracted from yeast, Saccharomyces cerevi-
siae strain BY4741, in rich growth medium (YEPD 
medium) and poor growth medium (amino acid star-
vation). The goal of the experiment was to identify 
genes that are differentially expressed between these 
two biologic conditions. The sequences of short reads 
were produced using an Illumina Genome Analyzer 
II. The short reads were mapped using the SOAP 
method Li et al.26 The data set consists of counts under 
two different conditions for 1,285 genes.

We considered I = 1,089 genes having Ji $ 5 positions 
for analysis and discarded the remaining 196 for lack of 
information. The read counts of those 1,089 genes, under 
the two growth conditions, ∑ =j

J
ij

i n1 .  and ∑ =j
J

ij
i m1 .  range 

from 1 to 9,334 and from 0 to 14,150, respectively. Fig-
ure 2  shows histograms of Ji (panel a) and ∑ =j

J
ij

i N1 .  
(panel b) on a logarithm scale (with base 10). Overall, 
genes have many positions with non-zero counts, and 
reads per position are small.

3.2 Markov chain Monte Carlo simulations
We estimated and fixed ηi as follows. First, we 
find α̂ i  and β̂i

 such that and ˆˆ ˆ/( )α α β+ =i i i ir  and

2ˆ ˆ ˆˆ ˆ ˆ/( ) /( 1) var( )α β α β α β+ + + =i i i i i i ijr , the sample vari
ance of the rij. We fix ηi = log ˆˆ( )α β+i i

. We expect that 
about 5% of all genes are differentially expressed and 
that about 5% of all positions are outliers. We there-
fore set (aw, bw)  =  (19, 1), (a−1, a0, a1)  =  (1, 38, 1), 
a b− −1 1
δ δ,  = (5, 0.11), a b1 1

δ δ,  = (5, 0.12), and (as, bs) = (3, 0.09). 
We implemented posterior inference using Markov 
chain Monte Carlo (MCMC) posterior simulations for 
the proposed model. The implementation is a standard 
Gibbs sampling algorithm using Metropolis-Hastings 
transition probabilities with random walk proposals 
when the complete conditional posterior distribution is 
not available for efficient random variate generation. 
We ran the MCMC simulation by iterating over all 
complete conditionals for 4,500 iterations, discarding 
the first 500 iterations as burn-in.

3.3 Results
Figure  3(a) plots the posterior probabilities of dif-
ferential expression, ˆ ip   =  Pr(λI  ≠  0 | data). Some 
genes report very large posterior probabilities ˆ ip . 
Figure 3(b) plots the posterior means ξ̂i

 = E(ξi|data). 
The three dashed horizontal lines mark the posterior 
means of ξ δ ξ+( )1 , , and ξ δ−( )−1

, respectively. The 
genes close to or outside the boundary of the lower 
and upper dashed lines are reported as differentially 
expressed.
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Figure 4a plots the marginal posterior probabilities 
ˆ ip  against the empirical estimate ri of relative expres-

sion. The plot illustrates that ˆ ip  agrees with the ad-hoc 
estimates ri for most genes. But there are some genes 
where ˆ ip  disagrees with (we would argue, improves 
upon) ad-hoc inference with ri. In the next two figures 

we explore possible reasons for this. Figures 5 and 6 
present summaries for some selected genes to illus-
trate agreement and disagreement of ri and ˆ ip . In both 
figures, the plots in the first column show Nij (circle) 
and nij (cross) along positions. The second column 
plots rij along positions. The dashed line indicates 
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Figure 5. Inference summaries for three genes for which inferences based on ri and ˆ
ip  agree. The three genes are marked as a triangle in Figure 4a. The 

first column shows nij (crosses) and Nij (circles). The second column plots rij. The dotted line indicates ri. The dashed line shows the posterior mean ξ̂i
 

(plotted at logit ξ̂
−1

i
 to map to the unit scale). The third column plots ˆ

ijw .

the posterior mean ξ̂i
, and the dotted line shows the 

empirical estimate ri. The line for ξ̂i
 is plotted at logit

1ξ̂−
i

 to map to the unit scale. The third column plots 
the posterior probability ˆ ijw  = Pr(wij = 1 | data) along 
positions.

Comparison of the two figures explains the 
observed discrepancies in ri and ˆ ip . The large ri in 
Figure  6 are due to outliers in rij, including some 
positions with small total read counts Nij. In con-
trast, under the posterior inference, many of the ˆ ijw
are imputed with relatively smaller values, leading 
to a downweighting of the corresponding rij in the 
inference for the gene-specific indicators λi for dif-
ferential expression, and thus for ˆ ip . Except for these 
few outliers, most rij’s are aligned around a value 
close to 0.5, indicating nondifferential expression. 
In other words, while ri is very sensitive to outliers, 
the model-based estimate down-weights outliers, as 
desired.

The computation of posterior probabilities 
ˆ ip  = Pr(λi ≠ 0 | data) is only half the desired infer-

ence. We still need to decide which genes should be 
reported as differentially expressed. We use a deci-
sion rule based on flagging genes with ˆ ip   .  κ for 
some threshold κ. We fix the threshold κ by setting a 
bound on the false discovery rate (FDR).27 Figure 4b 
summarizes the FDR implied by decision rules of 
reporting the genes with highest probability of differ-
ential expression. For FDR  # 0.10 the rule reports 46 
differentially expressed genes. The rule corresponds 
to a threshold κ = 0.618.

4 Simulation
We carry out a simulation study to further exam-
ine the proposed model. The study investigates the 
performance of our method in the case where genes 
have many positions with nonzero counts. In the 
study, we assume small within-gene variabilities in 
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the read counts and large across-gene variabilities. 
We achieve this by centering ηi around a small value 
and allowing a relative large variance for ξi in our 
model.

Since the primary goal is inference on ξi, we fix 
ηi at their simulation truth. We place priors on the 
remaining parameters, ξ π π δ δξ

λ, , , , ,s w2
1 1−( ) as 

described in Section 2.
We compare model-based estimates with the sim-

ulation truth, and compare the inference under the 
proposed model to that under two methods: (1) the 
Analysis of Sequence Counts (ASC) proposed by Wu 
et al18 and (2) the MA-plot-based method with ran-
dom sampling model (DEGseq) proposed in Wang 
et al.1

In the ASC, Wu et al model the aggregate read count 
for each gene under each condition as a binomial ran-
dom variate, given the total read count summing over all 
the genes at each condition. The expected proportions 

in the binomial are compared between the two condi-
tions for each gene. They use δ to denote the differ-
ence between the logarithms of the proportions and λ 
as the sum of the two log proportions. They propose 
unimodal prior distributions for δ and λ and compute 
the posterior probability P(|δi| . ∆0|data), where δi is 
log fold change in gene expression of gene i, and ∆0 is 
a pre-defined threshold for biological significance. In 
DEGseq, Wang et al. define Mi = log2(C0i) − log2(C1i) 
and Ai = (log2(C0i) + log2(C1i))/2 where C0i = Σ j

Ji
=1 nij 

and C1i =  Σ j
Ji

=1 mij. They assume that given Ai = a, Mi 
approximately follows a normal distribution with 
mean and variance,
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Figure 6. Same as Figure 5 for three genes for which inference based on ri and ˆ
ip  disagree. The genes are marked as rectangles in Figure 4a. Many of 

the positions are imputed to be possible outliers, and thus downweighted in the inference.
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where Cκ.  = Σi
I
=1

 Cκi for κ  =  0, 1. Inference on dif-
ferential gene expression is then formalized with a 
z-test. For this simulation study, a normalization for 
DEGseq and ASC is not necessary for this study since 
ξ  is set at 0.

We simulate a sample of I = 1,200 genes. For half 
of the genes we assumed Ji = 300 recorded positions 
per gene, and for the other half we use Ji = 100. We let 
λi = −1 or 1 for 150 genes and λi = 0 for the remaining 
450 genes. Given λi, we generate ηi ∼ N s( , )η η

2  and 
ξ ξ λ δλ ξi i iN s~ , ,+( )2  with η  = 2, sη

2 = 0.252, ξ  = 0, 
sξ

2 = 0.1, and δ−1 = δ1 = 1. We let wij = 0 or 1 inde-
pendently with probabilities 0.05 and 0.95, respec-
tively. Conditional on wij  =  0 or 1, we respectively 
generate pij from either a Be(αI, βi) or Be(1/2, 1/2) 
prior, where αi  =  exp(ηi) exp(ξi)/(1  +  exp(ξi)) and 
βi  =  exp(ηi)  =  (1  +  exp(ξi)). Finally, we generate 
Nij ∼ Ga(1.5, 1/1.5) (rounded up to the nearest inte-
ger), and nij  ∼  Bin(Nij, pij), independently. We then 
proceed to estimate ξi and P(λI ≠ 0 | data) conditional 
on Nij and nij under the proposed model.

The receiver operating characteristic (ROC) curve 
is commonly used to select an optimal method for 
classification problems. We assume a decision rule 
that reports genes with posterior probabilities, p(λi ≠ 0 
| data) and P(|δi| . δ0| data) (in the cases of the pro-
posed approach and ASC) or P-value (in the case of 
DEGseq) beyond a threshold where we set δ0 = 1.8. 
The ROC curve plots true positive rate against the 
false positive rate as a parametric curve indexed by 
the threshold. Figure 7 shows the three ROC curves. 
The ROC curve for the proposed method compares 
favorably against the alternatives. It demonstrates the 
limitations of ASC. We believe that this is due to the 
strong assumptions on the shape of the priors of δ 
and λ. The simulation truth is that the mean expres-
sion of the genes is generated from a mixture of three 
distributions, which does not agree with the unimodal 
assumptions of the ASC model.

Regarding the performance of DEGseq, we note 
that longer genes tend to have larger aggregate counts 
across positions. Therefore, DEGseq is more likely 
to declare long genes with small effects as differen-
tially expressed genes since its estimated standard 
deviation inherently depends on the mean counts. 
Specifically, we observe that DEGseq tends to pro-
duce smaller p-values for nondifferentially expressed 
genes with Ji = 300 than those with Ji = 100 due to 

the gene-length bias (see Fig. 8a). On the other hand, 
the proposed model accounts for position-specific 
variability while more information on relative gene 
expression gets accumulated as the number of posi-
tions within a gene increases (see Fig.  8b). There-
fore, the proposed method tends to produce smaller 
posterior probability of differential expression for 
non-differentially expressed genes with Ji  =  300 
than those with Ji  =  100. This, coupled with vague 
position-specific information leads to superior perfor-
mance of the proposed method for longer genes. This 
conveys significant implication on statistical infer-
ence of differential expression using RNA-Seq data. 
Since RNA-Seq experiments produce many non-zero 
count positions within a gene, and many reads per 
position, the RNA-Seq data enables us to model vari-
ability among expression levels on positions within 
the same gene, and the incorporation of it into a model 
improves the resulting inference.

We note that if both Nij and Ji are small, modeling 
the position-level read counts does not significantly 
improve inference. Also, if there is little variation 
across position-level counts, then the loss of informa-
tion under aggregation remains negligible. We found 
that for cases where short reads are mapped to small 
number of positions, DEGseq performs well (results 
not shown). However, such situations are untypical 
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Figure 7. ROC curves for identification of differential gene expression 
under the proposed method (black solid line), the DEGseq (red dotted 
line) proposed by Wang et al28 and the ASC (blue dashed line) proposed 
by Wu et al18 in the simulation study. 
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for large-scale RNA-Seq experiments with usually 
very noisy data.

5 Discussion
We proposed a Bayesian model-based approach for 
inference with RNA-Seq data. We introduced a hier-
archical structure to model the position-level count 
data. We demonstrate through a simulation study 
and the analysis of a yeast experiment that the model 
effectively downweights outlying observations at the 
position level and obtains more robust estimates of 
gene expression. 

The model provides a promising framework for 
further development of statistical models for RNA-
Seq data. One possible extension is to relax the para-
metric assumption for ξi. By removing the restriction 
to a specific parametric family of distributions, one 
could further robustify inference about gene expres-
sion levels. Another important extension is to incor-
porate dependence across genes. In the current model 
we assumed that ξi are independently and identically 
distributed. One may achieve more precise estimates 
and formal inference about dependence structure by 
generalizing the model to allow for dependence of ξi 
across genes. One could build on available prior infor-
mation to construct informative priors for dependence 
at the level of the indicators λi. For model with indi-
cators at the gene level similar to λi used in our model 

this is carried out in.29 The binary nature of λi greatly 
simplifies general modeling of dependence structure. 
For a recent discussion of models for dependent gene 
expression see, for example, Stingo et  al30 or Jones 
et al,31 and references therein. Both references use a 
model-based Bayesian approach as in this paper.

Finally, while the model was specifically devel-
oped for experiments comparing two conditions 
without biologic replicates, simple modification 
would allow the use for experiments with replicates 
or experiments with multiple conditions. The pro-
posed model can be extended for experiments with 
replicates by replacing the binomial sampling model 
for nij by a model for counts across replicates. For 
experiments with multiple conditions, one may 
consider a multinomial likelihood with a Dirichlet 
prior.
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