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Abstract: There is an urgent need to develop novel anti-malarials in view of the increasing disease burden and growing resistance of 
the currently used drugs against the malarial parasites. Proliferation inhibitors targeting P. falciparum intraerythrocytic cycle are one of 
the important classes of compounds being explored for its potential to be novel anti-malarials. Support Vector Machine (SVM) based 
model developed by us can facilitate rapid screening of large and diverse chemical libraries by reducing false hits and prioritising 
compounds before setting up expensive High Throughput Screening experiment. The SVM model, trained with molecular descrip-
tors of proliferation inhibitors and non-inhibitors, displayed a satisfactory performance on cross validations and independent data set, 
with an average accuracy of 83% and AUC of 0.88. Intriguingly, the method displayed remarkable accuracy for the recently submitted 
P. falciparum whole cell screening datasets. The method also predicted several inhibitors in the National Cancer Institute diversity set, 
mostly similar to the known inhibitors.
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Introduction
Malaria is a devastating disease causing millions 
of death annually, apart from thousands of man 
hours lost to morbidity.1 The majority of deaths due 
to malaria are caused by P. falciparum, the most 
virulent amongst the rest of the species that cause 
the disease. The mounting resistance and failure of 
­existing first-line antimalarial drugs has exacerbated 
the condition leading to an urgent need to develop 
novel anti-malarials.

Amongst various experimental methods, the exper-
imental cell based assays to identify growth inhibi-
tors of P. falciparum has been one of the promising 
approaches for novel antimalarial drug discovery. The 
technique has shown success in identifying several 
novel chemical scaffolds with antimalarial activity.2,3 
Cell based bioassays make use of living organisms, 
enabling the simultaneous testing of all drug targets for 
their viability in the presence of the test compounds. 
Identification of P. falciparum intraerythrocytic cycle 
proliferation inhibitors has gained much attention as 
many of these compounds have successfully inhib-
ited the parasite growth at a very low concentration.4,5 
Development of in silico models for prediction of 
proliferation inhibitors against P. falciparum will aid 
research experiments aimed towards identification 
of novel antimalarial leads. The study reported here 
focuses on development of a SVM based classifica-
tion method for P. falciparum proliferation inhibitors 
and non-inhibitors.

The striking growth and complexity of High 
Throughput Screening (HTS) data has increased the 
importance of data mining techniques to aid effi-
cient data analysis and decision-making at crucial 
phase of drug discovery.6 Such techniques are often 
helpful to discover meaningful patterns and rules in 
the screened data. These patterns form the basis for 
building models that are effectively applied to priori-
tize compounds for the subsequent phases. Data min-
ing methods can assist identification of false leads 
at an early stage and also facilitate understanding of 
Structural and Activity Relationships.7 Supervised 
and unsupervised methods are increasingly being 
applied to build predictive bioactivity compound 
models.8 In various studies, classification of com-
pounds has been carried out using machine learning 
methods like Decision Tree (DT), k-Nearest Neigh-
bours (kNN), Artificial Neural Networks (ANN), 

PLS Discriminant Analysis (PLS-DA) and all of them 
have shown ­statistically significant performance.9 It 
is encouraging to note that the existing mathemati-
cal methods in Quantitative Structural and Activ-
ity ­Relationship (QSAR) field are being constantly 
upgraded and novel mathematical algorithms are 
continuously evolving. At the same time, the increas-
ing availability of published compounds assays in 
PubChem database has stimulated greater interest to 
apply these robust methods, leading to development 
of highly accurate predictive models.10–12

In recent years, SVM based classification has 
gained wide usage in Ligand Based Virtual Screening 
(LBVS) mainly due to its efficient generalization 
capabilities and empirical performance.13–15 SVM 
based ligand screening has been illustrated as an ideal 
tool for rapid screening of large compound libraries 
with enhanced hit rate and better coverage.16,17 Unlike 
most of the LBVS methods which work on similar-
ity based principles, SVM based classification has 
been shown to yield structurally diverse hits.18 In a 
comparative study conducted by Plewczynski et al.19 
SVM with a linear kernel was found to be the best 
performing algorithm, compared to the other methods 
namely; kNN, ANN, DT, Random Forest (RF) and 
Naïve Bayesian Classification (NBC). ­Summarily, 
the performance of SVM methods is better when 
compared with above-discussed methods and hence 
we have used SVM in our studies. In previous stud-
ies, linear methods have been applied for classifica-
tion of antimalarial compounds; however, there are 
fewer reports about usage of non-linear methods.20,21 
In this study, we have developed linear as well as 
non-linear SVM models to classify compounds for 
anti-proliferative activity against P. falciparum.

Materials and Methods
Generation of training and independent 
testing set
All the molecular structures for generating 
SVM models were retrieved from the PubChem 
bioassay data corresponding to the bioassay 
ID “AID-1815”.4,5 The Bioassay reports 441 active 
compounds with the potency ranging from 0.06 µM 
to 14.12 µM. The assay was based on qHTS for dif-
ferential inhibitors of proliferation of P. falciparum 
line 7G8, derived from a malarial isolate from Brazil. 
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Further assay details are available at the PubChem 
bioassay database website (http://pubchem.ncbi.nlm.
nih.gov/).

In preparing the training and independent test data-
set, we have considered all the compounds labelled 
as active or inactive for their inclusion in the posi-
tive and negative training dataset. In the bioassay, 
441 compounds are reported as active (potency rang-
ing between 0.06  µM to 14.12  µM) and 558 com-
pounds as inactive, ie, a total of 999 compounds. 
These compounds were pre-processed for removal of 
redundant compounds, which resulted in 426 active 
and 533 inactive compounds. All the non-redundant 
compounds, 959 in numbers, were standardized and 
hydrogen atoms were added using JChem 5.2.22 The 
data set of 959 compounds was divided into training 
and testing set such that exactly 80% was reserved 
for training and the remaining 20% was retained for 
independent testing, ie, not to be included in the train-
ing step. Thus the training data comprised of total 640 
compounds, while the test set comprised of 319 com-
pounds (Table 1). SVM models described here after 
are developed based on the training set of 290 active 
compounds and 350  inactive compounds. Some 
of the potent proliferation inhibitors in the training 
data are shown in Table 2. The training and testing 
dataset is available online as supplementary material 
­(Supplementary file 1 and 2).

Descriptor calculation and selection
Molecular descriptors are the numeric representation 
of physico-chemical features extracted from various 
structural representation of a molecular structure.23 
Such a quantitative representation is obtained as the 
result of a logical and mathematical procedure that 
transforms chemical information encoded within a 
symbolic representation of a molecule into a useful 
number. In this work, a number of 0D (constitutional 
descriptors), 1D (functional group counts), 2D 
(topological, walk and path counts, connectivity 
indices, information indices, 2D autocorrelations, 
edge adjacency matrices, Burden Eigen values, 

topological charge indices, Eigen-value based indices) 
and 3D (Randic molecular profiles, geometric, RDF, 
3D-Morse, WHIM, GETWAY) descriptors were 
calculated using DRAGON software.24 Details 
of individual descriptors can be found in the 
reference manual of DRAGON software. The list of 
descriptors used in the study for developing different 
SVM models is presented in Table  3. Calculations 
for 0D, 1D and 2D descriptors were based on 2D 
structures of the compounds where as 3D descriptors 
calculations were based on JChem generated single 
low energy conformers. We generated three models 
based on different sets of descriptors; the first 
one based on 0D, 1D and 2D descriptors, the second 
one based exclusively on 2D descriptors and the 
third model based exclusively on 3D descriptors. 
The total number of selected descriptors was above 
300 in each case. In order to reduce redundancy and 
noise in the training data, we reduced the number 
of descriptors in each case. For instance, in case of 
the model based on 0D, 1D and 2D descriptors, the 
total number of calculated descriptors was 383. We 
reduced the total number of descriptors to 184 by the 
following approach: firstly, descriptors with the same 
values and near-constant descriptors were eliminated. 
Secondly, redundant descriptors were removed by 
pair correlation method. The pair wise correlations 
for all descriptors were examined and one of the 
two descriptors with the correlation coefficient r of 
0.9 and higher was excluded. Finally, three different 
models were developed using 184 (0D, 1D, 2D), 112 
(2D) and 195 (3D) descriptors respectively. SVM 
training and testing files require normalized data 
input, hence we normalized our training data to range 
within −1 to +1.

SVM algorithm
The SVM method was developed by Vapnik.25 
SVM algorithms project input data into a high-
dimensional feature space using kernel functions, 
so that an optimal plane (maximal-margin hyper 
plane) may be drawn which can demarcate positive 
and negative datasets. The hyper plane is depen-
dent on choice of kernel function and represen-
tative training examples, called support vectors. 
Optimized SVM classification model is generated 
by iterations of learning and evaluations, based 

Table 1. Compound dataset used in this study.

Data set Inhibitors Non-inhibitors Total
Training 290 350 640
Test 136 183 319
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Table 2. Selected proliferation inhibitors in the training dataset.

Molecule Structure Molecular weight Potency [uM]
Dequalinium

N

N+

N+

N

H H

HH

H3C

CH3

527.571 0.0891

Quinacrine

N

O

N

CH3

CH3

CH3

CH3

HN

Cl

472.879 0.1778

Clotrimazole

N

N

Cl

344.837 0.2512

Reserpine

O

O

CH3

CH3

CH3

CH3

CH3

H3C

O O

O

O

O

O

O

N
N
H

608.679 0.2818

on optimized choice of training support vectors, 
kernel functions and parameters. In developing 
SVM models for this work, we have used LIB-
SVM, available freely at (http://www.csie.ntu.
edu.tw/∼cjlin/libsvm).26 The SVM model built in 

this study is based on C-SVC (C-Support Vector 
Classification) algorithm implementation of 
LIBSVM. As the number of features used here is 
less than the number of instances, we primarily used 
a non-linear kernel for building the SVM model. 

http://www.la-press.com
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However, models based on linear kernel were also 
developed to compare their performance. A coarse 
grid-based optimization of the kernel parameters 
C and the hyper parameter γ was performed to 
achieve the highest classification accuracy.

Model validation
The training data set of 640 compounds was subjected 
to five-fold cross validation to find the best kernel 
parameters C and γ by maximizing the accuracy and 
minimizing the error. In five-fold cross-­validations, 
the training data is split into 5 folds; one fold is used 
for testing, the remaining ones for training. This is 
iterated five times, such that each of the data sets is 
used as a test data. The optimum values of C and 
γ were then used to retrain the SVM model. The 
performance of the models was also assessed on 
the independent test dataset, using standard statisti-
cal measures namely- sensitivity: the percentage of 
correctly predicted active compounds, ­specificity: 
the percentage of correctly predicted inactive 
compounds, accuracy: the percentage of correctly 
predicted active and inactive compounds. In addi-
tion, balanced measures like MCC, Balanced Accu-
racy (BAC) and AUC (Area under ROC curve) were 
also computed.27 MCC = 1 indicates a perfect predic-
tion while MCC = 0 indicates a random prediction.

These evaluation measures can be mathematically 
expressed as:
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where TP is the number of true positives, FN is 
the number of false negatives, TN is the number 
of true negatives and FP is the number of false 
positives.

Principal Component Analysis (PCA)  
and Applicability Domain (AD)
As expected, the models based on machine learn-
ing methods normally show good performance for 
compounds that share similar properties as those in 
the training set. Thus, it is of ever-increasing con-
cern to define the AD of the models, and to check if 
it is valid for any new molecules. AD is the bound-
ary defined by the descriptor space in the training 
data. Any new chemical compound should essen-
tially be positioned in the boundary of the chemical 
space of the training set, in order to be qualified for 
reliable prediction.28 Several simple and complex 
approaches are used to define AD; based on range, 
distance, geometric and density distribution. One 
of the simplest and widely applied approach is the 
AD based on range-based definition with a prelimi-
nary PCA rotation.29 In the present study, we have 
defined the AD of the model and evaluated its valid-
ity on the test set and the screening dataset based 
on Principal Component (PC) ranges. This method 
will be helpful to confirm whether a new compound 
is inside or outside the AD. PCA based definition of 
AD, reduces the higher dimensionality of the data 
(due to large number of descriptors) and facilitates 
simple exploration besides maintaining the varia-
tion of the data. This is achieved by identifying 
directions, or PCs, along which there is maximal 
variation in the data. Each PC is expressed as a lin-
ear combination of the original descriptors. It may 
be noted that PCs are orthogonal to each other, and 
the correlation between any two PCs is zero. PCA 
in the study was performed using R package.30 The 
PCA was carried out for the training data of the best 
model that showed highest classification accuracy. 
PCA of the independent test set and screening set of 
NCI diversity set II was also performed in order to 
validate the applications of the model.

SVM model as virtual screening tool
We used NCI diversity set of 1364 compounds retrieved 
from the NCI/DTP Open Chemical Repository 
(http://dtp.nci.nih.gov/branches/dscb/div2_explana-
tion.html) for virtual screening purpose.31 The com-
pounds were processed in the same way as done 
for the training set and descriptors were calculated. 
Subsequently, 1328 compounds were suitable for 
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descriptor calculation and were predicted for their 
activity by the best SVM model.

Results and Discussion
In the present study, we have developed SVM based 
model for prediction of proliferation inhibitors of 
P. falciparum in erythrocytes based on the bioassay 
results from PubChem bioassay ID “AID 1815”. 
SVM models were generated using three differ-
ent sets of descriptors; the first model was based on 
descriptors belonging to 0D, 1D and 2D category, the 
second model was based on 2D descriptors and the 
third model was based on 3D descriptors (Table 3). 
Non-linear models based on Radial Basis Function 
(RBF) kernel and linear models were developed for 
each category of the descriptors. A five-fold cross 
validation method was used to select the best kernel 
parameters and to evaluate the self-consistency of the 
data set in each case. The performance of the models 
was assessed using a test dataset of 319 compounds, 
not used in the training process.

Model validation
The overall cross validation accuracy of the models 
is in the range of 80% to 83%, this suggests the self-
consistency of the data and also validates the reli-
ability of the models (Table 4). Area Under the ROC 
curve (AUC) values for all the models (∼0.88) indi-
cates an overall good performance of the models than 
random classification.

Performance of model based on 0D, 1D  
and 2D descriptors
Best kernel parameters determined by five-fold 
cross validation and the corresponding results 

obtained with each model are illustrated in Table 4. 
The model was based on a set of 184 descriptors 
belonging to 0D, 1D and 2D category which yielded 
highest accuracy in cross validation as well as over 
independent test set. The model performed consis-
tently well with an accuracy of 83%, and an AUC 
of 0.88 in five-fold cross validation. The model was 
able to correctly classify 117  inhibitors (86%) and 
160 non-inhibitors (87%) with an overall accuracy 
of 87% and MCC of 0.73. Although the number of 
inactive compounds is slightly higher than the active 
compounds in the training set, almost equal sensitiv-
ity and specificity was obtained. This signifies the 
balanced performance of the model with respect to 
good recognition rate and low false prediction rate. 
The overall performance of the model was found 
to be satisfactory as evident from the independent 
testing data performance. The better accuracy of the 
model can be attributed to the appropriate choice of 
0D, 1D and 2D descriptors that were capable to dis-
criminate proliferation inhibitors and non-inhibitors. 
The model based on these descriptors showed con-
sistent and optimum performance when compared 
with other models.

Performance of models based on 2D  
and 3D descriptors
The non-linear model based on 2D descriptors 
showed second best performance with a five-fold 
cross validation accuracy of 82%, overall testing 
accuracy of 85%, sensitivity of 84% and MCC mea-
sure of 0.69. Some of the 2D descriptors applied 
in this model are overlapping with the ones used 
in the first model. This implies the specific con-
tribution of 2D descriptors in better discrimina-

Table 3. Molecular descriptors used in the development of SVM models.

Classifier Descriptor 
category

Descriptor class Total number  
of descriptors

1 0D,1D, 2D Constitutional, topological, connectivity indices, functional  
group counts, molecular properties

184

2 2D Topological, Walk and path counts, connectivity indices,  
information indices, 2D autocorrelations, edge adjacency  
matrices, Burden Eigen values, topological charge indices,  
Eigen-value based indices

112

3 3D Randic molecular profiles, geometric descriptors,  
RDF descriptors, 3D-Morse descriptors, WHIM  
descriptors, GETWAY descriptors

195

http://www.la-press.com
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tion of active and inactive compounds with good 
­sensitivity and specificity than models based on 3D 
descriptors. Linear model based on 2D descriptors 
had the lowest cross validation accuracy although 
with good testing accuracy (81%) comparable to 
other models. As shown in Table 4, the model based 
on 3D descriptors ranks last in the testing accuracy, 
specificity and sensitivity. Perhaps, the overall lim-
ited structural diversity in the compounds could be 
a limiting step for performance of shape based 3D 
descriptors. In general, all the models showed a bal-
ance in terms of their specificity and sensitivity as 
demonstrated by the BAC. The overall BAC of all 
SVM models ranges from 0.80 to 0.87. However, in 
all the cases RBF based models outperformed cor-
responding linear models with higher classification 
accuracy.

Applicability Domain
PCA was applied here to define the AD of the best 
model and also to map the active and inactive com-
pounds in their respective chemical spaces. PCs are 
basically the linear combinations of the original 
184 descriptors used in this study. The AD is calcu-
lated on the basis of the PC ranges. The minimum 
and maximum values of principal components are 
set by considering all the compounds in the train-
ing data set. Figure 1 shows the first three principal 
components of the compounds in the training set 
that has been used to define the AD of the model. 
The compounds in the independent testing set were 
also found to be within the AD (Fig. 2). PCA results 

reveal in general that, the active and inactive com-
pounds occupy different clusters in the chemi-
cal space, although there was no clear boundary 
between the two classes. The training data shows 
limited structural diversity, which poses a restraint 
on the sensitivity and specificity of the model. 
These parameters could be apparently improved 
by increasing the number of diverse structures in 
training set.

40
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Figure 1. Visualization of chemical space in training dataset. Proliferation 
inhibitors (blue diamonds) and non-inhibitors (red diamonds) are repre-
sented using the first three Principal Components. The figure depicts the 
range of Principal Components of the compounds in the training set that 
define the applicability domain (AD).

Table 4. SVM model parameters and evaluation of classification performance.

Classifier Training Testing
Kernel Parameters Cross  

validation  
accuracy

AUC Overall  
Accuracy

Sensitivity Specificity MCC Precision BAC

1 RBF C = 32 
G = 0.0078

83% 0.88 87% 86% 87% 0.73 84% 0.87

Linear C = 0.125 82% 0.88 84% 81% 87% 0.68 82% 0.84
2 RBF C = 8 

G = 0.125
82% 0.87 85% 84% 85% 0.69 80% 0.84

Linear C = 0.125 79% 0.87 82% 84% 80% 0.64 76% 0.82
3 RBF C = 128 

G = 0.0019
80% 0.88 81% 79% 82% 0.62 78% 0.81

Linear C = 0.5 80% 0.88 80% 79% 81% 0.60 76% 0.80

Abbreviations: AUC, Area under Curve; MCC, Matthews Correlation Coefficient; BAC, Balanced Accuracy.
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Additional validation using ChEMBL-
NTD datasets
While we were developing the models, three novel 
datasets of proliferation inhibitors of P. falciparum 
were submitted to the ChEMBL-Neglected Tropi-
cal Disease database (www.ebi.ac.uk/chemblntd) 
from three sources namely: GSK TCAMS Data-
set, Novartis-GNF Malaria Box Dataset and St. 
Jude Children’s Research Hospital Dataset.32–35 We 
used the datasets to perform additional testing on 
the model developed by us. Prior to screening, we 
ensured that none of the compounds in these datasets 
overlaps with those in the training dataset. Two such 
overlapping entries found in Novartis-GNF Malaria 
Box Dataset were removed before screening. The 
performance of the SVM model over these datasets 
is shown in Table  5. The SVM model correctly 

predicted 89% (12082/13519), 83% (4750/5692), 
and 90% (1384/1535) of the experimentally veri-
fied inhibitors in the GSK, Novartis and St. Jude’s 
datasets respectively. These results suggest that 
the SVM model is equally effective in identifying 
potential hits in virtual screening of large libraries 
with reasonable AD.

Virtual screening of inhibitors
We have utilised the best SVM model based on 
0D, 1D and 2D descriptor category for identifying 
further novel inhibitors from NCI diversity collec-
tion of 1364 compounds. Only 1328 compounds 
passed through the descriptor calculation. First we 
tested, if all 1328 compounds were within the AD 
of the model using the first three principal com-
ponent ranges of the 184 descriptors (as described 
in the methods). About 70 compounds violated the 
descriptor ranges observed for compounds in the 
training set. Therefore we considered them unre-
liable for prediction. The outliers were discarded 
and the remaining 1257 compounds were predicted 
using best SVM model. The model predicted about 
580 compounds as positive and remaining 677 as 
negative. In the NCI diversity set, we observed 
that there were four known proliferation inhibi-
tors which were correctly classified. The predicted 
compounds were prioritised according to the prob-
ability score of LIBSVM. Further, we compared 
predicted active compounds to those in the train-
ing dataset, to check their similarity in terms of 
Tanimoto coefficient. The Tanimoto coefficient 
for the 580 predicted positive NCI diversity set 
compounds against the 290 positive training com-
pounds ranged from 0.98 to 0.24. Some of the pre-
dicted active compounds and their corresponding 
maximum Tanimoto score to the compounds in the 
training data are shown in Table 6.

Table 5. Performance of the SVM model in validating ChEMBL-NTD datasets.

Dataset Number of active  
compounds in the dataset

Number of compounds  
correctly identified

Percentage  
of true hits

GSK TCAMS dataset 13519 12082 89%
Novartis-GNF malaria  
box dataset

5692 4750 83%

St. Jude children’s research  
hospital dataset

1384 1535 90%

30
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−10

−10 −5 0 5 10 15 20 15 10 5 0 −5 −10
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P
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2
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Active

Inactive

Figure 2. Visualization of chemical space in testing dataset. The figure 
illustrates the compounds in the independent testing dataset lying within 
the applicability domain of the classifier.
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Table 6. Selected virtual hits from NCI diverse set collection.

Molecule Structure Molecular  
weight

Tanimoto  
score

Methyl 18-((4-aminobenzoyl)oxy)-11, 
17-dimethoxyyohimban-16-carboxylate

533.623 0.95

3-(3,4-dihydroxyphenyl)-1-(2- 
hydroxyphenyl)-2-propen-1-one

O

HO

HO

HO 256.257 0.86

1-(1-naphthyloxy)-3- 
(4-phenyl-1-piperazinyl)-2-propanol

N

N
O

HO

362.471 0.91

(1,2-dimethyl-1H-indol-3-yl) 
(phenyl)methanone

N

O

CH3

CH3

249.312 0.90

1-hydroxy-4-(4-(2-hydroxyethyl)anilino) 
anthra-9,10-quinone

OOH

HN

OH

O

359.381 0.80

1,10-dimethoxy-6-methyl-5,6,6a, 
7-tetrahydro-4H-dibenzo[de, g] 
quinoline-2,9-diol O

N

O

OH

OH

CH3

CH3

H3C

327.379 0.95

(Continued)

O

O O

O

O

O

H3C

H2N

CH3

CH3

H
N

N
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Table 6. (Continued)

Molecule Structure Molecular  
weight

Tanimoto  
score

methyl 6-methyl-9, 
10-didehydroergoline-8-carboxylate O N

NH

O

H3C

CH3 282.341 0.88

4-(2-(6-quinolinyl)vinyl)aniline

N

H2N

246.311 0.58

1-(3-chlorophenyl)-3-ethyl-5- 
(2-phenylvinyl)-1,2,3,4- 
tetrahydropyrimido 
[5,4-c]quinolin-9-yl methyl ether

N

O
Cl

NN CH3

H3C 455.985 0.51

Conclusion
The SVM model based on 184 0D, 1D and 2D 
descriptors of the inhibitors exhibited the high-
est accuracy with lower false-hit rate. The selected 
molecular descriptors have sufficiently captured the 
features required to discriminate P. falciparum intra 
erythrocytic cycle proliferation inhibitors from non-
inhibitors. The predictive power of the optimized 
model with good performance on three additional 
validation (ChEMBL-NTD) datasets indicates that 
it can be equally effective in selecting potential 
hits in screening large libraries. Several new com-
pounds predicted as inhibitors from NCI diverse 
set have shown good similarity to the known pro-
liferation inhibitors. The SVM model developed in 
this study is fast and precise enough to be applied 
for large scale screening of proliferation inhibitors 
of P. falciparum. The large repositories of chemi-
cal compounds, for example PubChem and ChEM-
BL-NTD can be a rich source for generating such 

quality predictive models. Efforts to publish more 
bioassays for neglected diseases like malaria would 
benefit from such data mining techniques to support 
decision-making in drug discovery. However the 
generalization capability of a model largely depends 
on the quality and the diversity of the data set. Such 
models can be ideal for quick screening of potential 
bioactive molecules from large chemical libraries 
and facilitate lead identification.
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