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Abstract: SNP allelic copy number data provides intensity measurements for the two different alleles separately. We present a method 
that estimates the number of copies of each allele at each SNP position, using a continuous-index hidden Markov model. The method 
is especially suited for cancer data, since it includes the fraction of normal tissue contamination, often present when studying data from 
cancer tumors, into the model. The continuous-index structure takes into account the distances between the SNPs, and is thereby appro-
priate also when SNPs are unequally spaced. In a simulation study we show that the method performs favorably compared to previous 
methods even with as much as 70% normal contamination. We also provide results from applications to clinical data produced using the 
Affymetrix genome-wide SNP 6.0 platform.
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1. Introduction
DNA in tumor cells can contain abnormalities in 
the form of copy number aberrations such as seg-
ments with losses or gains of one or several copies of 
either allele. The lengths of such aberrations can vary 
between short segments up to an entire chromosome, 
and their positions are essential both for detecting and 
for improving knowledge of various sorts of cancer. 
Therefore, methods that localize copy number aberra-
tions are of great importance. In addition to changes 
in the total copy number of both alleles together, 
changes in the allelic copy numbers, ie, the number 
of copies of each allele, are also important. We denote 
the two different alleles at a given genomic location 
by A and B, so that for normal cells the possible geno-
types are AA, AB and BB. One example of a genotype 
aberration is loss of heterozygosity (LOH), for which 
the only attainable genotypes are AA and BB.

Different techniques to measure DNA copy num-
bers have been developed, as have methods to evalu-
ate the measurement data. One technique is array 
comparative genomic hybridization (aCGH), which 
provides ratios of the copy numbers of a sample 
DNA, compared to those of some reference DNA. 
Several different statistical methods have been 
applied to this kind of data, including different seg-
mentation methods,4,20,21 smoothing6,12 and hidden 
Markov models.1,7,9,16,19,24,27,28,29 aCGH data provides 
information only about the total copy number and 
gives no information about the amount of each allele. 
Another drawback with such data is the limited num-
ber of probes on the arrays. For this reason there is 
an increased use of single nucleotide polymorphism 
(SNP) data, which offers denser measurements and 
provides intensities for the two alleles separately. 
Using SNP data it is possible not only to estimate 
copy number changes, but also to find allelic changes 
such as LOH. Indeed, a copy number amplification 
may be caused by different allelic changes. For exam-
ple, a copy number of four could correspond either 
to {AAAA, AAAB, ABBB, BBBB}, to {AAAA, 
AABB, BBBB} or to {AAAA, BBBB}, depending 
on which allele that has gained extra copies.

SNP data has previously been analyzed using 
various sorts of methods, such as smoothing11,15 and 
pattern recognition.22 The most frequently used meth-
ods are however based on hidden Markov models 
(HMMs).3,8,13,17,18,26,30,31 A brief introduction to Markov 

chains and HMMs is found in Appendix 1. HMMs suit 
SNP data well since genomic alterations often appear 
in longer or shorter segments, implying that copy 
numbers across probes in a small genomic region 
are correlated. For example, Wang et al31 and Colella 
et al3 model SNP data from the Illumina array, which 
provides log R ratio data (log2-ratio of total observed 
intensities to total expected intensities) and BAF data 
(normalized measure of the relative intensities of the 
two alleles), using an HMM with six states, while 
Sun et al30 apply a more comprehensive model with 
nine states. Korn et al13 combine an HMM to model 
copy number variants with a clustering algorithm to 
detect genotypes. Li et al18 also model the proportion 
of the major allele while Lamy et al17 use both allelic 
intensities provided by the Affymetrix array and 
model them using bivariate Normal distributions.

Several of the methods above assume that the 
ploidy, ie, mean copy number, of a chromosome is 
two. This holds for normal cells, but cancer cells are 
anueploid, ie, their ploidy may differ from two. The 
necessity for considering ploidy when modeling can-
cer data is well described by Greenman et al,8 but in 
brief one can say that the measured normalized inten-
sity for a probe in a diploid chromosome is twice as 
large as for a probe with the same copy number in a 
quadroploid chromosome. Two methods that include 
ploidy are those of Attiyeh et al2 and Greenman et al,8 
which both contain a pre-processing step in which 
the ploidy is estimated. Greenman et al then con-
tinue by using an HMM while Attiyeh et al apply a 
 window-based model.

Another feature common in tumor samples, arising 
from the difficulty to dissect tumor cells only from a 
tissue sample, is contamination of the tumor cell sam-
ple by normal cells. As a result the measured allelic 
intensities are mixtures of intensities from tumor and 
normal cells, thus yielding non-integer DNA copy 
numbers. One way to incorporate such contamination 
is to model total copy numbers of the mixed sample 
in a non-parametric way,2,29 but this provides limited 
information about the copy numbers of the cancer 
cells. Sun et al30 estimate the fraction of normal tis-
sue contamination using an empirical method and 
Colella et al3 write that it is possible to extend their 
method to handle contamination, but without being 
more specific. Li et al18 show that their method can 
handle a fraction of normal tissue contamination up 
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to 30%, while Lamy et al17 report a simulation study 
with slightly better results. Some tumors however 
form in a manner such that even with microdisection, 
a significant proportion of normal cells (say 50% or 
more) can arise in the sample, and none of the above 
methods provide results that are satisfactory for such 
high fractions of normal tissue contamination.

The purpose of the present paper is to devise a 
method to estimate allelic copy numbers, with ploidy 
and fraction of normal tissue contamination integrated 
in the model. Indeed, in all of the above papers, ploidy 
and/or normal fraction are estimated by adding more 
or less ad-hoc steps to a model that does not account 
for these parameters in itself. The model reported 
here is thus particularly suited for cancer data, for 
which both of these features are  common. By includ-
ing these parameters in the model they can be esti-
mated alongside the other parameters using all data, 
rather than adding a pre-processing step or empirical 
methods using only a small subset of the data. In the 
simulation study presented below, samples with 30%, 
50% and 70% normal contamination are simulated 
and even for the largest amount of contamination, 
97% of the probes are reconstructed to the correct 
copy number state.

An additional feature of our model is that it is 
based on a continuous-index Markov chain, which 
accounts for the fact that the SNP probes are often 
unevenly spread over the genome. The relevance 
of a continuous-index model was highlighted by 
Gupta and Mitra10  (Section 5.3) for the different but 
related problem of classifying regions of DNA as 
nucleosome free regions (NFR) or non-NFR using a 
two-state HMM. Indeed, they showed that with irreg-
ularly spaced probes, a continuous-index model can 
provide substantially better results than a discrete-
index model; 99% vs. 85% or 68% correct classifica-
tions in simulations for two different arrangements 
of the probes. Also the methods by Wang et al,31 
Colella et al3 and Li et al,18 who apply discrete-index 
HMMs to SNP data, aim to take distances between 
probes into account by  letting the Markov transition 
probabilities depend on these distances in different 
ways. Common to all of these methods is however 
that the stipulated transition probabilities violate 
the  Chapman-Kolmogorov equation of Markov 
chains. That is, letting P(t) be the matrix of transition 
probabilities over a distance t between two probes, 

the equality P(t1 + t2) = P(t1)P(t2) does not hold. In 
essence this means that there is in fact no Markov 
chain with the given transition probabilities.

The paper is organized as follows. The model is 
described in in Section 3. Section 4 provides results 
from a simulation study as well as from an applica-
tion to clinical data. Concluding remarks are given in 
Section 5.

2. Data
The data used in this study are the cancer samples 
in Greenman et al,8 produced using the Affymetrix 
genome-wide SNP 6.0 platform. We applied the 
algorithm to about 15 different cell line and primary 
tumor samples, representing various cancer forms 
including breast, lung and renal cancer. The primary 
tumor sample PD1753a for which results are reported 
in Section 4.2 are from a clear cell renal cell carci-
noma sample.32 

For probes at SNPs the intensities of the two dif-
ferent alleles are provided, while at other positions 
only a single total copy number intensity is available. 
 Following Greenman et al,8 the intensities are normal-
ized by first dividing each measurement by the total 
intensity of the sample (ie, the sum of all probe inten-
sities over the entire genome), to remove chip-to-chip 
variation. The mean signals for each allele (or probe 
at non-SNP positions) are then transformed into a 
copy number intensity and a genotype intensity that 
are indicators of total copy number and allelic ratio 
 dosages. The model presented below incorporates 
intensities for SNP probes only, but is easily extend-
able to include also probes measuring total copy num-
ber only; we elaborate on this further in the Discussion. 
The cancer data is available from the Cancer Genome 
Project, subject to a manual transfer agreement, and 
our Matlab code is available on the WWW.33

3. The Model
3.1. Basic structure
Let there be Nc probes on chromosome c, and denote 
these probes as probe (k, c), k = 1, 2, …, Nc. The 
genomic location of probe (k, c) is denoted by tkc, 
measured in the unit base pairs (bp) starting from the 
beginning of the chromosome. We denote the two dif-
ferent alleles at any genomic location by A and B. We 
will write g = (gA, gB) for the allelic copy numbers, 
ie, gA and gB are the number of copies of the A and B 
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allele respectively. For example, the genotype AAB 
corresponds to g = (2, 1). Obviously the genotype and 
the allelic copy numbers are in a one-to-one corre-
spondence to each other, and at times we will make 
no real distinction between the two. The allelic inten-
sities are modeled using an HMM for which each 
state i corresponds to one genotype set Gi as speci-
fied in Table 1. The Markov chain can be extended to 
include more states with copy numbers above six, but 
the model as stated here has proved to be enough for 
the studied samples. To explain the genotype sets in 
Table 1, we note that through  cancer development any 
region in the genome starts with one parental copy of 
each region and ends up with m copies of one allele 
and n copies of the other. If the genotype was origi-
nally AA or BB then the genotype will be (m + n)A or 
(m + n)B, respectively. If the SNP was heterozygous 
then we must end up with either mA and nB, or mB 
and nA. These are the genotypes indicated in Table 1. 
We refer to state 4, with genotype set {AA, AB, BB} 
as the normal state, and by an abnormal state we 
mean any other state.

For each chromosome c the sequence of copy 
number states, according to Table 1, is modeled by a 
continuous-index Markov chain (Xc(t))t1ctTc

, where 
t and Tc are respectively the genomic location (in bp) 
within the chromosome and the length (in bp) of 
the chromosome. The Markov chains for different 

 chromosomes are assumed independent. The genomic 
location (in bp) is, strictly speaking, a discrete vari-
able, but since the number of bp’s within a chromo-
some is much larger than the number of jumps of the 
Markov chain, the error caused by using a continuous 
approximation is negligible. With a discrete- index 
model the Markov transition probabilities would 
either be very close to unity (for staying in the same 
state from one bp to another) or close to zero (for 
changing state), and dealing with such probabilities is 
unstable numerically. For a continuous-index model, 
using transition rates rather than probabilities, this 
problem does not exist.

With 16 different states there are 240 different 
types of jumps and equally many transition rates (per 
chromosome). It is infeasible to estimate such many 
rates, and to make the model more parsimonious we 
assume a large number of them to agree.  Specifically 
we assume, for chromosome c, a common rate λc 
for jumps from any state (normal or abnormal) to 
the group of abnormal states, with each such state, 
except for the current one in case the chain resides in 
an abnormal state, being equally likely, and another 
common rate ηc for jumps to the normal state from 
any abnormal state. The total rate out of any abnormal 
state, for chromosome c, is thus λc + ηc. This dynamic 
provides Markov chains whose stationary versions 
are time-reversible.29 Finally we let δic = P(Xc(t1c) = i) 
denote the initial probability for Markov state i in 
chromosome c.

Write ykc = (yAkc, yBkc) for the measured allelic inten-
sities at probe (k, c). Greenman et al8 studied the corre-
lation between the allele A and B intensities, for each 
probe, using 460 wild-type samples. For probe (k, c), 
plotting the two allele intensities for all wild-type 
samples against each other reveals three clusters (see,8 
Figure 1, for an example). These clusters correspond 
to the genotypes AA, AB and BB, with the coordinates 
of the cluster centers written as (A0kc + 2A1kc, B0kc), 
(A0kc + A1kc, B0kc + B1kc) and (A0kc, B0kc + 2B1kc) respec-
tively for suitable parameters A0kc, B0kc, A1kc and B1kc. 
These parameters were all estimated by Greenman 
et al8 using the wild-type samples. Their interpretation 
is that A0kc is the background intensity of the A allele 
(at diploid probes BB), and A1kc is the increase in A 
allele intensity from BB to AB and from AB to AA; 
B0kc and B1kc have analogous interpretations.

Table 1. genotype sets for the different states of the 
Markov chain, sorted in the order given by the total copy 
number and copy number of the minor allele.

state i (Total cn, minor cn) Genotype set Gi

 1 (0,0) { }
 2 (1,0) {A, B}
 3 (2,0) {AA, BB}
 4 (2,1) {AA, AB, BB}
 5 (3,0) {AAA, BBB}
 6 (3,1) {AAA, AAB, ABB, BBB}
 7 (4,0) {4A, 4B}
 8 (4,1) {4A, 3AB, A3B, 4B}
 9 (4,2) {4A, 2A2B, 4B}
10 (5,0) {5A, 5B}
11 (5,1) {5A, 4AB, A4B, 5B}
12 (5,2) {5A, 3A2B, 2A3B, 5B}
13 (6,0) {6A, 6B}
14 (6,1) {6A, 5AB, A5B, 6B}
15 (6,2) {6A, 4A2B, 2A4B, 6B}
16 (6,3) {6A, 3A3B, 6B}
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Figure 1. Proportions of probes at which the Markov state was incorrectly reconstructed by the Viterbi algorithm with MAP parameter estimates computed 
by the eM algorithm. Markov transition rates were λc = ηc = 10−7 (top left), λc = 10−7, ηc = 10−9 (top right), λc = 10−9, ηc = 10−7 (bottom left), λc = ηc = 10−9 
 (bottom right) (unit: bp−1). Confidence intervals were obtained by exponentiating two-sided 95% student-t confidence limits based on the log-proportions 
for 10 genome replicates.

Further denote by (µAkcg, µBkcg) the mean allele A and 
B intensities at probe (k, c) for allelic copy  numbers 
g = (gA, gB). The cluster centers above then write

 

µ µ µkcg kcg kcg

kc kc kc kcA g A B g B
=

+ +
( , )
( , ),

A B

A B= 0 1 0 1  (1)

and this model applies for the normal Markov state 
i = 4, ie, for allelic copy numbers such that gA + gB = 2. 
Moreover, the clusters in Greenman et al8 (Fig. 1) are 
tilted ovals, indicating that the intensities for alleles 
A and B are correlated and have unequal variances. 
Greenman et al8 found that a suitable model for the 
covariance matrix is

 
∑ =









kcg kc

kcg

kc kcg kcg

kc kcg kcg

kcg
v

µ

ρ µ µ

ρ µ µ

µ
A

A B

A B

B

2

2 ;  (2)

note that the variances are taken proportional to the 
squared means. The probe-specific variance factors 
vkc and correlations ρkc, as well as the means param-
eters A0kc, B0kc, A1kc and B1kc described above, were 
all estimated by Greenman et al8 using the wild-type 
samples and assuming a bivariate Normal  distribution 
for each cluster.

We now carry this model further by assuming 
that for each probe, the allele intensities follow the 

 mean-variance model given by Eqs. (1)–(2) also for 
genotypes (gA, gB) for which gA and gB do not sum to 
two, ie, for all pairs (gA, gB) corresponding to geno-
types listed in Table 1. That is, we assume that the 
response from amount of each allele on the microar-
ray to measured intensity is linear, with the variance 
also increasing linearly. In reality the allelic intensi-
ties have a linear response for lower copy numbers, 
while at higher copy numbers the intensities start 
to saturate and our method is approximate. This 
could be adjusted for by a non-linear transforma-
tion, cf.  Section 5, but we have not attempted such an 
 adjustment in the  analyses presented in this paper.

The above model specifies the conditional density 
of Ykc given a particular genotype. To specify the con-
ditional density of Ykc given a Markov state, we recall 
that each Markov state has a genotype set comprising 
between one and four different genotypes. Thus the 
conditional density of Ykc, given the state, is a mixture 
of bivariate Normal distributions for which each mix-
ture component represents a different genotype. The 
mixture weights were taken as the Hardy-Weinberg 
weights; for the copy number-aberrated genotypes, 
Hardy-Weinberg was used to compute the germline 
genotype proportions. Thus letting pkc be the allele 
frequency for an A allele at probe (k, c), the prob-
ability for the different genotypes, denoted by wkcig, 
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are the binomial probabilities pkc and 1 − pkc for states 
with two genotypes, p2

kc, 2pkc(1 − pkc) and (1 − pkc)
2 for 

states with three genotypes, and p2
kc, pkc(1 − pkc), pkc 

(1 − pkc) and (1 − pkc)
2 respectively for states with four 

different genotypes. The frequencies pkc were also 
estimated by Greenman et al,8 using the wild-type 
samples. The conditional density for a measurement 
Ykc given the Markov state, often referred to as the 
emission density of the HMM, thus writes

 
f y i w f y gY X t kcig Y G

g G
kc c kc kc kc

i

| ( ) |( | ) ( | ),=
∈
∑  (3)

where Gkc is the allelic copy numbers for probe (k, c) 
and fYkc|Gkc

 (⋅|g) is the bivariate Normal density with 
mean and covariance matrix as in Eqs. (1)–(2).

As pointed out in the introduction we include the 
ploidy K, ie, average copy number over the entire 
genome, in the model to make it suitable for cancer data. 
The ploidy is defined genome-wide and not per chro-
mosome, as the probe intensities are normalized per 
genome. The HMM described above models the nor-
malized intensities, and its parameters were estimated 
for wild-type samples (ie, diploid samples; K = 2). For 
a sample with K . 2 the normalized intensities will 
thus be smaller by a factor 2/K (on average), so that the 
model for the normalized intensities becomes

 
Y G g N

K Kkc kc kcg kcg
| ~ , .= 



∑2 4

2µ  (4)

This completes the specification of the basic 
model. As described above, the parameters A0kc, A1kc, 
B0kc, B1kc, vkc, ρkc and pkc were all estimated from the 
wild type samples, and were thus considered as fixed 
when the model was applied to cancer cell data. The 
intensities λc and ηc, the initial probabilities δc and the 
ploidy K were on the other hand estimated from the 
actual cancer data.

3.2. Normal tissue contamination
As mentioned above it is often difficult to dissect can-
cer cells without including any surrounding normal 
tissue, ie, diploid tissue. Such contamination implies 
that the measured allelic intensities correspond to a 
mixture of cancer and normal cells. We denote the 
fraction of normal tissue in the sample by γ, and con-
sequently the fraction of tumor tissue is 1 − γ. Then 
for a given probe with, as above, copy numbers 

gA and gB or alleles A and B in the tumor but also copy 
numbers gN

A and gN
B for the two alleles in the normal 

tissue, we assumed the same mean-covariance model 
as in Eqs. (1)–(2), but with (gA, gB) replaced by

 ( , ) (( ) , ( ) ) .g g g g g gA B A A
N

B B
Nγ γ γ γ γ γ= − + − +1 1  (5)

Similarly, the conditional distribution of Ykc given 
Markov state i is a mixture of bivariate Normals, but 
now each four-tuple (gA, gB, gN

A, gN
B) contributes to a 

component of that mixture. Thus, the number of mixture 
components will for some Markov states be larger than 
without normal tissue contamination (see Table 2).

The weights for the combined genotypes are 
 Hardy-Weinberg weights as in the model without 
 normal contamination. For example, for a state in 
Table 2 with three combined genotypes, the weights 
are p2

kc, 2pkc(1 − pkc) and (1 − pkc)
2 respectively.

3.3. estimation of parameters  
and the Markov path
The parameters estimated from a tumor sample are 
the transition rates λc and ηc, the initial probabilities 
δc, the ploidy K and also the fraction γ of normal  tissue 
contamination.

Table 2. Combined genotype sets for the different states of 
the Markov chain, in a model with normal contamination γ. 
The weights for the respective combined genotypes are 
the hardy-Weinberg weights as in the model without nor-
mal tissue contamination, and the total and minor copy 
numbers for the abberated components are as in Table 1.

state i combined genotype set Gi

 1 {2γA, γAγB, 2γB}
 2 {(1 + γ)A, AγB, γAB, (1 + γ )B}
 3 {2A, (2 − γ)AγB, γA(2 − γ)B, 2B}
 4 {AA, AB, BB}
 5 {(3 − γ)A, (3 − 2γ)AγB, γA(3 − 2γ)B, (3 − γ)B}
 6 {(3 − γ)A, (2 − γ)AB, A(2 − γ)B, (3 − γ)B}
 7 {(4 − 2γ)A, (4 − 3γ)AγB, γA(4 − 3γ)B, (4 − 2γ)B}
 8 {(4 − 2γ)A, (3 − 2γ)AB, A(2 − γ)B, (4 − 2γ)B}
 9 {(4 − 2γ)A, (2 − γ)A(2 − γ)B, (4 − 2γ)B}
10 {(5 − 3γ)A, (5 − 4γ)AγB, γA(5 − 4γ)B, (5 − 3γ)B}
11 {(5 − 3γ)A, (4 − 3γ)AB, A(4 − 3γ)B, (5 − 3γ)B}
12 {(5 − 3γ)A, (3 − 2γ)A(2 − γ)B, (2 − γ)A(3 − 2γ)B, 

(5 − 3γ)B}
13 {(6 − 4γ)A, (6 − 5γ)AγB, γA(6 − 5γ)B, (6 − 4γ)B}
14 {(6 − 4γ)A, (5 − 4γ)AB, A(5 − 4γ)B, (6 − 4γ)B}
15 {(6 − 4γ)A, (4 − 3γ)A(2 − γ)B, (2 − γ)A(4 − 3γ)B, 

(6 − 4γ)B}
16 {(6 − 4γ)A, (3 − 2γ)A(3 − 2γ)B, (6 − 4γ)B}
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For a model like the present one, the maximum-
likelihood estimator (MLE) typically overestimates 
the transition rates λc and ηc

25 (Section 4.3), thereby 
letting an aposteriori reconstruction of the Markov 
chain trajectory capture also very short transients of 
the observed data. When using the EM algorithm to 
compute the MLE, this becomes visible as an over-
estimated number of jumps of the Markov chain. In 
order to control the jumps and make their number 
biologically plausible, we take a Bayesian approach 
and penalize overly large transition rates by placing 
Gamma distribution priors on each λc and ηc. Other 
parameters are assigned uniform (flat) priors. All 
parameters are apriori independent. We then compute 
the maximum aposteriori (MAP) parameter estimate 
using the EM algorithm, by incorporating the priors 
into the M-step5 (p. 6). Otherwise this algorithm is 
a variant of the EM algorithm described by  Roberts 
and Ephraim,23 designed to estimate parameters 
of a  continuous-index HMM observed at discrete 
 positions. The method is detailed in Appendix 2.1.

Finally, to construct an estimate of the trajectory 
of the hidden Markov chain we use a Viterbi algo-
rithm adapted to continuous-index Markov chains 
(see Appendix 2.2).

4. Results
4.1 Application to simulated data
To evaluate our method’s ability of making correct 
reconstructions for different amounts of normal con-
tamination, we simulated data from the assumed 
model, computed MAP parameter estimates using the 
EM algorithm, reconstructed the hidden Markov chain 
using the Viterbi algorithm, and finally computed the 
proportion of probes at which the Markov state was 
correctly reconstructed. For each simulated dataset we 
first simulated the Markov chain and the genotypes for 
each probe position, then computed µkcg and Σkcg using 
Eqs. (1)–(2), Eq. (5) and the fixed A0, A1, B0, B1, ρ and 
v (estimated from the wild-type samples), and finally 
simulated data from the bivariate Normal distributions 
of Eq. (4) with K = 2. Note that the actual value of K is 
irrelevant for these simulations, since the model given 
by Eqs. (1)–(2) describes the data after normalization.

The simulations were carried out for 30%, 50% 
and 70% normal contamination, and transition rates 
λc = ηc = 10−7, λc = 10−7 and ηc = 10−9, λc = 10−9 and 
ηc = 10−7, and λc = ηc = 10−9 (in units of bp−1)  respectively. 

For each combination of contamination and rates, 
10 replicates were simulated. For the Gamma priors of 
λc and ηc we chose shape parameter 2 and means equal 
to the true transition rates. These choices yield priors 
that are not overly informative, but which are concen-
trated enough on small values to prevent the Markov 
chain from jumping too frequently in our samples.

To verify the convergence of the EM algorithm we 
present the EM iterations for three different simulated 
replicates in Figure 2. The proportions of incorrectly 
reconstructed probes are plotted in Figure 1.

These results can be compared to those from the 
simulation study by Lamy et al.17 For a normal con-
tamination of 30% the results are similar, but for 45%, 
which is the largest fraction studied by Lamy et al, 
their method provides 8%–18% incorrectly estimated 
probes while at 50% contamination our model pro-
vides an error rate below 1%. In addition, the pres-
ent model performs well even at such a high amount 
of normal contamination as 70%, when the Markov 
state is correctly reconstructed at more than 97% of 
the probes. Obviously the differences between our 
results and those of Lamy et al depend not only on the 
different estimation algorithms but also on differences 
between the number and location of the probes, and 
on the model for the observed allele intensities and 
its parameters. However, given the magnitude of the 
 performance improvement, a significant part of it must 
be attributed to the estimation algorithm as such.
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Figure 2. estimates of normal contamination γ for iterations 1–10 of the 
eM algorithm and three simulated replicates with different values of γ: 
γ = 0.3 (top), γ = 0.5 (middle), and γ = 0.7 (bottom). The initial value for γ 
was 0.5 in all simulations.
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4.2. Application to clinical data
We applied our method to a number of samples 
from the data described in Section 2. An example 
is displayed in Figure 3, which shows the Viterbi 
reconstruction of the Markov chain as well as the cor-
responding copy numbers compared to the data, for 
chromosome 3 in primary sample PD1753. For the 
Gamma priors for λc and ηc we chose shape param-
eters 2 and means 10−15.

The reconstruction divides the chromosome into 
two regions, reconstructed to state 2 ({A, B}) and 
state 4 ({AA, AB, BB}) respectively. As a simple 
check of this reconstruction we plotted the stan-
dardized allele intensities against each other for all 
probes in the respective region (Figs. 4–5). Figure 5, 
 corresponding to the normal state, shows three clus-
ters representing the three genotypes AA, AB and 
BB, while Figure 4 shows four clusters. In Table 1 
state 2 is associated to two genotypes, A and B, but 
with normal contamination this state comprises four 
combined genotypes (1 + γ)A, AγB, γAB and (1 + γ)B 
(Table 2). Here γ is estimated at 0.53.

For some of the genomes the values of A0kc, A1kc, 
B0kc and B1kc needed small adjustments before applying 
our model; without it, the model did not produce a rea-
sonable fit. A possible explanation for this adjustment 
being required is a drift in the measured  intensities 
from when data from the wild-type samples, used to 
estimate most model parameters, was collected, to 

when the tumor samples were analyzed. A suitable 
construction of the adjustment was as a common, ie, 
genome-wide multiplier c0 for all A0kc and B0kc, and 
another common multiplier c1 for all A1kc and B1kc. The 
multipliers c0 and c1 were estimated using data from a 
chromosome segment known to belong to the normal 
state. The data within this segment was clustered into 
three parts using the k-means algorithm, and then c0 
and c1 were estimated by a least squares fit.

5. Discussion
We have presented a method to estimate the number 
of copies of each of the two alleles in SNP data, taking 
three features common in cancer data into account; 
unequally spaced probes, aneuploidy, and normal 
contamination. Unequally spaced probes are modeled 
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Figure 3. Top: Viterbi reconstruction of the Markov path for chromosome 
3 in PD1753. Bottom: sum of (standardized) allele intensities for probes 
within the same chromosome (grey dots), and the copy number of the 
corresponding state (black solid line).
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Figure 4. Scatter plot of standardized measured allele intensities in the 
segment reconstructed to Markov state 2 in Figure 3. The fraction of 
normal contamination was estimated at 0.53.
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Figure 5. Scatter plot of standardized measured allele intensities in the 
segment reconstructed to Markov state 4 in Figure 3.
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using a continuous-index Markov chain instead of a 
discrete-index one, which is the usual choice in the 
literature. The ploidy and fraction of normal contami-
nation are both included as parameters in the model, 
which allows us to estimate them along with other 
variables and using all the data, rather than estimating 
them separately in a pre-processing step. This set-up 
also allows us to retain the integer structure of the 
allele copy numbers. The model’s ability to estimate 
the fraction of normal contamination has been dem-
onstrated in a simulation study, with the results being 
far better than for previous methods and excellent 
even with as much as 70% normal contamination.

Above we denoted Markov state 4, ie, the state with 
genotypes {AA, AB, BB}, the normal state, irrespec-
tive of the ploidy of the chromosome. The reason for 
singling out this particular state is that it is often par-
ticularly interesting whether the Markov chain is in 
this state or not, at any given probe. One could argue 
that if the ploidy differs from two this is not ‘normal’, 
but it is straightforward to select a different state as 
‘normal’ and then modify the transition rate structure 
and estimation algorithm accordingly.

The emission model, ie, Eqs. (1)–(4), assume that 
the means and variances of the measured intensities 
are both linear in the amount of each allele. In prac-
tice this assumption may fail, eg, because for large 
copy numbers the response is nonlinear. One could 
then include such a non-linearity in the model, and 
model the mean intensities as µkcg = hkc(g;θkc) where 
h is some function and θkc parameters of this function. 
Ideally the functional form h as well as all its probe-
speficic parameters θkc should be well estimated 
beforehand, so that they are essientially known when 
evaluating an unknown sample. Similar comments 
apply to the variance of the measured intensities.

In this paper we have only considered probes that 
provide allele-specific intensity measurements, but, 
as mentioned in Section 2, microarrays often also 
contain probes that measure the total copy num-
ber only, ie, the sum of the number of alleles. Such 
probes can easily be included in our model by spe-
ficying a corresponding suitable emission density, 
ie, a density corresponding to Eq. (3). For instance, 
this could be a univariate Normal density with mean 
µkcg = C0kc + C1kc(gA + gB) and variance σ 2kcg = νkc µ 2kcg 
for parameters C0kc, C1kc and νkc that again need to 
be estimated prior to analyzing an unknown sample. 

Should the response function from total copy number 
to intensity not be linear for large copy numbers, this 
could be handled similarly to what can be done for 
SNP probes; cf. the previous paragraph.

Finally we mention some possible limitations of our 
method. Firstly, the accuracy of the method is likely to be 
reduced in regions of very high copy number where signal 
saturation occurs, such as in amplicons, and bespoke non-
linear adjustments may be required (as discused above). 
Secondly, we have ignored copy number polymorhisms. 
These will produce  non-integer copy numbers in the can-
cer sample due to the skewed ratio between the cancer 
and the contaminating  normal. If copy number data is 
available for the normal, it may be possible to genera-
lise these methods to make such an adjustment, however, 
such regions are generally a lot smaller in scale than the 
somatic copy number changes seen in cancer and were 
not considered  further. Lastly, we have assumed that the 
sample in question is derived from a homogeneous col-
lection of cells. However, cell-to-cell variation is quite 
possibly going to produce a lot of different clones with 
differing copy numbers, and more general methods will 
be required to deal with such complexities.

To sum up this paper, copy number variations in 
cancer are common and their accurate determina-
tion is important for determining homozygous dele-
tion, amplifications and breakpoints, all of which can 
be functionally implicated in cancer. This problem is 
compounded by normal contamination, making the 
accurate estimation of integer copy numbers in cancer 
samples with normal contamination difficult. Here we 
have introduced a method that addresses this problem.
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Appendix
1. A primer on Markov chains  
and Hidden Markov Model
The purpose of this section is to provide a brief and 
rather elementary introduction to Markov chains 
with discrete and continuous index, and to hidden 
Markov models. A monograph entirely devoted to 
 bioinformatics applications of hidden Markov models 
is the text by Koski.14 

Consider a sequence t1, t2, …, tN of locations (in 
our case these will be probe locations), and a set 
{1, 2, …, r} of states (which will in our case be as in 
Tables 1 or 2). At any location tk there is an actual state 
x(tk) (ie, a true copy number state), which we think of 
as the realization of a random variable X(tk). These 
random variables are dependent, since copy number 
states at nearby probes are correlated. To model this 
dependence, we use Markov chains.

A discrete-index Markov chain (we use the term 
index rather than the more common ‘time’, since bp 
location is not a temporal variable) is specified by 
transition probabilities pij(tk−1, tk), giving the (con-
ditional) probability that if the chain happens to be 
in state i at location tk−1, it will move to state j at 
 location tk. For j = i, the probability concerns the event 
that the chain will stay in the same state, ie, not move 
at all. Implicit in this characterization is also the fact 
that if the states x(t1), x(t2), …, x(tk−1) at all foregoing 
locations t1, t2, …, tk−1 are known, this does not affect 
the conditional probability, which only depends on 
the state x(tk−1) at the closest location tk−1; this is the 
Markov property. To complete the specification of the 
Markov chain, we must also provide the initial prob-
abilities, ie, the probabilities that at the first location 
t1, the chain starts in state i for each respective state.

In our model, the probe locations tk are separated 
by different distances tk − tk−1, ie, these distances are 
not equal. We wish to incorporate this feature into 
the Markov model, so that the transition probabilities 
pij(tk−1, tk) do not only depend on the states i and j that 
the chain moves from and to respectively, but also on 
the distance hk = tk − tk−1 between the probes. One way 
to accomplish this is to think of the base pair location 
along a chromosome, which we denote by t, as a con-
tinuous variable rather than as a discrete one, and to 
model the state changes of the Markov chain using this 

continuous variable, or index. In contrast to a discrete-
index Markov chain, a continuous-index Markov chain 
is specified in terms of transition rates. For any state i 
and any other state j, ie, different from i, there is a tran-
sition rate qij from state i state j. For any state i we also 
define the total rate out of i, qi, as the sum of all transi-
tion rates out of this state, ie, qi = ∑j≠i qij. One way to 
interpret these rates is in terms of sojourn lengths and 
jump probabilities. Given that the chain has entered 
state i, it will stay there for a sojourn whose length is 
random and follows an exponential distribution with 
rate qi (mean 1/qi); the probability that this sojourn 
exceeds length s is thus the exponential exp(−qi  s). 
When then the chain eventually leaves state i, the prob-
ability that it jumps to state j is given by qij/qi.

For a continuous-index Markov chain it is also pos-
sible to compute the probability that for two locations 
tk−1 and tk separated by distance hk, if the chain is in 
state i at location tk−1, it will be in state j at  location tk. 
Denoting these probabilities by pij(hk) and collect-
ing then into an r × r matrix P(hk) (thus pij(hk) is the 
row i column j element of this matrix), it holds that 
P(hk) = exp(Qhk), where Q is the r × r rate matrix 
(or intensity matrix, or generator) with off-diagonal 
elements given by the transition rates qij and diago-
nal elements qii = −qi, ie, the negative of the total 
rates out of the respective states. Moreover, exp(Qhk) 
is the matrix-exponential function, defined by the 
power series exp(A) = I + A + A2/2! + A3/3! + … for 
any square matrix A, where I is the identity matrix, 
ie, a matrix of the same size as A and with diagonal 
elements equal to one and all off-diagonal elements 
being zero, and k! is the factorial 1 × 2 × …× k. This 
definition is a direct generalization of the power series 
for the  ordinary (real-valued) exponential function.

In a hidden Markov model (HMM), the Markov 
chain is not directly observable, but only as disturbed 
by noise. In the present setting the copy number state 
cannot be observed with certainty, but for any probe 
the intensity measurements, for each allele, provide 
partial information about the copy number state. In an 
HMM, the link between the state X(tk) at some  location 
tk and the corresponding measurement Yk (here, 
intensities) is specified through an emission density
f y iY X tk k| ( ) ( | ),  which is the conditional density of Yk 
given that X(tk) = i. In the present context the emission 
density is thus the density of the measured intensities 
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given a certain copy number state. Since there are two 
intensities available, one for each allele, the density is 
a bivariate one. Furthermore, since each copy number 
state (Markov state) contains several genotypes, the 
emission density for a copy number state is a mixture 
(weighted average) of densities corresponding to each 
of these genotypes; this is Eq. (3).

Specifying the HMM thus amounts to specifiying 
the structure and parameters of the Markov chain, 
and those of the emission densities. When this has 
been done, typical tasks are to i) estimate parameters 
from data, and ii) find the most likely realization of 
the Markov chain, given data. The first task, param-
eter estimation, is commonly carried out using the 
so-called EM (expectation maximization) algorithm, 
which is an iterative procedure that in each iteration 
increases the likelihood of the model parameters. The 
purpose is thus to iterate until convergence, and then 
to report the resulting parameters as the MLE (maxi-
mum likelihood estimate); convergence to the MLE 
is not guaranteed, however. For our HMM, the algo-
rithm is outlined in Appendix 2.1. The second prob-
lem above can be viewed as that of reconstructing the 
Markov trajectory, given data (and model parameters, 
usually estimated ones). This problem is solved using 
the so-called Viterbi algorithm, which is a dynamic 
programming algorithm that recursively finds the 
most likely path. This algorithm, for our HMM, is 
described in Appendix 2.2.

2. Methods
2.1 The eM algorithm
The parameters to estimate are the ploidy K, the 
fraction γ of normal tissue, and, for each chromo-
some c, the two transition rates λc and ηc and the 
initial distribution δc. Our starting point is the EM 
algorithm for continuous-index hidden Markov 
chains by Roberts and Ephraim.23 As latent (unob-
served) data we take the whole Markov trajectory 
(Xc(t))t1ctTc

 for each chromosome c, but the com-
plete likelihood involves only the sufficient statis-
tics consisting of the initial state Xc(t1c), the total 
lengths Tnc and Tac of sojourns in the normal state 
and in abnormal states respectively, and the num-
bers m ·ac and manc of jumps to abnormal states, and 
from abnormal states to the normal state respec-
tively, for chromosome c.

With these sufficient statistics, and recalling that 
each λc has a Gamma prior with shape and intensity 
parameters say αλ

c and βλ
c, and analogously for each 

ηc, the complete log-posterior, ie, the sum of the com-
plete log-likelihood and the log-prior, is, up to a con-
stant not depending on the parameters,

L m m

T

c
X t c c c c c

c
c c c c
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where θ = (δc, λc, ηc, K, γ ). Moreover, y = {ykc} is 
the collection of all data and X = {(Xc(t))} is the col-
lection of all (unobserved) Markov chain trajectories. 
The quantity to maximize in one iteration of the EM 
algorithm is

Q(θ;θ ′) = Eθ [L
c(θ ′;X,y)|y],

where maximization is with respect to θ′ and the 
notation Eθ indicates that the expectation is com-
puted under the current parameter (estimate) θ. 
Note that Lc(θ′;X,y) and hence also Q(θ;θ′) split 
into two distinct parts, one of which depends on 
(δc, λc, ηc) only and one of which depends on K 
and γ only.  Maximization with respect to (δc, λc, 
ηc) and with respect to (K, γ) can thus be carried 
out separately.

Also note that K and γ are common across the 
genome, and therefore estimated using the data for 
all chromosomes. For each iteration of the EM algo-
rithm we compute the forward and backward vari-
ables for each chromosome, store them, and then 
re-estimate K and γ using the information from all 
chromosomes.

The M-steps for the transition rates read

a an

a n a

ˆ ˆ1 1ˆ ˆ, ,ˆ ˆ ˆ
c c c c

c c
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m m
T T T

λ η

λ η
α α

λ η
β β

⋅− + − +
= =

+ + +

where a a 1 ,ˆ = [ | , , ]θ⋅ ⋅ cc c c c Nm E m y y  etc. Note that 
Tac + Tnc equal the length of the Markov chain tra-
jectory for chromosome c, ie, Tc − t1c, so that also 
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a n 1
ˆ ˆ

c c c cT T T t+ = − . Moreover, the M-step for the  initial 
distributions is

1 1 ,
ˆ ( ( ) | , , ).θδ = =

cic c c NP X t i y y

The M-step for the ploidy is
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For the fraction γ of normal contamination there is no 
closed form expression for the M-step, and to re-estimate 
γ we maximize Q(θ;⋅), as a function of γ, numerically. 
Note however that K̂ above depends on γ, which appears 
implicitly in the means µAkcg and µBkcg used to compute 
U and V. Therefore, by maximizing w.r.t. K′ (using the 
current γ) and then w.r.t. γ ′ (using the re-estimated K̂), as 
we do, and not w.r.t. K′ and γ′ jointly, we in fact obtain a 
generalized EM algorithm rather than an EM algorithm, 
in the terminology of Dempster et al5 (Eq. (3.5)).

The conditional expectations m̂  ·ac etc. are com-
puted in the E-step, which follows that of Roberts 
and Ephraim23 with minor changes. Now write yk:l,c 
for {ykc, yk+1,c, …, ylc}, and let mijc be the number of 
jumps by the Markov chain from state i to state j, in 
chromosome c. Then
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here the symbol P denotes probabilities as well 
as densities; note that Pθ(Xc(t) = j|Xc(t−) = i) = qijc, 
where qijc is the transition rate from state i to state j 
in chromosome c. Thus, with rabnormal being the num-
ber of abnormal states, qijc is equal to λc/rabnormal if i 
is the normal state and j is any abnormal state, equal 
to λc/(rabnormal − 1) if i and j are both abnormal states 
(because the chain cannot jump from a state to itself), 
and equal to ηc if i is any abnormal state and j is the 
normal state. Given the HMM structure it follows that 
y1:k−1,c and yk:Nc,c are conditionally independent given 
Xc(t−) = i and Xc(t) = j, whence

1 ,
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∑∫

with hkc = tkc − tk−1,c. Here, the two factors in the inte-
grand on the right-hand side are the forward and 
backward densities respectively.

To compute these factors, and similar ones, we use 
a forward-backward type algorithm. Let r be the num-
ber of Markov states, and let Bkc be the r × r diagonal 
matrix whose (i, i)-th element is the probability den-
sity function of ykc given Markov state i at position tkc, 
ie, f i yY X t kckc c kc| ( ) ( )=  in Eq. (3). Further let Fkc be the 
r × r matrix whose (i, j)-th element is

[ ] ( , ( ) | ( ) )

[exp( )] [ ]
,F P y X t j X t i

Q h B
kc ij kc c kc c k c

c kc ij kc

= = =

=
−θ 1

jjj ,

where Qc is the matrix with elements qijc, 
i, j = 1, 2, …, r for i ≠ j, and diagonal elements 
qcii being the negative of the total rate out of state 
i for  chromosome c (the row sums of Qc then 
become zero). We note that the discrete-index pro-
cess (Xc(tkc))1kNc, ie, the  continuous-index process 
(Xc(⋅)) sampled at the locations of the probes, is a 
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non-homogeneous  discrete-index Markov chain 
with transition probability matrices, from tk−1,c to tkc, 
given by exp(Qchkc). With this matrix notation we 
have Fkc = exp(Qchkc)Bkc, and the likelihood for chro-
mosome c can be written

p y B FN c c c kc
k

N

c

c

θ ( ): ,1 1
2

=





=
∏δ 1

where 1 is the r × 1 vector of all ones. The forward 
densities are
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where 1j is the r × 1 vector whose elements are zero 
except for element j which is one.

The backward densities are
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The above matrix multiplications are numerically 
unstable, as the products will either tend to zero or 
infinity exponentially fast as the number of factors 
increases. Therefore scaled versions of these recur-
sions are introduced. The scaled forward densities 
with normalizing constants dkc at probe (k, c) are

L k
B

d
F
dc

c c

c

c

c

k
( ) ,=

=
∏δ 1

1 2

κ

κκ

which we compute recursively as

L k L k F
dc

c kc

kc
( )

( )
=

−1

with d1c = δcB1c1, Lc(1) = δcB1c/d1c, dkc = Lc(k − 1)Fkc1. 
The scaled backward densities are
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F
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c
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( ) ,=
= +
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κ 1

which we compute as

R k F R k
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k c
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,
=

++

+

1
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1

with Rc(Nc) = 1.
Using these scales quantities, the matrix ˆ cm  with 

entries ˆ ijcm  can be expressed as

,ˆ ,c c k cm Q I ′= 

where  denotes element-wise multiplication and

I Q h t V Q t dtkc c kc c c
hkc= −∫ exp( ( )) exp( )
0

with
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.
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The integrals Ikc are evaluated using the matrix

D
Q V

Qc
c c

c
=





0

;

Ikc is then upper right r × r block of exp(Dchkc).
Finally, recalling that the normal state is state 4,

a
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Using similar types of computations is follows that

1: ,
ˆ ˆ[ | ] / ,

cic ic N c iic iicT E T y m q= =

where Tic is the total length of all sojourns of the 
Markov chain in state i within chromosome c. 
Moreover,

P X t i y L Rc N c c i c icθ ( ( ) | ) ( ) ( ) ,: ,1 1 1 1= ∝

and the conditional probabilities in the expressions 
for U and V are computed using
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P G g X i y P X i y
c kc kc N
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1

1 1 NN c

kcig kc kc c i c i

c

f y G g L k R k
, )
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where the weights and densities on the right-hand 
side are those in Eq. (3).

2.2 The Viterbi algorithm
We used a Viterbi algorithm, adapted to the 
 continuous-index structure, to find the aposteriori 
most likely Markov chain trajectory. The algorithm 
is the usual Viterbi algorithm, but with transition 
probability matrices exp(Qchkc) that vary with probe 
index (c, k). The algorithm thus finds the most likely 
sequence at the probe locations only. When the esti-
mated reconstruction of each Markov state X(tkc) is 
available, one may also estimate the corresponding 
genotype Gkc (see below).

For any chromosome c, the Viterbi algorithm is as 
follows. To ensure numeric stability, it operates on 
log-scale.

1. Put ξ1c(i) = log(δic[B1c]ii) for i = 1, …, r.
2. Iterate for k = 2, 3, …, Nc,
   ξkc(  j) = max

i
{ξk−1(i) + log[exp(Qchkc)]ij 

 + log[Bkc]jj}
 for i = 1, 2, …, r.
3. Put ˆ ( )c cx N  = arg maxi ξNc,c

(i).
4. Iterate for k = Nc − 1, Nc − 2, …, 1,

 

{
}ˆ1 , ( 1)

ˆ ( ) arg max ( )

log[exp( )] .
c

c kci

k i x k

x k i

Qh

ξ

+ +

=

+

Having reconstructed the states xc(tkc), it holds 
that the corresponding genotypes, given the Markov 
chain and intensity data, are conditionally indepen-
dent with

P G g X t i Y y
w f y g

w f

kc c kc kc

Y G

g G Y

kcig kc kc

i kcig k

( | ( ) , )
( | )|

= = =

=
∈Σ ′ ′ cc kcG y g| ( | )′

for all g ∈ Gi; here f y gY Gkc kc| ( | )  is the bivariate Nor-
mal density as in Eq. (3). Selecting, for each probe 
(k, c), Gkc as the genotype g ∈ Gi maximizing this 
expression thus yields a maximum aposteriori (MAP) 
reconstruction of the genotypes at all probes.
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