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Abstract: The kynurenine pathway (KP) is the principle route of L-Tryptophan (TRP) metabolism, producing several neurotoxic and 
 neuroprotective metabolic precursors before complete oxidation to the essential pyridine nucleotide nicotinamide adenine dinucleotide 
(NAD+). KP inhibition may prove therapeutic in central nervous system (CNS) inflammation by reducing the production of excitotoxins 
such as quinolinic acid (QUIN).  However, KP metabolism may also be cytoprotective through the de novo synthesis of intracellular 
NAD+. We tested the hypothesis that the KP is directly involved in the maintenance of intracellular NAD+ levels and SIRT1 function in 
primary astrocytes and neurons through regulation of NAD+ synthesis.  Competitive inhibition of indoleamine 2,3 dioxygenase (IDO), 
and quinolinic acid phosphoribosyltransferase (QPRT) activities with  1-methyl-L-Tryptophan (1-MT), and phthalic acid (PA) respec-
tively, resulted in a dose-dependent decrease in intracellular NAD+ levels and sirtuin deacetylase-1 (SIRT1) activity, and correlated 
directly with reduced cell viability. These results support the hypothesis that the primary role of KP activation during neuroinflammation 
is to maintain NAD+ levels through de novo synthesis from TRP. Inhibition of KP metabolism under these conditions can  compromise 
cell viability, NAD-dependent SIRT1 activity and CNS function, unless alternative precursors for NAD+ synthesis are made available.
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Introduction
In recent years, the kynurenine pathway (KP) has 
generated considerable interest following the obser-
vation that KP metabolites may have significant and 
opposing actions on central neurons.1–3 One con-
sistent finding in all neuroinflammatory diseases 
is a dramatic, immune-mediated increase in trypto-
phan (TRP) catabolism via the KP.4–10 In an effort 
to determine whether this biochemical phenomenon 
is related to the development of neuropathology, a 
number of recent studies have investigated the neuro-
toxic potential of the TRP metabolite quinolinic acid 
(QUIN) in inflammatory neurological disease such 
as  Alzheimer’s disease (AD),11,12 Huntington’s dis-
ease (HD),13,14 Amyotropic Lateral Sclerosis (ALS),15 
AIDS Dementia Complex (ADC)16,17 and multiple 
sclerosis (MS).18 As a result, the KP has been identi-
fied as a likely target for pharmaceutical intervention 
to perhaps slow down or prevent neuronal dysfunc-
tion associated with neuroinflammatory disease.19–23

A major aim is to attempt to rectify the balance of 
the KP with available inhibitors. However, the effect 
of KP inhibition on the biosynthesis of the ubiq-
uitous pyridine nucleotide, nicotinamide  adenine 
dinucleotide (NAD+) needs also to be evaluated. 
The KP has been established as the de novo path-
way for NAD+ synthesis in the liver and  kidney.22 
We have recently shown that some KP metabo-
lites, including  3-hydroxyanthranilic acid (3-HAA), 
 3-hydroxykynurenine (3-HK), and QUIN can pro-
mote NAD+ synthesis at nanomolar concentra-
tions in human primary astrocytes and neurons.23,24 
Moreover, NAD+ concentrations can be regenerated 
in rat-derived astrocytes using nicotinic acid (NA), 
nicotinamide (NM) or QUIN following H2O2 medi-
ated NAD+ depletion.25 Given the importance for the 
KP for NAD+ synthesis, pharmacological modulation 
of the KP will significantly affect intracellular NAD+ 
levels.

NAD+ acts as an essential cofactor for several 
enzyme catalysed reactions including alcohol, lactate 
and amino acid metabolism. NAD+ also serves as an 
electron transporter to power oxidative phosphoryla-
tion and ATP production.26 In genomic DNA, NAD+ 
is the sole substrate for the DNA nick sensor, poly-
(ADP-ribose) polymerase, (PARP).27 The PARP fam-
ily of enzymes, particularly PARP-1, are DNA binding 

enzymes activated by free-radical mediated DNA 
strand breaks and play a crucial role in base excision 
repair.27,28 In addition to its role in PARP activity, NAD+ 
also serves as a substrate for a new class of enzymes 
known as sirtuins, or silent information regulator of 
gene transcription.29 SIRT1, the founding member of 
the sirtuin family of protein, has been shown to regu-
late gene silencing, and promote longevity.30

Given the importance of KP metabolism in de 
novo NAD+ synthesis in human brain cells, we tested 
the effect of KP inhibition on intracellular NAD+ 
levels and NAD-dependent SIRT1 activity in glial 
and neuronal cells. More specifically, we tested the 
hypothesis that indoleamine 2,3 dioxygenase (IDO), 
and quinolinic acid phosphoribosyltransferase 
(QPRT) activities, two important KP enzymes, can 
significantly regulate intracellular NAD+ synthesis 
and NAD-dependent SIRT1 activity in human astro-
cytes and neurons. Results from this study indicate a 
strong dependence on KP metabolism through IDO 
and QPRT regulation for the maintenance of NAD+ 
production and SIRT1 function. Therefore, caution 
should be advised when administering pharmacologi-
cal inhibitors to TRP metabolism during neuroinflam-
matory conditions.

Materials and Methods
Reagents and chemicals
Dulbecco’s phosphate buffer solution (DBPS) and 
all other cell culture media and supplements were 
from Invitrogen (Melbourne, Australia) unless oth-
erwise stated. Nicotinamide, bicine, β-nicotinamide 
adenine dinucleotide reduced form (β-NADH),   
3-[-4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazo-
lium bromide (MTT), alcohol dehydrogenase (ADH), 
sodium pyruvate, TRIS, γ-globulins, L-tryptophan 
(TRP), 1-methyl-L-TRPtophan (1-MT), phthalic acid 
(PA), and catalase were obtained from Sigma-Aldrich 
(Castle-Hill, Australia). Phenazine methosulfate 
(PMS) was obtained from ICN Biochemicals (Ohio, 
USA). Bradford reagent was obtained from BioRad, 
Hercules (CA, USA).

cell cultures
Human foetal brains were obtained from 16–19 week 
old foetuses collected following therapeutic termina-
tion with informed consent. Mixed brain  cultures were 
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prepared and maintained using a protocol  previously 
described by Guillemin et al.31 Astrocytes and neurons 
were prepared from the mixed brain cell cultures, and 
maintained using a protocol previously described by 
Guillemin et al.32

KP inhibition in astrocytes and neurons
For IDO, QPRT and LDH activities, human pri-
mary astrocytes and neurons were incubated 10 µM, 
100 µM, and 1000 µM 1-MT and PA , respectively 
(Table 1). For intracellular NAD+ concentrations, 
1 µM, 10 µM, 50 µM, 100 µM, and 1000 µM of inhib-
itors was used. SIRT1 activity was measured using 
100 µM of 1-MT and PA. Cultures were then incu-
bated at 37 °C in 5% CO2 for 24 hours before analy-
sis of IDO and QPRT activities, intracellular NAD+ 
levels, and extracellular LDH and SIRT1 activities. 
Experiments were performed with primary cultures 
derived from three different human foetal brains with 
each individual preparation tested in triplicate.

nAD(h) microcycling assay
Intracellular NAD+ concentration following 24 hour 
incubation with the desired concentrations of KP 
inhibitors were measured spectrophotometrically 
using the thiazolyl blue microcycling assay  established 

by  Bernofsky and Swan33 adapted for 96 well plate 
format by Grant and Kapoor.25

extracellular LDh activity
LDH activity following 24 hour incubation with the 
desired concentrations of KP inhibitors was assayed 
using a standard spectrophotometric technique 
described by Koh and Choi (1987).34

Indoleamine 2,3 dioxygenase activity
IDO activity was evaluated as previously described 
by.35 Briefly, cellular homogenates were homogenised 
at 4 °C with a Teflon pestle, resuspended in 50 mM 
K2HPO4/KH2PO4 buffer solution (pH 6.5), and cen-
trifuged at 12,000 g for 30 min. The reaction mixture 
contained 20 mM ascorbic acid, 50 µM methylene 
blue, 200 µg catalase and 2 mM TRP. After adding 
20 µg of cellular enzyme, the mixtures were incubated 
at 37 °C for 30 minutes. The product formed was read 
at 405 nm using the Model 680XR microplate reader 
(BioRad, Hercules, CA, USA).

Quinolinic acid phosphoribosyl 
transferase activity
QPRTase activity was determined by measuring the 
formation of nicotinic acid mononucleotide (NAMN) 

Table 1. Inhibitors used in these experiments.

Inhibitor

1-methyl-L-Tryptophan (1-MT) Competitive IDO inhibitor 

Phthalic acid (PA) Competitive QPRT inhibitor 

Action Chemical Structure

COOH

COOH

OH

CH3

NH2N

O
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using a continuous UV spectrophotometric assay as 
previously described by Rahman et al (2009).36

SIRT1 deacetylase activity
SIRT1 deacetylase activity was evaluated on cellular 
homogenate using the Cyclex SIRT1/Sir2 Deacetylase 
Flourometric Assay Kit (CycLex, Nagano, Japan).

Bradford protein assay for the 
quantification of total protein
NAD+ concentration and extracellular LDH activity 
were adjusted for variations in cell number using the 
Bradford protein assay described by Bradford.37

Data analysis
Results obtained are presented as the means ± the stan-
dard error of the mean (SEM). Significant differences 
were verified using the two-tailed t-test with equal 
variance and 1-WAY ANOVA. Differences between 
treatment groups were considered significant if P was 
less than 0.05 (P , 0.05).

Results
effect of 1-MT and PA on IDO and  
QPRT activities in human astrocytes  
and neurons
Consistent with previous studies, a dose-dependent 
inhibition of IDO activity was observed following 
treatment with 1-MT, a competitive inhibitor of IDO 
(Fig. 1A). A maximum reduction in IDO activity 
was observed in astrocytes and neurons treated with 
1 mM 1-MT. Similarly, a dose-dependent inhibition 
of QPRT activity was reported following treatment 
with PA (Fig 1B). Likewise, a maximum inhibitory 
response was observed in human brain cells treated 
with 1 mM PA.

effect of 1-MT and PA on intracellular 
nAD+ levels in human astrocytes and 
neurons
Importantly, the effect of decreasing IDO and QPRT 
activities on intracellular NAD+ levels in these cell 
types was highly correlated. NAD+ levels declined in 
a dose-dependent manner with increasing concentra-
tions of 1-MT (Fig. 2A) and PA (Fig. 2B) respectively 
after 24 hours incubation.
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Figure 1. A) effect of 1-MT on IDO activity in human astrocytes and 
neurons. A dose-dependent inhibition of IDO activity was observed 
following treatment with 1-MT in human astrocytes and neurons. For 
astrocytes, no 1-MT (control) = 35.86 nmol kynurenine/hr/mg pro-
tein; 10 µM 1-MT = 31.15 ± 5.61 nmol kynurenine/hr/mg protein; 
100 µM 1-MT = 14.70 ± 4.85 nmol kynurenine/hr/mg protein; 1000 µM 
1-MT = 4.55 ± 1.93 nmol kynurenine/hr/mg protein; Significance 
*P , 0.05 compared to previous dose (n = 4 for each treatment group). 
For neurons, no 1-MT (control) = 27.22 ± 7.28 nmol kynurenine/hr/mg 
protein; 10 µM 1-MT = 24.77 ± 6.74 nmol kynurenine/hr/mg protein; 
100 µM 1-MT = 14.15 ± 2.94 nmol kynurenine/hr/mg protein; 1000 µM 
1-MT = 2.99 ± 1.42 nmol kynurenine/hr/mg protein; Significance *P , 0.05 
compared to previous dose (n = 4 for each treatment group). B) PA on QPRT 
activity in human astrocytes and neurons. A dose-dependent inhibition of 
QPRT activity was observed following treatment with PA in human astro-
cytes and neurons. For astrocytes, no PA (control) = 41.33 ± 8.32 nmol 
kynurenine/hr/mg protein; 10 µM PA = 35.54 ± 3.22 nmol kynurenine/
hr/mg protein; 100 µM PA = 21.08 ± 7.39 nmol kynurenine/hr/mg pro-
tein; 1000 µM PA = 3.31 ± 1.32 nmol kynurenine/hr/mg protein; Sig-
nificance *P , 0.05 compared to previous dose (n = 4 for each 
treatment group). For neurons, no PA (control) = 21.55 ± 3.62 nmol 
kynurenine/hr/mg protein; 10 µM PA = 17.46 ± 3.49 nmol kynurenine/hr/mg 
protein; 100 µM PA = 11.42 ± 3.11 nmol kynurenine/hr/mg protein; 1000 µM 
PA = 2.59 ± 0.81 nmol kynurenine/hr/mg protein; Significance *P , 0.05 
compared to previous dose (n = 4 for each treatment group).

effect of 1-MT and PA on cellular viability 
in human astrocytes and neurons
The release of lactate dehydrogenase (LDH) into cul-
ture supernatant correlates with the amount of cell 
death and membrane damage, providing an  accurate 
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Figure 2. effect of (A) 1-MT and (B) PA on intracellular nAD+ levels in human astrocytes and neurons. nAD+ levels significantly declined in a dose-
 dependent manner with increasing concentrations of (A) 1-MT and (B) PA respectively following 24 hours incubation with the selected inhibitor.  Significance 
*P , 0.05 compared to previous dose (n = 4 for each treatment group).

measure of cellular toxicity. Showing an inverse 
correlation with intracellular NAD+ levels, extracel-
lular LDH activity was significantly increased with 
increased concentrations of either 1-MT (Fig. 3A), 
or PA (Fig. 3B) in both astrocytes and neurons after 
24 hours incubation.

effect of 1-MT and PA on SIRT1 activity  
in human astrocytes and neurons
Reduced SIRT1 activity has been shown to decrease 
longevity in a range of organisms.

Addition of either 1-MT or PA at 100 µM signifi-
cantly reduced SIRT1 activity in human astrocytes 
and neurons (Fig 4). 1-MT reduced SIRT1 activity by 

51.4% and 56.8% in human astrocytes and  neurons. 
In a similar fashion, PA reduced SIRT1 activity by 
50.9% and 57.4% in human astrocytes and neurons. 
To help verify that the results obtained for enzyme 
activity were specific for SIRT1, we tested the effect 
of sirtinol, a synthetic SIRT1 inhibitor on SIRT1 
activity.38 Our data shows that in the presence of 
 sirtinol SIRT1 activity declined by 90% and 84% in 
human astrocytes and neurons.

Discussion
Numerous studies have shown that NAD+ turnover 
is increased during chronic oxidative stress and 
neuroinflammation.25,39–41 As neuroinflammation is 
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associated with chronic increase in ROS activity, 
marked microglial infiltration, and subsequent PARP 
activation, NAD+ turnover is likely to be significantly 
increased.25,39–41 Therefore, a better understanding of 
the de novo NAD+ biosynthetic pathway in human 
brain cells will provide a basis for the regeneration of 
NAD+. To our knowledge, the role of the KP in NAD+ 
synthesis has not been studied in the CNS. If the KP 
is essential for NAD+ synthesis, then it is conceivable 
that inhibition will result in a decrease in NAD+ in 
human brain cells.

In this study, we have shown for the first time, 
that competitive inhibition of IDO and QPRT, in both 
astrocytes and neurons results in a dose-dependent 
decrease in intracellular NAD+, highlighting the 
essential role of the KP in NAD+ production in human 
brain cells. KP inhibition leads to a decrease in NAD+ 
synthesis and a dose dependent increase in extracel-
lular LDH activity indicating reduced cell viability 
and increased cell death. Importantly, while IDO and 
QPRT activites appear to be inhibited equally in both 
astrocytes and neurons, intracellular NAD+ levels and 
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Figure 3. effect of (A) 1-MT and (B) PA on extracellular LDH activity in human astrocyte and neuron cultures. Extracellular LDH activities were significantly 
elevated in a dose-dependent manner with increasing concentrations of (A) 1-MT and (B) PA respectively, following 24 hours incubation with the selected 
inhibitor. Significance *P , 0.05 compared to previous dose (n = 4 for each treatment group).
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cell viability are significantly higher in astrocytes 
than neurons, suggesting that changes in KP metabo-
lism have a greater effect on the neuronal population 
compared to glial cells.

As NAD+ serves as a substrate for SIRT1 activ-
ity, we have also shown herein that inhibition of KP 
metabolism can lead to a significant decline in SIRT1 
activity in the astrocytes and neurons. This data sup-
ports an earlier study in which we showed that pri-
mary human astrocytes cultured in media deficient in 
TRP, NA and NM resulted in a 50% decrease in intra-
cellular NAD+ levels after 24 hours.43 The decrease 
in NAD+ was partially ameliorated following supple-
mentation of the culture media with TRP or NAD+ 
salvage pathway precursors, NA or NM.43

In mammalian cells, IDO represents the primary 
enzyme for oxidative TRP catabolism to kynure-
nine via the KP in both astrocytes, and neurons.44 
Interferon-β1, an activator of IDO is currently used 
for the treatment of relapse-remitting MS due to the 
importance of the KP in promoting adaptive immu-
nity through IDO-mediated down-regulation of T-cell 
proliferation. However, overactivation of the KP may 
lead to increased levels of QUIN and other neurotoxic 
metabolites generated by perivascular macrophages. 
Indeed, IDO over-expression and the accumulation 
of the neurotoxic TRP metabolite, QUIN has been 
implicated not only in the pathogenesis of MS, but 
also in the neurological deficits observed in later 
stages of the disease.18 Therefore, inhibition of IDO 

has been suggested as a potential therapeutic target to 
reduce QUIN toxicity in the MS brain.45 However, in 
a mouse model for MS, daily application of the IDO 
inhibitor, 1-MT aggravated disease progression indi-
cating that IDO inhibition exacerbates disease.46 This 
is supported by our results showing that IDO inhibi-
tion reduces NAD+ synthesis and SIRT1 function, and 
therefore promoting cell death.

QPRT converts QUIN to NAMN and carbon diox-
ide in the presence if Mg2+ and 5-phosphoribosyl- 
1-pyrophosphate (PRPP).44 In the brain, QPRT is one 
of the rate-limiting enzymes of NAD+ synthesis from 
TRP, and therefore likely to influence QUIN levels 
in the CNS.47 We have previously shown that human 
cerebral neurons can take up exogenous QUIN but 
can only catabolise a small amount.48 This may be 
likely due to the rapid saturation of QPRT. Indeed we 
have shown that neuronal QPRT activity is saturated 
when QUIN concentration exceeds 500 nM.36 Thus, 
QPRT activity is essential for the maintenance of cel-
lular energy metabolism and DNA repair. A reduc-
tion in QPRT activity can be envisioned to lead to an 
accumulation of QUIN, and likely to induce a cyto-
toxic cascade within astrocytes and neurons.31

As previously mentioned, SIRT1 belongs to a 
highly conserved gene family known as sirtuins, 
which encode NAD+-dependent histone and non-
histone deacetylases promoting DNA stability and 
improved lifespan in yeasts and small mammals.29 
SIRT1 also regulates the acetylation of a number 
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of transcription factors, including the peroxisome 
 proliferator-activated receptor-γ (PPAR γ), p53, and 
the FOXO family of transcription factors, all of which 
represent key metabolic regulators.49 Our data shows 
that SIRT1 activity goes hand in hand with those of 
NAD+ metabolism, suggesting a causal relationship 
between SIRT1 function and NAD+ synthesis. Other 
NAD+-dependent targets present in human brain 
cells include the cytosolic SIRT2, which is known 
to deacetylate tubulin, and the mitochondrial sirtuins 
(SIRT3, SIRT4, and SIRT5).50 Additional work is 
needed to determine the effect of KP inhibition on 
the activity of these proteins. However, as NAD+ is 
the substrate for sirtuins, it is likely that inhibition of 
IDO and QPRT may also negatively impact on the 
function of these proteins.

Given the importance of the KP for de novo syn-
thesis of NAD+, the current study suggests that KP 
inhibition should be carried out with caution. While 
we have shown that IDO and QPRT inhibition can 
deplete intracellular NAD+ levels and reduce cell via-
bility under normal physiological conditions, another 
study has shown a similar affect on NAD+ levels fol-
lowing IDO inhibition in primary murine astrocytes 
stimulated with IFN-γ, leading to a similar effect on 
cell viability.42 In the light of the growing importance 
of glial cell function and neuronal activity, inhibit-
ing KP metabolism may be deletorious to de novo 
NAD+ synthesis and CNS function unless alternative 
 precursors are made available.
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