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Abstract: In this work, we investigate the well-known classification algorithm LDA as well as its close relative SPRT. SPRT affords 
many theoretical advantages over LDA. It allows specification of desired classification error rates α and β and is expected to be faster 
in predicting the class label of a new instance. However, SPRT is not as widely used as LDA in the pattern recognition and machine 
learning community. For this reason, we investigate LDA, SPRT and a modified SPRT (MSPRT) empirically using clinical datasets 
from Parkinson’s disease, colon cancer, and breast cancer. We assume the same normality assumption as LDA and propose variants of 
the two SPRT algorithms based on the order in which the components of an instance are sampled. Leave-one-out cross-validation is used 
to assess and compare the performance of the methods. The results indicate that two variants, SPRT-ordered and MSPRT-ordered, are 
superior to LDA in terms of prediction accuracy. Moreover, on average SPRT-ordered and MSPRT-ordered examine less components 
than LDA before arriving at a decision. These advantages imply that SPRT-ordered and MSPRT-ordered are the preferred algorithms 
over LDA when the normality assumption can be justified for a dataset.
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Introduction
Classification algorithms1 find many applications in 
analysis of biological and clinical data. With a refer-
ence dataset of tumor and normal expression profiles, 
a classification algorithm can be utilized to “interpret” 
the expression profile of a new tissue sample, tagging 
it as tumor or normal. This is a typical example of a 
binary classification problem, where we distinguish 
positive instances from negative ones. Formally 
speaking, a training dataset consists of n instances 
{(xi, yi)|i = 1, …, n}, where yi ∈ {1, 2} and xi ∈

p, 
that is, yi is a nominal variable representing the label 
and xi is known as the p-dimensional feature vector 
of instance i. A classification algorithm “learns” from 
the training dataset and predicts the label of a new 
instance based on its feature vector.

While there are classification algorithms designed 
to handle multi-class classification problems, a binary 
classification algorithm can be readily extended to 
addressing multi-class problems. Two techniques are 
widely used in a k-class classification problem. One 
transforms the problem into k binary classification 
problems by treating one class as class 1 and all the 
other classes as class 2. Alternatively, one converts 
the problem into k(k-1)/2 binary classification prob-
lems by considering all the pairs of k classes. In both 
cases, majority vote is used to determine the class 
label of a new instance. Therefore, binary classifica-
tion algorithms can be viewed as building blocks of 
more sophisticated classification algorithms. For this 
reason, we focus on binary classification algorithms 
in this work.

Linear discriminant analysis (LDA)1 is a simple, 
well-studied and widely used statistical classifica-
tion algorithm. LDA assumes that, conditioned on the 
class label of an instance, the feature vector x follows 
a p-dimensional multivariate normal distribution. 
Moreover, all the classes have a common dispersion 
matrix, which makes the decision function linear 
in x. In the binary case, LDA is equivalent to com-
puting the likelihood ratio of posterior probabilities. 
 Consequently, binary LDA is closely related to likeli-
hood ratio (LR) tests.10

In the binary classification setting, predicting 
the class label of a new instance can be viewed as a 
statistical test of hypothesis10 with the null hypoth-
esis being “the new instance belongs to class 1” and 
the alternative hypothesis being “the new instance 

belongs to class 2”. There are naturally two types of 
errors. One, known as the type I error, arises when 
we wrongly assign a class-1 instance to class 2. The 
other, the type II error, occurs when we wrongly 
assign a class-2 instance to class 1. In a LR test, a 
desired type I error rate α can be specified, while the 
type II error rate β depends on α. In other words, once 
we set the type I error rate, the type II error rate is 
fixed but can be undesirably large.

To allow setting α and β freely, Wald’s sequential 
probability ratio test (SPRT)3 was proposed to meet the 
need under assumptions that feature components of an 
instance can be observed sequentially and α + β , 1. 
Shortly after the appearance of SPRT, Fu2 applied the 
procedure to classification problems and proposed 
variants of SPRT assuming the feature components are 
independent. SPRT offers (at least) a couple of attrac-
tive theoretical advantages over binary LDA. First, 
freedom of specifying desired error rates permits us to 
control the classification accuracy of SPRT. Second, 
SPRT may not need all the p feature components to 
assign a new instance, requiring less computation.

While LDA is well-known, it is surprising that arti-
cles and books citing2 barely mention the sequential 
classification procedures proposed by Fu2 since the 
assumptions can be easily satisfied. In this work, we 
empirically compare binary LDA to SPRT and its vari-
ants using clinical/biological datasets.  Leave-one-out 
cross-validation is used to assess the performance 
of the compared classification algorithms. We seek 
to reveal the effect of the theoretical advantages of 
SPRT on real datasets.

Methodology
LDA
Linear discriminant analysis (LDA)1 is a  well-studied 
classification algorithm. It assigns an instance 
described by x = (x1 x2 … xp)

T, a p -dimensional  feature 
vector, to arg maxg, Pr(G = g |X = x), the class with 
the highest posterior probability. By Bayes’ theorem, 
we know that

Pr(G = g|X = x) ∝ Pr(X = x|G = g) Pr(G = g)

and if we further assume that Pr(G = g)’s are the same 
for all g,

Pr(G = g|X = x) ∝ Pr(X = x|G = g). 
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Therefore, class label assignment amounts to finding 
arg maxg Pr(X = x|G = g).

LDA assumes that, conditioned on the class label, 
the feature vector of an instance is distributed as a 
multivariate normal distribution. That is,
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where x is the component vector of an instance 
belonging to class g with mean vector µg and disper-
sion matrix Σ common to all classes. The parameters 
µg’s and Σ can be estimated with a training dataset. In 
the binary case, finding arg Pr(X = x|G = g) is equiva-
lent to computing the likelihood ratio
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The instance x is assigned to class 1 if Λ  . 1 or class 
2 if Λ  , 1. Binary LDA is therefore closely related 
to the probability ratio test.

SPrT
Fu2 assumes that the components of x are independent 
and can be observed sequentially. Consequently,
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where φ (⋅) is the pdf of the standard normal distri-
bution, µ1i’s and µ2i’s are components of µ1 and µ2, 
respectively, and σi’s are the standard deviations of 
the xi’s. Equivalently, we have
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Wald’s sequential probability ratio test (SPRT)3 
is then readily applicable to binary classification 
 problems. Setting the desired classification error 
rates, we obtain the decision boundaries b and a (.b). 
Given a new instance x, we sample (without replace-
ment) its components one at a time and compute 
Σi

j
iZ=1  until Σi

j
iZ=1  falls out of range (b, a), where j 

is the number of components sampled. Upon termina-
tion, we assign x to class 1 if Σi

j
iZ a= >1  or to class 2 

if Σi
j

iZ b=1  . Unlike many other classification algo-
rithms, the number of components examined before 
making a decision is not a constant but depends on 
the given new instance.

The decision boundaries a and b are computed 
from inputs α and β, which are the desired error rates 
for class 1 and class 2, respectively, such that 0 , α, 
β , 1. The decision boundaries are then given by

a

b

= and
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where we take the logarithms of the fractions because 
a and b are the boundaries for log Λ  as opposed to 
simply Λ.

In practice, we have limited number of compo-
nents for each instance, that is, we can never sample 
more than p components. Mukhopadhyay3 addressed 
this issue by truncation, ie, setting a maximum num-
ber of components desired to be examined. Even if a 
constant less than p is not specified, truncation must 
be utilized if the algorithm has not made a decision 
after examining the last component. That is,

b Z ai
p

i, ,∑ =1 .

In this case, the decision boundary is  truncated 
to 1/2(a + b), such that the given instance x is 
assigned to
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The same truncation can be applied at any speci-
fied constant k such that 1 , k # p and b Z ai

k
i< <=∑ 1 . 

However, parameters a, b and k are somewhat 
 interdependent. It was acknowledged in3 that, if k is 
specified, the class error rates, which determine a and 
b, may not be closely met when truncation happens. 
Since we are not particularly concerned with minimiz-
ing the running time of our algorithms, we simply trun-
cate at the total number of components p each time.

Modified SPRT (MSPRT)
Using Fu’s2 modified SPRT method, the computation 
of log Λ  is the same as that of SPRT. However, the 
decision boundaries are not constant as we sample 
components of instance x. The decision boundaries at 
the jth iteration are bj and aj (.bj), given by
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where 0 , r1, r2 # 1, a . 0, b . 0, and k is the 
truncation parameter. In this work, we set r1 = r2 = 1 
for all the MSPRT experiments. As j → k, aj, bj → 0, 
thus ensuring that a decision will be made by the kth 
component. MSPRT is generally distinct from SPRT 
in that its decision boundaries gradually decrease 
to 0 at iteration k, while the decision boundaries of 
SPRT remain constant, with an abrupt decision made 
at iteration k.

component sampling
As introduced in Section 2.1, the main assump-
tion of LDA is that, conditioned on its class label, 
the p components of an instance are jointly normal 
with its class mean vector and a common disper-
sion matrix common to all the classes. We make the 
same assumption in our implementations of SPRT 
and MSPRT. To obtain independent components 
for an instance, we apply a linear transformation to 
the original p components in X, resulting in p new 

 independent components in Y. Specifically, Y = PTX 
such that

Cov(Y,Y) = PTΣP = D,

where Cov(Y,Y) denotes the dispersion matrix of Y, P 
is a p × p orthogonal matrix, Σ is the dispersion matrix 
of X and D is a p × p diagonal matrix containing the 
variances of components in Y.10 Independence among 
the new components follows immediately from the 
normality assumption. Once we estimate the disper-
sion matrix Σ using a training dataset, matrices P and 
D can be computed through eigen  decomposition. 
In this work, we do not keep all the components in Y. 
Components with small variances are discarded, ie, Yi 
is kept if D Dii j

p
jj 10 3

1
−

=∑ .
The linear transformation does not affect LDA 

in any way. It is mainly for the ease of implement-
ing SPRT and MSPRT. All the (new) components 
are considered when predicting the label of a new 
instance with LDA, while SPRT and MSPRT may not 
use all of the components. This raises the following 
 question: In what order should we sample the compo-
nents when using SPRT and MSPRT? We investigate 
two ways of sampling components: randomly and in 
the order of decreasing variance. We denote the for-
mer by SPRT/MSPRT-random and the latter by SPRT/
MSPRT-ordered. Since sampling components in ran-
dom order does not yield deterministic results, for a 
new instance, 100 runs of SPRT/MSPRT-random are 
performed and the majority prediction is assigned to 
the instance.

Results and Discussion
We conducted leave-one-out (LOO) cross-validation 
(CV) experiments on three binary biological/clinical 
datasets. The first is a Parkinson’s disease dataset,4,5 
including 195 instances with 22 components. The sec-
ond is a colon cancer microarray dataset,6  preprocessed 
by,7 including 63 instances with 2,000  components. 
We ranked the genes of the colon cancer dataset by a 
simple index (BSS/WSS) as described in,8 narrowing 
the dataset down to only 500 components. The third 
one is a breast cancer dataset,9  including 683 instances 
with 10 components. The results of our algorithms on 
the three clinical dataset are shown in Figures 1, 2 and 
3, respectively.
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For the Parkinson’s disease dataset, both SPRT-
random and MSPRT-random outperform LDA at 
the chosen α and b values. SPRT-ordered outper-
forms LDA at some α and b values, while MSPRT-
ordered is comparable to LDA at some α and b 
values. The highest accuracy rate is achieved by 
 SPRT-random and MSPRT-random at α = β = 0.32 
and α = β = 0.175, respectively. For the colon 
cancer dataset, the MSPRT-ordered reaches the 
maximum accuracy rate among all the methods at 
α = β = 0.22. Most accuracy rates by SPRT-ordered 
are right under those by the MSPRT-ordered. Also 
note that the MSPRT-random and SPRT-random 
reaches the LDA accuracy rate, but the MSPRT-
random falls below the accuracy rate achieved by 

LDA. Similarly,  SPRT-ordered and MSPRT-ordered 
outperform LDA at some α and b values. Finally, 
for the breast cancer dataset, both SPRT-ordered 
and MSPRT-ordered reach peaks of accuracy that 
are above the LDA accuracy rate. Note the two peak 
values are the same but occur at different α and β 
values. SPRT-random and  MSPRT-random both fall 
short of the LDA accuracy rate.

As described in Section 2.2 and 2.3, SPRT and 
MSPRT may not use all the components before 
arriving at a decision. Hence, we investigated the 
relationship between prediction accuracy and the 
average number of components examined by SPRT-
ordered and MSPRT-ordered using the colon cancer 
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Figure 1. Accuracy rates for Parkinson’s disease dataset.  SPrT-ordered 
and MSPrT-ordered were run with α = β  from 0.01 to 0.40 with a 
step size of 0.01. The accuracy rates for SPrT-random and MSPrT-
random were calculated by the majority predictions over 100 runs each 
at α = β = 0.175 and α = β = 0.32. The highest accuracy rate for the 
 Parkinson’s disease dataset was 0.7128, generated by MSPrT-random 
at α = β = 0.175 and by SPrT-random at α = β = 0.32.
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Figure 2. Accuracy rates for the colon cancer dataset. SPrT-ordered and 
MSPrT-ordered were run with α = β from 0.01 to 0.40 with a step size 
of 0.01. The accuracy rates for SPrT-random and MSPrT-random were 
calculated by the majority predictions over 100 runs each at α = β = 0.12 
and α = β = 0.22. The highest accuracy rate for the colon cancer dataset 
was 0.8871, generated by MSPrT-ordered at α = β = 0.22.
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Figure 3. Accuracy rates for breast cancer dataset. SPrT-ordered and 
MSPrT-ordered were run with α = β from 0.01 to 0.40 with a step size 
of 0.01. The accuracy rates for SPrT-random and MSPrT-random were 
calculated by the majority predictions over 100 runs each at α = β = 0.07 
and α = β = 0.09. The highest accuracy rate for the breast cancer dataset 
was 0.9648, generated by MSPrT-ordered at α = β = 0.07 and by SPrT-
ordered at α = β = 0.09.
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Figure 4. Scatter plots of accuracy rate against number of components. 
SPrT-ordered requires about 9 components on average to attain an 
accuracy rate of 0.8710. MSPrT-ordered uses about 6.4 components 
on average to achieve the maximal accuracy rate of 0.8871, while LDA 
needs at least 48 components to obtain the same accuracy rate.
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dataset since it has the most number of components. 
To  compare to LDA, we ordered the components by 
their variances and used only K components with the 
most variances to conduct LOO CV experiments, 
where K ranges from 5 to 50. Unlike SPRT-random 
and MSPRT-random, LDA always uses all the K com-
ponents to infer the class label of a new instance. 
Figure 4 shows scatter plots of accuracy rate versus 
number of components for the three methods. It is 
evident that MSPRT-ordered requires significantly 
less components than LDA to attain the maximal 
accuracy rate of 0.8871. SPRT-ordered also requires 
less than 10 components on average to achieve its 
performance peak. It may appear that LDA reaches 
its performance peak at K = 48 and remains at the 
peak as K increases. This is not true since K can go up 
to 500, the total number of components, for this data 
set. We know that, at K = 500, this classifier is simply 
the LDA without component selection and the accu-
racy rate is 0.8548 (see Fig. 2), which is less than the 
maximal accuracy rate.

We note that the desired error rates, α and β, in 
SPRT/MSPRT are considered model parameters, 
which can be tuned by CV experiments on a train-
ing dataset. From the LOO CV results presented 
above, we can see that SPRT-ordered and MSPRT-
ordered are superior to LDA in terms of prediction 
accuracy. Moreover, on average SPRT-ordered and 
 MSPRT-ordered require less components than LDA 
to achieve the same accuracy. In some sense, SPRT-
ordered and MSPRT-ordered perform implicit feature 
selection when labeling a new instance. Consequently, 
we do not need to find the optimal number of compo-
nents as was done for LDA.

Inspired by the random forest algorithm,11 
SPRT-random and MSPRT-random can be viewed 
as ensemble classification algorithms, where a 
run of SPRT-random or MSPRT-random is analo-
gous to a decision tree. What is different is that 
we did not perform bootstrapping on the training 
dataset for each run as in random forest. It is dif-
ficult, however, to compare SPRT-random and 
 MSPRT-random to the other methods investigated 
in this work since the accuracy rates are available 
only at a few α and β values. More experiments 
need to be done at a range of α and β values to 
better understand the behavior of SPRT-random and 
MSPRT-random. We will also investigate the effect 

of introducing  bootstrapping into our SPRT-random 
and  MSPRT-random algorithms.

Finally, although Fu2 assumed independence 
among components, we note that this assumption 
is not necessary. This follows from the fact that the 
proof of Theorem 3.2.1 in10 does not assume indepen-
dence among components. As long as the joint dis-
tribution of the components is known, the SPRT and 
MSPRT algorithms will work correctly. Because of 
the normality assumption, we have the joint distribu-
tion for each class immediately after estimation of the 
mean vectors and dispersion matrix. Consequently, 
obtaining independent components is not necessary 
for SPRT and MSPRT. We can directly sample the 
original (possibly dependent) components, resulting 
in new variants of SPRT and MSPRT. These novel 
variants of SPRT and MSPRT will be investigated in 
our future work.
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