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Abstract: Genome-wide association studies (GWAS) have successfully identified genetic variants associated with risk for breast cancer. 
However, the molecular mechanisms through which the identified variants confer risk or influence phenotypic expression remains poorly 
understood. Here, we present a novel integrative genomics approach that combines GWAS information with gene expression data to 
assess the combined contribution of multiple genetic variants acting within genes and putative biological pathways, and to identify 
novel genes and biological pathways that could not be identified using traditional GWAS. The results show that genes containing SNPs 
associated with risk for breast cancer are functionally related and interact with each other in biological pathways relevant to breast 
cancer. Additionally, we identified novel genes that are co-expressed and interact with genes containing SNPs associated with breast 
cancer. Integrative analysis combining GWAS information with gene expression data provides functional bridges between GWAS 
findings and biological pathways involved in breast cancer.
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Introduction
Breast cancer is one of the leading causes of death 
among women in the United States and around the 
world.1 In 2009, an estimated 192,370 new cases 
of invasive breast cancer were diagnosed among 
women, as well as an estimated 62,280 additional 
cases of carcinoma in situ.1 At the same time, an 
estimated 40,170 women died from breast cancer.1 
While considerable progress has been made in 
reducing mortality rates due to increased screening, 
digital mammography, specialized care, and the 
widespread use of therapeutic agents such as 
selective estrogen receptor modulators, aromatase 
inhibitors, trastuzumab and others, identifying 
genetic markers remains an important long-term goal 
for the development of more effective therapeutic 
strategies and early interventions. Over the last 
decade, considerable effort and financial resources 
have been directed at identifying molecular signatures 
for breast cancer using gene expression profiles.2,3 
At least two of these signatures have proven useful 
for prognostic purposes in the clinic.4,5 However, 
although these primary analyses have made great 
strides in deciphering the molecular basis of breast 
cancer, they have been unsuccessful in determining 
which genes have causative roles as opposed to being 
consequences of the breast cancer state.

Recent advances in genotyping and reduction in 
genotyping costs have made possible the use of genome-
wide association studies to identify single nucleotide 
polymorphisms (SNPs) associated with risk for breast 
cancer.6–11 Results from these studies are providing 
valuable information about the genetic susceptibility 
architecture of breast cancer. However, to date, data 
generated from GWAS have not been combined with 
gene expression data to identify biologically relevant 
associations beyond the ones that meet the stringent 
genome-wide significance threshold.12 In addition, 
the single SNP analysis widely used currently could 
potentially miss important genes and biological 
pathways. Moreover, the molecular mechanisms 
through which the identified variants confer risk or 
influence phenotypic expression remains poorly 
understood. From current GWAS findings, relatively 
few SNPs have P-values reaching genome-wide 
significance (P , 10−5) to give conclusive evidence 
of association, and even fewer have been replicated 
in multiple independent studies.13 Conversely, many 

hundreds of SNPs with moderate (P∼10−2–10−4) have 
been reported. Although some of these may be false-
positives, others are potentially genuine associations 
with small effects. The presence of a greater than 
expected number of associated SNPs in genes of 
similar biological functions interacting within 
intricate biological pathways could give a degree 
of confidence that the associations are potentially 
genuine, even if none of the SNPs individually are 
highly significant.14

While GWAS can effectively map loci conferring 
risk for breast cancer, they offer limited insights about 
the mechanisms by which the SNPs exert their effects 
or influence phenotypic expression. In addition, 
GWAS findings do not always lead directly to the 
gene or genes because some SNPs as evidenced in this 
study and other studies6–11 map to intergenic regions 
close to nearby genes. Consequently, identified SNPs 
do not typically inform the broader context in which 
the disease-associated genes operate.12 Genes may be 
regulated in trans or even in cis by genetic variants 
that are far away from the implicated structural gene. 
All of these genetic along with environmental factors 
could severely affect the function of a gene and 
the putative biological pathways involving its gene 
products. These factors are difficult to model using 
the common single-SNP GWAS analysis and provide 
limited information about the functional basis of 
GWAS findings. Therefore, novel and complementary 
approaches are needed to overcome limitations 
imposed by GWAS. A systematic approach is needed 
to study how genes containing SNPs associated with 
risk for breast cancer interact with one another, and 
with genes not identified by common single-SNP 
association analysis, to determine clinical endpoints 
or disease phenotypes.

The objectives of this study were (a) to investigate 
the power of combining GWAS information with 
gene expression data to identify functionally 
related genes and biological pathways enriched by 
SNPs associated with risk for breast cancer, and 
(b) to identify genes and biological pathways that 
could not be identified using traditional single-
SNP GWAS analysis. We hypothesized that genes 
containing SNPs associated with risk for breast 
cancer are functionally related and interact with each 
other and other genes not identified by traditional 
GWAS in intricate biological pathways. We have 
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tested this hypothesis using GWAS information 
from 43 genome-wide association studies and three 
different gene expression data sets representing the 
Caucasian and the Asian populations. Throughout 
this analysis, we defined the genes containing SNPs 
associated with risk for breast cancer as candidate 
genes, and the genes identified from gene expression 
data but not containing SNPs reported in GWAS 
as novel genes. Our analysis assumed the gene 
and the pathway as the units of association. This 
holistic approach allowed us to account for all the 
SNPs including rare variants and those with small to 
moderate effects mapped to genes in our analysis.

Methods
Source of SNP data
SNP data and gene information were obtained by 
mining data from published reports on GWAS in 
breast cancer through Pub Med searches and web-sites 
containing supplementary data. Our search included 
terms (GWAS, GWA, WGAS, WGA, genome-wide, 
genomewide, whole genome, all terms + association, 
or + scan) in combination with breast cancer from the 
primary published reports through November, 2010. 
We catalogued all the SNPs that showed significant 
(P  #  0.05) association with risk for breast cancer. 
We chose this liberal statistical threshold to allow 
examination of genes containing border-line SNPs 
with small effect sizes and to accommodate GWAS of 
various sizes while maintaining a consistent approach. 
This threshold level also allowed us to address 
publication bias (“the winner curse”), a tendency on 
average to publish SNPs with the smallest P-values 
(P  #  10−5). The SNP and gene names along with 
their aliases were verified using the dbSNP database 
based on chromosome report build 3.71. Gene names 
and aliases were further verified using the Human 
Genome Nomenclature (HGNC) database. SNPs 
mapping to intergenic regions were removed from 
the final data set used in the analysis. SNPs were 
matched with gene names using SNP IDs (rs-IDs) 
information in the database (dbSNP). SNPs were then 
sorted and ranked on the basis of P-values derived 
from GWAS, number of times the SNP in a particular 
gene has been replicated in multiple independent 
studies, and number of SNPs within each candidate 
gene. All together 43 GWAS studies totaling over 
250,000 cases and 250,00 controls were evaluated. 

Only studies with sample size .500 in patients and 
controls were considered. From the total, 98% of all 
the SNPs were identified using GWAS data derived 
from the Caucasian populations.

Sources of gene expression data
Publicly available gene expression data was down-
loaded from GEO; http://www.ncbi.nlm.nih.gov/
geo/. The data included three data sets derived from 
Caucasian and Asian populations. The first data set 
derived from the Caucasian population involved gene 
expression data derived from RNA extracted from 
143 histologically normal breast tissues obtained 
from patients harboring breast cancer who underwent 
curative mastectomy and 42 invasive ductal carcino-
mas (IDC) of various histological grades (1–3). The 
samples were obtained from breast cancer patients 
at Moffitt Comprehensive Cancer Center, Florida 
United States. The data set has been fully described 
by the originators.15 Briefly, this data set consisted 
of histological data. Histologically-normal breast 
has the potential to harbor pre-malignant changes at 
the molecular level and thus provides an opportu-
nity for identifying risk markers. We postulated that 
a histologically-normal tissue with tumor-like gene 
expression patterns might harbor substantial risk for 
future cancer development. Thus genes associated 
with these high-risk tissues would be considered to 
be malignancy-risk genes. “Normal” breast cancer 
tissue included histologically normal and benign 
hyperplasia. The data set was generated using the 
Affymetrix platform on U133 Plus 2.0 Array contain-
ing ∼54,000 probes. The data set was downloaded 
from GEO accession number GSE10780.16

The second data set involved a multi-ethnic Asian 
population, consisting of Malaysian breast cancer 
patients (Malays, Chinese and Indian). The data set 
involved invasive ductal carcinomas and was very 
similar to the first data set. The data set has been fully 
described by.17 Briefly, the data set consisted of a 
total of 43 IDCs with histological grades 1–3 and 43 
patient-matched normal tissues collected from Kuala 
Lumpur, UKM and Putrajaya Hospitals in Malaysia. 
The data set was generated using the Affymetrix 
platform’s U133A Chip containing ∼22,000 probes, 
and was downloaded from GEO accession number 
GSE15852.16 Population of Asian descent provide 
special opportunities for this research because of the 

http://www.la-press.com
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Hicks et al

188	 Cancer Informatics 2011:10

emerging evidence that genetic variants may confer 
population-specific risk.18,19 It is conceivable that 
expression of genes containing SNPs associated with 
risk for breast cancer could equally be population-
specific. Therefore, the rationale for using this data 
set was to determine whether genes containing SNPs 
associated with risk for breast cancer would exhibit 
similar patterns of expression in the Caucasian and 
Asian populations. Unfortunately no similar data was 
found on the Africans or African-American popula-
tion, therefore, no analysis were attempted in those 
populations.

To determine the clinical utility of genes containing 
SNPs associated with risk for breast cancer, we used 
a third data set involving two disease states. The third 
data set involved 286 lymphnode-negative primary 
breast cancer patients from the Caucasian population.20 
The data set consisted of 209 ER+ and 77 ER− breast 
cancer patients. The data set was generated using 
RNA extracted from fresh-frozen breast cancer 
tissues. The estrogen receptor alpha (ERα) is a master 
transcriptional regulator of breast cancer phenotype 
and the archetype of a molecular marker and 
therapeutic target. ER+ tumors respond to endocrine 
therapy.21 Conversely, ER− tumors are generally treated 
with chemotherapy and do not respond to endocrine 
therapy. Thus, the objective of this analysis was to 
determine whether candidate genes could distinguish 
ER+ from ER− breast cancer patients. The data set 
was generated using the Affymetrix platform using 
U133A Gene Chip containing ∼22,000 probes. The 
data set was downloaded from GEO under accession 
number GSE2034.16

In each of the data sets described above, entries in 
the data matrix were expression values generated by 
Affymetrix’s Microarray Analysis Suite 5.0 (MAS5) 
statistical algorithm.21 Following normalization 
and scaling, MAS5  signal values were summarized 
by Turkey’s biweight estimation of the probe level 
intensities within each probe set. This was followed 
by a global normalization (linear scaling) to give all 
chips the same average intensity. These procedures 
yield robust weighted means called average-scaled 
differences that are proportional to the amount of 
a particular RNA transcript present in the sample 
after background correction, which we used in this 
analysis.

Data analysis
Analysis of SNP data: we analyzed SNP and gene 
expression data using a combination of different 
analytical techniques described below. For SNP 
data, the first step was to verify the names of genes 
to which SNPs map. The gene names were verified 
as described in the preceding sections. The challenge 
was how to represent a gene containing SNPs 
replicated in independent studies, SNPs mapped 
to different positions within the gene and how to 
account for correlations among those SNPs. We used 
a meta-analytical approach using Fisher’s method22 
as described below to estimate the overall P-value for 
SNPs with P-values replicated in multiple independent 
studies and within a gene. Briefly, assume that the 
P-values (Pi) of individual SNPs are independent and 
uniformly distributed under their null hypotheses. 
It is worth noting here that “independence” here is 
used conservatively as it could be violated because 
of linkage disequilibrium among SNPs in the gene 
and potential correlations among SNPs. Let Pi 
be the P-value for the corresponding statistic Ti to test 
the association of the ith SNP with the breast cancer 
phenotype, where [Pi  =  P1, P2, …, Pn]

T is a vector 
of P-values obtained by performing independent 
test statistic [Ti = T1, T2, …, Tn]

T on individual SNPs 
[rsi = rs1, rs2, …, rsn]

T. Assuming H as a continuous 
monotonic function, a transformation of the P-value 
can be defined as Zi = H−1(1 − Pi).

23 Transformation 
to z allows decorrelating SNPs and treating their 
P-values as independent. The statistics for combining 
K independent P-values or for combining information 
from K SNPs is given by the following equation,22,23

	
Z P or Z zF i
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K

F i
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K

= − =
= =
∑ ∑2

1 1
log

where ZF denotes the sum of zi (Z-scores) of the 
transformed P-values for the K SNPs. The P-value is 
obtained by back transforming z.22

Correlations among P-values of SNPs within a 
gene exist because of linkage disequilibrium among 
SNPs. Correlations among SNPs will invalidate 
the existing methods for combining independent 
P-values.24 Furthermore, the SNPs within a gene 
may have antagonistic functions which could not 
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be captured by combining P-values. Therefore, a 
method for combining independent SNPs described 
above Peng et  al24 is an approximation. For mul-
tiple SNPs within a gene, Wang et  al25 suggested 
choosing the most significant SNP from each gene 
as a representative. The limitation of that approach 
is that genes that contain a number of SNPs jointly 
having significant risk effects, but individually mak-
ing only a small contribution, will be missed in such 
a representation. Therefore, in this study, we com-
bined P-values of SNPs of the same gene reported 
in multiple independent studies. Instead of relying 
on correlations among SNPs here we have used gene 
expression data on genes containing SNPs to guide 
the correlation structure. This approach allowed us to 
holistically unravel the genetic susceptibility archi-
tecture of breast cancer by jointly considering all 
common variation including rare variants within the 
gene and all the genes in the pathway.

To evaluate the pathway as a unit of association we 
used the hypergeometric test (Fisher’s exact test) to 
search for an overrepresentation of significantly asso-
ciated genes in the pathway.22,23 Briefly, let N be the 
total number of genes presumed to be of interest and 
S be the number of SNPs significantly associated with 
risk for breast cancer identified in GWAS. Then let m 
be the total number of genes in the pathway and let k 
be the number of significantly associated genes inter-
acting within the pathway. The P-value of observing k 
significant genes in the pathway was calculated using 
the following equation;24
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Using the above equation, the total effect of the 
pathway as a unit of association was computed by 
direct enumeration of the P-values in that pathway.23

Gene expression data analysis: we employed 
two analysis strategies, supervised and unsupervised 
analysis, analyzing each data separately. Prior to 
analysis we normalized the data using the lowess 
normalization procedure.26 On each normalized data 
set, we performed supervised analysis comparing 

gene expression profiles in breast cancer patients 
and controls using a t-test to identify significantly 
differentially expressed genes which distinguished 
breast cancer patients from control subjects; and to 
identify significantly differentially expressed genes 
which distinguished ER+ from ER− breast cancer 
patients. In each data set we employed the permutation 
test, a re-sampling procedure, to calculate the 
probability of producing a cross-validated error rate as 
small as observed given no association between class 
membership and expression profiles.27,28 We used the 
Benjamin and Hochberg29 procedure to correct for 
multiple testing. Probes were ranked on P-values 
starting with the smallest P-value. Candidate genes and 
novel genes were identified by matching probes with 
gene names using the Affymetrix database NetAffx; 
http://www.affymetrix.com/analysis/index.affx.

To determine whether genes containing SNPs 
associated with risk for breast cancer are co-expressed 
and to assess their relationships with each other and 
with novel genes, we performed unsupervised analysis 
using hierarchical clustering based on the complete 
linkage model. We used the correlation coefficient to 
assess the level of co-expression and to identify genes 
with similar patterns of expression among SNP-
containing genes and novel genes. The correlation 
coefficient (rXY) between a pair of SNP-containing 
genes (x and y) or between the SNP-containing gene 
x and the novel gene (y) were computed using the 
following equation;
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where n is the sample size, Xi and Yi [X  and Y ] are 
the expression [mean expression] values for a pair of 
SNP-containing genes or between a SNP-containing 
gene and the novel gene, respectively. Prior to 
clustering we normalized, standardized and centered 
the data.30 Supervised and unsupervised analyses 
were performed using Pomello II31 and Gene Pattern 
software.32

Finally, we performed pathway prediction to 
determine whether SNP-containing genes interact with 
each other and with novel genes in biological pathways. 
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For pathway prediction, the input were the genes 
containing SNPs and novel genes that were found to be 
associated with cancer or to distinguish disease states 
in the case of ER+ and ER−. We performed pathway 
prediction and network modeling using the Osprey 
System.33 Additional information and validation of 
predicted pathways and gene regulatory networks was 
obtained through the literature mining module built 
in the Osprey System which also provides biological 
and experimental information about the genes under 
study and identifies other functionally related genes 
interacting with input genes. In pathway prediction, 
genes were represented by nodes and the interactions 
by vertices. Two genes were considered to share 
a genetic susceptibility architecture and network 
properties if they were interconnected as represented 
by the vertices and were co-expressed as determined 
by pattern recognition analysis using hierarchical 
clustering based on the correlation distance as 
explained in the preceding paragraph. Additional 
functional assessment was performed using the 
Gene Ontology (GO) nomenclature.34 Genes with 
spurious interactions and without interactions were 
removed from the networks. The rationale being that 
such genes could be less informative or could distort 
the reliability of pathway prediction and network 
modeling.

Results
Characterization of candidate genes  
and genetic variants
We mined publicly available data on 43 reported 
GWAS through November 2010 and the accom-
panying supplementary data posted on websites to 
identify genetic variants and genes associated with 
risk for breast cancer. The results of data mining 
for GWAS information used in this study are sum-
marized in Table A provided as supplementary data. 
The search yielded 525 SNPs with P-values ranging 
from 2 × 10−76 to P # 0.05. Out of the genetic variants 
identified, 113 SNPs mapped to intergenic regions 
and were not used in further analysis. The remainder 
412 SNPs mapped to 150 candidate genes used in this 
study. A total of 20 genes including ABCC4, CASP8, 
COL1A1, ECHDC1, ESR1, FGFR2, FBNI, GRIK1, 
LOC643714, LSP1, PPP2R2B, RAD51L1, SLC4A7, 
STXBP4, TGFB1, TOX3, BTNL8, H19, MLK and 
MAP3K1 had SNPs with small P-values (P # 10−5). 

Forty genes produced SNPs replicated in multiple 
independent studies. Ten genes including CASP8, 
ESR1, FGFR2, LSP1, STXBP4, TGFB1, TOX3, 
LOC643714, SOD2, MAP3K1 contained SNPs with 
the smallest P-values and have been reproduced in 
multiple independent studies. Some of the genes 
including FGFR2 and ESR1 contained multiple SNPs 
within the gene.

Interestingly, the P-values of replicated SNPs 
varied with respect to study, presumably due to the 
genetic and phenotypic heterogeneity, and sample 
variability. The remainder (majority) of the genes 
contained SNPs with moderate P-values ranging from 
P = 0.0001 to P , 0.05. It is conceivable that some of 
the loci with moderate P-values likely contain several 
false positives, but may also contain genuine effects 
of small magnitude. Consequently, in further data 
analysis, we considered all the 150 candidate genes 
containing SNPs significantly (P # 0.05) associated 
with risk for breast cancer. The rationale was that 
because cancer is a polygenic disease, the presence of 
SNPs in co-expressed genes with similar biological 
functions interacting with each other and their down-
stream targets in biological pathways would give a 
degree of confidence that the associations are poten-
tially genuine, even if none of the SNPs is individu-
ally highly significant.

Association of candidate genes  
with gene expression
To determine whether genes containing SNPs 
associated with risk for breast cancer can distinguish 
breast cancer patients from cancer-free controls, 
and ER+ from ER−, we analyzed three separate gene 
expression data sets. We asked the question do genes 
containing SNPs associated with risk for breast cancer 
differ in their expression profiles between cancer-free 
controls and breast cancer patients in the Caucasian 
and Asian populations; and between ER+ and ER− 
breast cancer patients? ER+ and ER− data set was 
not available in the Asian population, therefore this 
analysis was restricted to the Caucasian population. 
Secondly, we asked the question does expression in 
genes containing SNPs differ between Caucasian and 
Asian populations?

The results showing a list of significantly 
differentially expressed genes between cases and 
controls in the Caucasian and Asian populations for 
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genes containing SNPs with the smallest P-values are 
presented in Table 1. The results of genes containing 
SNPs replicated in multiple independent GWAS are 
presented in Table 2. Also presented in the two tables 
are the results comparing expression for the respective 
genes between ER+ and ER−; the estimates of P-values 
for the genes based on gene expression, and the 
ranges of estimates of P-values for SNPs mapped to 
respective genes derived from GWAS. A complete list 
of estimates of P-values for all the genes and FDR for 
the three data sets used along with information on the 
biological processes, molecular function and cellular 
process in which the genes are involved are presented 
in Table B1 (130 genes) for the Caucasian population, 
Table B2 (111  genes) for the Asian population and 
Table B3 (111  genes) for the ER+ and ER− breast 
cancer patients, provided as supplementary data. The 
discrepancy between the total number of candidate 

genes (150) examined in this study and the unique 
number of candidate genes corresponding with each 
data set is due to the fact that some genes were not 
represented on the Chips, presumably due to lack of 
proper annotation. The differences in the number of 
genes between data sets is a reflection of differences 
in Chip density.

A comparison between cancer patients and controls 
in the Caucasian population produced 69 significantly 
(P # 0.05) differentially expressed candidate genes, 
which distinguished the two classes. Among the 
genes identified from this analysis, ten genes ABCC4, 
CASP8, COL1A1, ECHDC1, FGFR2, GRIK1, 
LOC643714, TGFB1, TOX3 and MAP3K1 contained 
SNPs with small P-values (P # 10−5) (Table 1). Twelve 
genes, CASP8, FGFR2, TGFB1, TOX3, MAP3K1, 
ADH1B, IGFBP3, CDKN2A, EHMT1, SOD2, HCN1, 
and CCNE1 contained SNPs replicated in multiple 

Table 1. List of genes containing SNPs with the largest effect sizes (P # 10-5) estimated from GWAS and the P-values 
estimated from gene expression values in the Caucasian (EU), Asian and ER+ and ER- (EU) populations.

Gene name  
(symbol)

SNP ID  
(rs-ID)

SNP  
(P-value)

EU  
(P-value)

Asian  
(P-value)

ER+/ER-  
(P-value)

ABCC4 rs1926657 1.9 × 10-6 0.04 0.4 0.07
CASP8 rs1045485 1.1 × 10-7 0.005 0.5 0.1
COL1A1 rs2075555 8.3 × 10-8 5.00E-06 0.0005 0.1
ECHDC1 rs6569480 6.1 × 10-8 1.00E-05 0.001 0.01
ECHDC1 rs7776136 6.6 × 10-8 1.00E-05 0.001 0.01
ESR1 rs3020314 8 × 10-5 0.7 0.0006 5.00E-06
FGFR2 rs2981582 2 × 10-76 5.00E-06 0.1 0.49
FGFR2 rs2981579 1.79 × 10-31 5.00E-06 0.1 0.49
FGFR2 rs2420946 3.5 × 10-6 5.00E-06 0.1 0.49
FGFR2 rs1219648 3.2 × 10-6 5.00E-06 0.1 0.49
FGFR2 rs1078806 1.5 × 10-5 5.00E-06 0.1 0.49
FBNI rs1876206 6.0 × 10-6 0.6 0.2 0.03
GRIK1 rs458685 6.0 × 10-6 5.00E-06 0.7 0.02
LOC643714 rs3803662 1 × 10-36 1.00E-05 – –
LSP1 rs3817198 3.0 × 10-9 0.6 0.1 0.01
PPP2R2B rs9325024 1.7 × 10-5 0.4 0.9 0.8
RAD51L1 rs999737 1.74 × 10-7 0.5 0.1 8.00E-05
SLC4A7 rs4973768 4 × 10-23 0.8 0.1 0.6
STXBP4 rs6504950 1.4 × 10-8 0.7 – –
TGFB1 rs1800470 2.8 × 10-5 0.0007 0.8 0.5
TOX3 rs12443621 2 × 10-19 0.0001 6.50E-05 7.00E-05
TOX3 rs3803662 5.9 × 10-19 0.0001 6.50E-05 7.00E-05
TOX3 rs8051542 1.0 × 10-36 0.0001 6.50E-05 7.00E-05
BTNL8 rs7711990 8.4 × 10-5 0.5 0.1 0.2
H19 rs2107425 2 × 10-5 0.2 – –
MAP3K1 rs889312 4.6 × 10-20 0.04 0.9 0.01
Notes: EU indicates Caucasians, ER+ and ER- indicate estrogen positive and negative, respectively,—indicates that the gene was not represented on the 
Chip, thus no estimate of P-values is available.
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independent GWAS (Table 2). These results confirm 
our hypothesis that genes containing SNPs associated 
with risk for breast cancer can distinguish breast 
cancer patients from cancer-free controls. However, 
61  genes containing SNPs associated with risk for 
breast cancer were not significantly (P  .  0.05) 
differentially expressed between breast cancer 
patients and cancer-free controls, presumably due to 
the fact that gene expression can be tissue-specific 
and breast cancer subtype-specific expressed.3 Under 
such conditions and given the genetic and phenotypic 

heterogeneity inherent in breast cancer, such outcome 
should be expected.

A major concern about GWAS reported thus far, 
is that majority of these studies have been performed 
on the Caucasian population. Emerging evidence in 
the published literature tends to suggest that genetic 
variants may confer population-specific risk.18,19 To 
test this hypothesis we compared the expression of 
candidate genes between cancer patients and can-
cer-free controls in the Asian population. We asked 
the question, do genes containing SNPs associated 

Table 2. List of genes containing significantly associated (P # 0.05) SNPs replicated in multiple independent GWAS studies, 
and the P-values estimated using gene expression data derived from the Caucasian (EU), Asian and ER+ and ER- EU 
population.

Gene name  
(symbol)

SNP ID  
(rs-ID*, replicated)

Range of SNP  
(P-value)

EU  
(P-value)

Asian  
(P-value)

ER+/ER-  
(P-value)

CASP8 rs1045485** 0.02–1.1 × 10-7 0.005 0.1 0.1
ESR1 rs3020314** 8 × 10-5–8 × 10-5 0.7 0.0006 5.00E-06
ESR1 rs3020390** 0.04–0.05 0.7 0.0006 5.00E-06
ESR1 rs3020394** 0.003–0.003 0.7 0.0006 5.00E-06
ESR1 rs1884051** 0.03–0.03 0.7 0.0006 5.00E-06
ESR1 rs2228480** 0.002–0.006 0.7 0.0006 5.00E-06
ESR1 rs3020396** 0.003–0.004 0.7 0.0006 5.00E-06
ESR1 rs3020400** 0.005–0.005 0.7 0.0006 5.00E-06
ESR1 rs3020401** 0.004–0.004 0.7 0.0006 5.00E-06
ESR1 rs3798577** 0.04–0.004 0.7 0.0006 5.00E-06
FGFR2 rs2981582******* 0.01–2 × 10-76 5.00E-06 0.1 0.4
FGFR2 rs2981579***** 0.02–1.79 × 10-31 5.00E-06 0.1 0.4
FGFR2 rs2420946****** 0.03–3.5 × 10-6 5.00E-06 0.1 0.4
FGFR2 rs1219648****** 0.01–3.2 × 10-6 5.00E-06 0.1 0.4
LSP1 rs3817198**** 6.51 × 10-2–3.0 × 10-9 0.6 0.1 0.01
STXBP4 rs6504950** 0.04–1.4 × 10-8 0.7 – –
TGFB1 rs1800470*** 0.01–2.8 × 10-5 0.0007 0.8 0.5
TOX3 rs12443621** 1 × 10-12–2 × 10-19 0.0001 6.50E-05 7.00E-05
ADH1B rs1042026*** 0.02–0.03 5.00E-06 5.0E-06 0.04
SORBS1 rs10450393** 0.01–0.02 0.4 0.01 0.63
ICAM5 rs1056538** 0.05–001 0.9 0.01 0.49
RB1 rs198580** 0.02–0.02 0.4 0.01 0.0001
RNF146 rs2180341** 0.008–2.9 × 10-8 0.7 – 0.69
RB1 rs2854344** 0.007–0.007 0.4 0.01 0.0001
IGFBP3 rs2854744**** 0.06–0.03 0.0005 0.002 0.03
CDKN1A rs3176336** 0.003–0.003 0.3 0.04 0.2
CDKN1B rs34330** 0.01–0.01 0.9 0.7 5.00E-06
CDKN2A rs3731239** 0.01–0.01 0.003 0.40 0.0001
LOC643714 rs3803662****** 0.01–1 × 10-36 0.00E-05 – –
EHMT1 rs4634736** 0.02–1–0.02 7.50E-05 0.1 0.03
SOD2 rs4880** 0.01–0.05 0.03 0.1 0.0008
CCND1 rs678653** 0.05–0.002 0.81 0.3 5.00E-06
HCN1 rs981782** 10-5–10-2 0.008 – –
CCNE1 rs997669** 0.003–0.003 5.00E-06 0.07 5.00E-06
RAD51L1 rs999737** 1.74 × 10-7 0.5 0.1 8.00E-05
Note: *Indicates the number of times the SNP has been replicated in multiple independent studies.
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with risk for breast cancer significantly differ in 
their expression profiles between cancer patients and 
cancer-free controls in the Asian population? Out of 
the 111 candidate genes examined, only 35  genes 
were significantly (P # 0.05) differentially expressed, 
distinguishing breast cancer patients from cancer-free 
controls (see Table B2 in the appendix). Four signifi-
cantly differentially expressed candidate genes includ-
ing COL1A1, ECHDC1, ESR1 and TOX3 contained 
SNPs with small P-values (Table  1), whereas eight 
genes, ESR1, TOX3, ADH1B, SORBSI, ICAM5, RB1, 
IGFBP3 and CDKN1A contained SNPs replicated in 
multiple independent GWAS studies (Table 2).

As expected, not all candidate genes associated 
with gene expression identified in the Caucasian 
population were found in the Asian population and 
vice versa. There were 12 genes containing SNPs that 
were found to be significantly differentially expressed 
between cases and controls in both the Caucasian 
and Asian populations. Five of those genes which 
overlapped between the two populations including 
TOX3, ECHDC1, COL1A1, ADH1B and IGFBP3 
contained SNPs with small P-values and replicated 
in multiple independent GWAS studies. This tends 
to suggest that the Caucasians and Asians may have 
shared genetic susceptibility at some loci. It is not 
clear why fewer candidate genes were found to be 
significantly differentially expressed in the Asian 
population compared to the Caucasian population. 
There are several plausible reasons for the observed 
outcome, including the differences in Chip density, 
within population variation in the Asian sample, 
diagnostic misclassification, and the environmental 
conditions to which the two populations were 
subjected to. All of these factors individually or in 
combination could affect gene expression.

To determine the clinical utility of genes con-
taining SNPs associated with risk for breast can-
cer, we compared gene expression between ER+ 
and ER− breast cancer patients. We asked the ques-
tion do genes containing SNPs associated with risk 
for breast cancer differ in their expression between 
ER+ and ER− breast cancer patients? This analysis 
produced 70  significantly (P # 0.05) differentially 
expressed candidate genes, which distinguished 
ER+ from ER− breast cancer patients (See supple-
mentary Table B3). Eight genes including MAP3K1, 
TOX3, RAD51L1, LSP1, GRIK1, FBN1, ESR1 and 

ECHDC1 contained SNPs with the smallest P-values 
(Table 1), whereas thirteen significantly differentially 
expressed candidate genes including ESR1, LSP1, 
TOX3, ADH1B, RB1, IGFBP3, CDKN1B, CDKN2A, 
EHMT1, SOD2, CCND1, CCNE1 and RAD51L1 
contained SNPs replicated in multiple indepen-
dent GWAS studies (Table 2). The data supports the 
notion that ER+ and ER− breast cancers have different 
molecular circuitries and may originate through bio-
logically distinct genetic lesions. Interestingly, five 
candidate genes (ECHDC1, ESR1, GRIK1, TOX3, 
MAP3K1) containing SNPs with small P-values and 
seven candidate genes (ESR1, TOX3, ADH1B, RB1, 
CDKN2A, EHMT1 and CCNE1) containing SNPs 
replicated in multiple independent GWAS identi-
fied that distinguished ER+ from ER− breast cancer 
patients also distinguished cases from controls in 
the Caucasian and Asian populations. This indicates 
that at least some candidate genes identified through 
GWAS analysis could serve as potential biomarkers 
in different populations, though association of these 
genes with the African and African-American popu-
lations remains to be determined.

The variation in gene expression observed in 
this study is not unique. The results of variability in 
gene expression among populations observed here 
are consistent with previous reports. For example, 
genome-wide association of gene expression variation 
in humans has been reported,35 though the study used 
cell lines and did not focus on any particular disease. 
Variation in gene expression within and among natural 
populations has also been reported.36 Inconsistent 
expression of SNP-containing genes has also been 
reported in prostate cancer.37

Interestingly, majority of the genes distinguishing 
cases from controls and ER+ from ER− were those 
which contained SNPs with moderate P-values. This 
indicates that genes containing SNPs with moderate 
P-values “often considered not genome-wide signifi-
cant in traditional single-SNP GWAS analysis” are 
likely to play a significant role in the pathogenesis of 
breast cancer.

Evaluation of functional relationship  
of candidate genes
To determine whether genes containing SNPs asso-
ciated with risk for breast cancer are functionally 
related, we used the Gene Ontology (GO) information 
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and co-expression analysis using gene expression 
data. The first, GO analysis allows characterization 
of genes according to the GO nomenclature. The GO 
Consortium has developed three separate ontologies- 
molecular function, biological process and cellular 
component to describe the attributes of gene products. 
Molecular function defines what a gene product does 
at the biochemical level without specifying where 
or when the event actually occurs; biological pro-
cess describes the contribution of a gene product 
to a biological objective; and cellular component 
refers to where in the cell a gene product functions. 
Here, we have characterized the candidate genes 
according to all three GO categories. The results are 
provided in Tables B1 for the Caucasian population, 
in Table B2 for the Asian population and Table B3 
for the ER+/ER− Caucasian population, provided as 
supplementary data. In all the three cases studied, we 
found that candidate genes are functionally related 
and are involved in multiple related functions and 
biological processes.

The second approach co-expression analysis was 
conducted to identify candidate genes with similar 
patterns of expression profiles. We hypothesized that 
genes containing SNPs associated with risk for breast 
cancer are co-regulated and have similar patterns of 
expression profiles. The results showing patterns of 
expression profiles for candidate genes are shown 
in Figure A1 and Figure A2 for the Caucasian and 
Asian population, respectively in the Appendix. The 
results showing patterns of gene expression profiles 
for candidate genes in ER+ and ER− breast cancer 
patients are shown in Figure A3. Only the candidate 
genes with the most consistent patterns of expression 
profiles are represented in the figures. In all the three 
cases, genes containing SNPs associated with risk 
for breast cancer were co-expressed and produced 
clusters of genes with similar patterns of expression. 
Interestingly, genes containing SNPs with moderate 
P-values were found to be functionally related and 
co-expressed with candidate genes containing SNPs 
with small P-values and SNPs replicated in multiple 
independent studies. This demonstrates the power of 
combining GWAS information with gene expression 
data to identify associations beyond the ones that 
meet the very stringent genome-wide significance 
threshold, and to determine the functional basis of 
GWAS discoveries.

Combining GWAS information with gene 
expression data to identify novel genes
To determine whether genes containing SNPs 
associated with risk for breast cancer are functionally 
related and co-expressed with other genes which 
have not been identified using single-SNP GWAS 
analysis, we performed supervised followed by 
unsupervised analysis using hierarchical clustering, 
as described in the methods section. We asked two 
fundamentally distinct questions. First, we asked, 
are there significantly differentially expressed novel 
genes not identified by GWAS, which distinguish 
breast cancer from cancer-free controls and ER+ 
from ER−? Second we asked the question are the 
novel genes distinguishing breast cancer patients 
from cancer-free controls functionally related or 
co-expressed and have similar patterns of expression 
with candidate genes distinguishing breast cancer 
from cancer-free controls and ER+ from ER− breast 
cancer patients?

In all the three cases we identified significantly 
differentially expressed novel genes not reported in 
GWAS. For the Caucasians and Asian populations, 
we identified 62 and 73 highly significant genes which 
distinguished breast cancer patients from cancer-free 
controls. We identified 85 highly significantly dif-
ferentially expressed genes, which distinguished 
ER+ from ER− breast cancer patients. The novel 
genes were functionally related. The results showing 
P-values, FDR and functional relationships for the 
novel genes are summarized in Table C1 (62 genes) 
for the Caucasian population, Table C2 (73 genes) for 
the Asian population and Table C3 (85 genes) for the 
ER+ versus ER− breast cancer patients, provided as 
supplementary data.

The results showing patterns of gene expression 
profiles for candidate genes and novel genes are shown 
in Figure 1 for the Caucasian population, Figure 2 for 
the Asian population and Figure  3 for the ER+ and 
ER− breast cancer patients. In all the three cases, 
genes containing SNPs associated with risk for breast 
cancer were found to be functionally related, co-
expressed and exhibited similar patterns of expression 
with novel genes not identified in GWAS analysis. 
These results demonstrate and unequivocally confirm 
our hypothesis that integrating GWAS information 
with gene expression data provides a complementary 
approach to identify novel genes that could not 
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Figure 1. Patterns of gene expression profiles for candidate and novel genes in the Caucasian population. The rows represent genes, columns represent 
143 cancer-free controls and 42 breast cancer patients. The red and blue colors indicate up and down regulation, respectively.

be identified using traditional single-SNP GWAS 
analysis. Interestingly, genes containing SNPs with 
moderate P-values and genes containing SNPs not 
replicated in multiple independent studies were found 
to be co-expressed and functionally related with novel 
genes. However, as expected, considerable variation 
in patterns of expression profiles were observed in all 
the three cases studied. The identification of novel 
genes that are functionally related and co-expressed 
with candidate genes, suggests that the missing varia-
tion from GWAS findings could potentially be cap-
tured through integration of GWAS information with 
gene expression profiling.

Predicted pathways and gene  
regulatory networks
To determine whether genes containing SNPs 
associated with risk for breast cancer interact with 
each other and with novel genes in biological path-
ways and gene regulatory networks, we performed 
pathways analysis and gene network modeling. We 
hypothesized that candidate genes and novel genes 
are functionally related, interact with each other in 
putative biological pathways and gene regulatory 
networks associated with breast cancer. Figure  4 

presents the color codes showing the biological 
process in which the genes are involved as depicted 
in predicted pathways and gene regulatory networks. 
The results showing predicted pathways and gene 
regulatory networks using candidate and novel genes 
are presented in Figure 5 for the Caucasian population, 
in Figure 6 for the Asian population and in Figure 7 
for the ER+/ER− Caucasian population.

In all the three cases studied, genes containing 
SNPs associated with risk for breast cancer (shown 
in red) and novel genes (shown in blue) were found 
to interact with each other in intricate biological 
pathways and gene regulatory networks. Additionally, 
genes experimentally confirmed to interact with genes 
containing SNPs and novel genes were also identified 
(genes marked in black font) through co-expression and 
pathway analysis and network modeling. Our analysis 
also revealed, as depicted by the color codes, that genes 
containing SNPs associated with risk for breast cancer 
are involved in the same biological processes with 
novel genes identified by gene expression analysis that 
could not be identified using traditional GWAS alone. 
Pathway prediction and network modeling confirmed 
that integrating genetic with gene expression data is a 
powerful approach to identifying putative biological 
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pathways and gene regulatory networks that could not 
be identified using traditional GWAS alone. 

Interestingly, genes containing SNPs with 
moderate P-values in GWAS studies were found to 
interact with novel genes, genes containing SNPs 
with the smallest P-values and genes containing 
SNPs replicated in multiple independent studies. 
Among the biological pathways identified included 
the P53, MAP kinase, apoptosis, insulin-like growth 
factor, DNA repair and estrogen receptor pathways, 
all of which have been implicated in breast cancer. 
The identification of multiple multi-gene biological 

pathways tends to suggest that apart from gene-gene 
interactions, pathway crosstalk may be involved in 
the development and progression of cancer.

Consistent with our analysis, a wealth of clinical 
and preclinical information exists on the functional 
correlations between the genes and pathways 
identified in this study. ESR1, the gene for ERα 
containing SNPs replicated in many independent 
GWAS studies, is the most important therapeutic 
target in ERα-positive breast cancers. PGR, the 
progesterone receptor A, another gene containing 
SNPs replicated in many independent studies, is a 

Figure 2. Patterns of gene expression profiles for candidate and novel genes in the Asian population. The rows represent genes, columns represent 43 
(N) controls and 43 (C) breast cancer patients. The red and blue colors indicate up and down regulation, respectively.
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Figure 3. Patterns of gene expression profiles for candidate and novel genes in the ER+ and ER-Caucasian population. The rows represent genes, 
columns represent 209 ER+ and 77 ER- breast cancer patients, respectively. The red and blue colors indicate up and down regulation, respectively.
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Figure 4. Color code indicating the biological process in which the genes in 
predicted biological pathways and the regulatory networks are involved.

direct transcriptional target of ESR1, and provides 
information on estrogen receptor activity. XRCC2, 
XRCC3, CHEK1, CHEK2, TP53 and ATM are well-
known for their involvement in DNA repair. ERBB2, 
the gene for Her2/Neu is over expressed in 25% of 
breast cancers and the target for highly effective 
agents such as trastuzumab and lapanitib. MAP3K1 
also replicated in many independent studies is an 
upstream component of the MAP kinase cascade that 
is activated by both ERBB2 and by ESR1. CASP8 
is involved in the apoptosis pathway. Both the MAP 
kinase pathway and PI3K pathway are activated 
downstream of ERBB2 as well as ESR1, producing 
survival signals that counteract pro-apoptotic signals 
mediated by CASP8 and/or by failure of DNA 
repair and consequent hyper-activation of TP53. 
The reason for “hyper” is that low-level activation 
of TP53 actually causes cell growth arrest and 
survival while DNA repair is underway. It is only 
high level activation of TP53 that causes apoptosis 
when DNA repair fails. Thus, the DNA repair genes 
such as XRCC2, XRCC3, CHEK1, CHEK2 and ATM 
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Figure 6. Gene interaction networks for genes containing SNPs (Red) and novel genes (Blue) identified using a threshold (P  10-6) and other functionally 
related genes (in black) correlated with candidate genes and novel genes in the Asian population only.

Figure 5. Gene interaction networks for genes containing SNPs (Red) and novel genes (Blue) identified using a threshold (P  10-6) and other functionally 
related genes (in black) correlated with candidate genes and novel genes in the Caucasian population only. The size of the nodes: Large indicate 
SNP-containing and Novel genes identified through differential expression analysis, whereas small nodes indicate genes experimentally confirmed in the 
literature and through co-expression analysis that are functionally related and interact with SNP-containing and novel genes.
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Figure 7. Gene interaction networks for genes containing SNPs (Red) and novel genes (Blue) identified using a threshold (P  10-6) and other functionally 
related genes (in black) correlated with candidate genes and novel genes in the ER+ and ER- breast cancer patients only.

if experimentally confirmed could serve as potential 
targets for early therapeutic intervention.

Discussion
We report a novel integrative genomics approach that 
combines GWAS information with gene expression 
data to identify functionally related genes and biolog-
ical pathways enriched by SNPs associated with risk 
for breast cancer. Our results demonstrate that inte-
grative analysis combining gene expression data with 
GWAS information has the ability to identify novel 
genes not identified in single-SNP GWAS analysis. 
The integrative genomics approach presented here 
offers several remarkable features.

First, the novel paradigm associates genes 
containing SNPs associated with risk for breast cancer 
with expression and demonstrates the predictive 
value of SNP-containing genes by distinguishing 
breast cancer patients from controls in the Caucasian 

and Asian populations; and distinguishing ER+ from 
ER− breast cancer patients. This is a critical step to 
translating GWAS findings into clinical practice. 
Second, the results demonstrate unequivocally that 
an integrative genomics approach can add structure 
to data by combining GWAS information with gene 
expression data, allowing us to gain insights about 
the broader biological context in which SNP-containing 
and novel genes operate, and a deeper understanding 
of the functional basis of GWAS findings. Third, the 
approach demonstrates that genes containing SNPs 
associated with risk for breast cancer are functionally 
related and interact with each in putative biological 
pathways and gene regulatory networks. This is a 
significant finding given that traditional single-SNPs 
GWAS analysis is underpowered to uncover complex 
biological interactions. The results provide insight 
into the biological processes underlying breast cancer. 
Fourth, the integrative approach identified novel 
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genes and established their functional relationship 
with genes containing SNPs with small and moderate 
P-values. This is a significant finding given that 
relatively few SNPs have P-values sufficiently small 
to give conclusive evidence of association.

Although recent findings tend to suggest that 
common variants could explain most of the variation,38 
almost all the known studies reported on breast cancer 
thus far13 have documented only a small number of loci 
and provide no putative functional bridges between 
GWAS findings and genes and biological pathways 
associated with breast cancer. The presence of SNPs 
in genes of similar biological functions interacting in 
biological pathways and gene regulatory networks 
as demonstrated in this study gives a degree of 
confidence that the associations could potentially be 
genuine even if none of SNPs individually is highly 
significant. Importantly, identification of genes 
not identified by GWAS could partially explain the 
missing variation from GWAS findings “also coined 
as the missing heritability”.13

Firth, genes containing SNPs replicated in mul-
tiple independent studies were found to be function-
ally related and co-expressed with genes containing 
SNPs not replicated. Because replication is difficult 
to achieve in current GWAS analysis, this approach 
may help overcome that limitation. Replication of 
association findings at the gene or pathway level 
is potentially much easier than replication at the 
SNP level. In the published literature, meta-anal-
ysis has been carried out as a means of increasing 
sample size and power.39,40 However, meta-analysis 
provides no information about the functional basis 
of GWAS findings or the biological mechanisms 
underlying the disease. The practical application 
of the approach and results produced using this 
approach lies in the fact that it could guide future 
experimental designs. For example, genes in the 
pathways identified by this approach could be pri-
oritized for targeted sequencing. Alternatively, SNP-
containing genes in the identified pathways could be 
prioritized for allele-specific expression profiling 
to understand how genetic variants regulate gene 
expression and cis regulatory elements. Using in 
silico analysis of SNP and sequence data, we have 
recently shown that SNPs tend to disrupt cis regu-
latory elements (splice sites, silencer and enhancer 

elements) Chourbanov et  al41 potentially affecting 
transcriptional and post-transcriptional processes 
that ultimately affects gene expression.

Our results strongly challenge the single-SNP GWAS 
analysis paradigm, that focuses on SNPs producing 
the most highly significant P-values. Combining SNP 
information with gene expression information can 
identify genes and pathways that may be causally 
related to breast cancer development and that are still 
expressed in breast cancers at diagnosis. These genes 
are most likely to include strong targets for diagnostic 
and prognostic biomarkers and/or subtype-selective 
therapeutic targets. For example, identification of the 
targets of the ESR1  gene. Therefore, this approach 
has the potential of facilitating translation of GWAS 
discoveries to the bedside.

Many studies have now attempted pathway-
based approaches to dissect the genetic susceptibility 
architecture of common diseases. This approach 
has been used in inflammatory diseases,42 bipolar 
disorder,43 multiple sclerosis,44 breast cancer,45,46 and 
seven other common diseases.47 To our knowledge, 
this is the first study to demonstrate the power of 
combining GWAS information with gene expression 
data and biological knowledge to identify genes, 
pathways and gene regulatory networks that could 
not be identified using traditional GWAS alone.

As mentioned in the preceding sections, the 
integrative approach has many attractive features. 
However, limitations must be acknowledged. First, 
our approach relies on using gene expression data and 
pathway prediction. Although this holistic approach 
accounts for all the SNPs in the genes, it provides 
no information about allele-specific expression. 
Therefore, it is difficult to discern the effects of 
individual SNPs on gene expression. The effect sizes 
(overall P-values) of SNPs were obtained using a 
meta-analytic approach to combine P-values. This 
approach can be limited in the presence of positive 
and negative correlations among SNPs, or where 
SNPs within the gene have opposite or antagonistic 
functions, although this limitation is minimized 
here by considering the gene using expression data 
and pathway as the units of association. While new 
methods for aggregating or combining SNPs or rare 
variants within the gene have been proposed48,49 
they equally have limitations and do not take into 
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account the functional information. We used publicly 
available GWAS and gene expression data, therefore 
our results could be potentially influenced by factors 
inherent in such data which are beyond our control. 
The optimal approach would be to analyze raw data 
from all the 43 GWAS used in this study. However, 
for various reasons including data ownership, this was 
neither practical nor feasible. Our results do not take 
into account the environmental factors to which the 
populations under study were subjected. Our study 
did not include African-Americans. It is conceivable 
as outlined earlier in this study and other studies18,19 
that genetic variants may confer population-specific 
risk. In this study, we did not examine allele-specific 
expression and how the risk variants correlate with 
clinical parameters. However, previous studies have 
reported allele specific expression and correlations 
between risk variants and clinical parameters for 
genes and genetic variants reported in this study. 
Mayer et  al50 reported allele-specific expression in 
the FGFR2 gene, a gene containing multiple variants 
extensively replicated in many independent GWAS 
studies. Huijts et  al51 correlated clinical parameters 
with risk variants mapped to FGFR2, TNRC9, 
MAP3K1 and LSP1 in a Dutch breast cohort.

Considerable investments have been directed to 
GWAS over the past five years. The studies contain 
rich information that could be turned into knowledge 
to identify targets for early therapeutic interventions. 
Traditional single-SNP GWAS analysis does not 
provide the insights about the function basis of GWAS 
findings and the biological mechanisms underlying the 
disease. An integrative approach that combines gene 
expression data with GWAS information provides 
a complementary approach to single-SNP GWAS 
analysis and offers the better prospect of facilitating 
translation of GWAS findings to the bedside. More 
work is need to determine allele-specific expression 
and to elucidate the impact of SNPs on gene and 
protein functions, and to identify cis regulatory 
elements impacted by genetic variants mapped to 
genes relevant to breast cancer.
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Appendix 
Gene expression patterns in the three cases studied 
for the most highly expressed candidate genes only.

Figure A1. Patterns of gene expression profiles for 52 candidate genes only in the Caucasian population. The roles represent genes, columns represent 
breast cancer patients and controls. The red and blue colors indicate up and down regulation, respectively.

Figure A2. Patterns of gene expression profiles for 9 candidate genes only in the Asian population. The roles represent genes, columns represent breast 
cancer patients and controls. The red and blue colors indicate up and down regulation, respectively.

Figure A3. Patterns of gene expression profiles for 23 candidate genes only in the ER+ and ER− population. The roles represent genes, columns represent 
breast cancer patients and controls. The red and blue colors indicate up and down regulation, respectively.
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