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Abstract: In this paper, a new model of self-organized criticality is introduced. This model, called the gene expression paradigm, is 
motivated by the problem of gene expression initiation in the newly-born daughter cells after mitosis. The model is fundamentally 
different in dynamics and properties from the well known sand-pile paradigm. Simulation experiments demonstrate that a critical total 
number of proteins exists below which transcription is impossible. Above this critical threshold, the system enters the regime of self-
sustained oscillations with standard deviations and periods proportional to the genes’ complexities with probability one. The borderline 
between these two regimes is very sharp. Importantly, such a self-organization emerges without any deterministic feedback loops or 
external supervision, and is a result of completely random redistribution of proteins between inactive genes. Given the size of the genome, 
the domain of self-organized oscillatory motion is also limited by the genes’ maximal complexities. Below the critical complexity, all 
the regimes of self-organized oscillations are self-similar and largely independent of the genes’ complexities. Above the level of critical 
complexity, the whole-genome transcription is impossible. Again, the borderline between the domains of oscillations and quiescence is 
very sharp. The gene expression paradigm is an example of cellular automata with the domain of application potentially far beyond its 
biological context. The model seems to be simple enough for staging an experiment for verification of its remarkable properties.
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1. Introduction
Immediately after cell division, the DNA molecules 
in daughter cells are largely “naked”, that is, they 
lack the regulatory elements which are necessary 
for launching the gene expression machinery. As 
in the classical problem of the chicken and the egg, 
genes are waiting for transcription factors to initi-
ate transcription, but the gene expression machinery 
should be launched first in order to produce them. 
Figuratively speaking, after the major disruption 
caused by mitosis, the cell is in the state of turmoil and 
uncertainty regarding initiation of gene expression. 
No deterministic process to trigger gene expression 
in the newly-born daughter cells is yet known. In1 we 
have briefly discussed a conceivable scenario of gene 
expression initiation. Due to random partitioning of 
mRNAs during mitosis,2,3 it is possible that at least 
some of them are inherited in quantities sufficient for 
starting the translation of some proteins. Selective 
growth of protein concentrations, in turn, increases 
the probability that some genes receive an adequate 
collection of transcription factors (TFs) for produc-
ing the first burst of mRNA. This first burst triggers a 
positive feedback loop and initiates an avalanche of 
transcription events randomly propagating through-
out the entire genome. Qualitatively, this process 
resembles the avalanches considered in the theory 
of self-organized criticality.4 However, without 
deeper conceptual modeling, it is difficult to envi-
sion whether or not some kind of asymptotic regime 
may be reached in this process, how this asymptotic 
regime will be structured, and what are the major 
systemic parameters governing the process.

In this work, we propose a simple model which 
is intended to elucidate these issues. Despite its 
simplicity, the properties of the model are rather 
remarkable. Conceptually, this is a paradigm model. 
This means that the model is not intended to describe 
the process of gene expression initiation in its entirety 
and with much realistic biological detail; instead, it 
directs attention to some of its fundamental facets. 
Within this paper, we will refer to this model as 
the gene expression paradigm. By invoking such 
terminology, we draw a parallel with the celebrated 
sand-pile paradigm in the theory of self-organized 
criticality. As is well known, the sand-pile paradigm 
reflects the most fundamental properties of sand-piles 
without incorporating much realistic detail. This is 

because the physical properties of sand grains and 
the specifics of their interaction are too numerous to 
be included into a grossly simplified model. One true 
value of this paradigm is that it introduces the notion 
of criticality as a new type of dynamic stability and 
provides deep insight into the origins of scaling laws 
known in many domains of science.5,6 In this capacity 
of a paradigm (that is, a framework of thinking about 
certain class of phenomena), this model has impor-
tant applications far beyond the sand-pile dynamics.7 
In its logical and mathematical essence, the sand-pile 
model is a cellular automaton with very simple rules 
of updating. Despite this simplicity, the model is very 
rich in properties, its behavior is very complex, and 
it would be hardly possible to describe such behavior 
by other mathematical tools in equivalently parsimo-
nious manner. Likewise, the gene expression para-
digm is in essence a cellular automaton with simple 
rules of updating which elucidates some core issues 
in gene expression dynamics. Similar to the sand-pile 
paradigm, there is also a hope that, due to its logi-
cal simplicity and mathematical generality, the gene 
expression paradigm may be applied to many prob-
lems far beyond the initial biological context.

2. Gene Expression Paradigm
Let us imagine a set of sites, which we will call genes, 
g1:N, organized as a one-dimensional string called a 
genome. In gene expression paradigm, we make no 
attempts to depict our genes with any sort of biologi-
cal realism; essentially, they are stripped of all real-life 
properties except just one: in order to be transcribed, 
each gene requires a certain number of transcrip-
tion factors. We do not explicitly include translation 
stage into our model. Instead, we simply assume that 
there exist a one-to-one correspondence between the 
transcriptions and translations, that is, each act of 
transcription leads to the birth of one protein capa-
ble to serve as transcription factor. In our model, the 
gene-specific numbers of transcription factors which 
are required to spark transcription, t1:N, are considered 
to be variable (which includes, of course, the particu-
lar cases of very low or zero variations). Suppose that 
initially there is a certain supply of proteins distrib-
uted randomly and with equal probabilities between 
the genes’ regulatory sites. If the total number of 
genes is N, and the total number of protein molecules 
available in the system is L, then the joint probability 
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distribution of individual gene-specific numbers of 
proteins, Li, i = 1: N is multinomial
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Due to random variations of {Li}, each with vari-
ance L (N−1)/N2, it may happen that there are some 
genes ( , , , )say g gi ik1

  which are fully equipped 
with all the necessary transcription factors to initiate 
the transcription. In the gene expression paradigm, 
we consider these particular genes as being ready 
for launching the transcription process; that is, the 
mRNA production followed by the synthesis of new 
proteins. Upon transcription, the TFs that participate 
in this process abandon corresponding regulatory 
sites and go for redistribution among all other genes. 
This concludes the first step in the genome dynamics. 
This process is updated iteratively until some kind of 
asymptotic regime is reached. In principle, three sce-
narios are conceivable. In the first scenario, the total 
initial number of proteins available in the system, L, is 
too small to cause even one transcription. In this case 
the genome will reside in its initial state of quiescence 
forever. In the second scenario, L is sufficiently high 
to initiate a certain number of transcriptions, but after 
several cycles, the number of active genes begins to 
dwindle and eventually comes to zero. This occurs if 
all of the available proteins end up with a distribution 
below all the individual thresholds; hence, none of the 
genes may be able to function. In the third and the most 
interesting scenario, after a period of fairly chaotic 
fluctuations, the system enters a long period of stable 
whole-genome oscillations. The bulk of this paper will 
be devoted to demonstrating existence and studying 
the properties of this asymptotic regime. We believe 
that behavior of the system is well qualified to serve as 
an example of self-organizing criticality. The element 
of self-organization is seen from the fact that, despite 
the completely stochastic nature of redistribution of 
proteins between the genes and despite the absence 
of any deterministic feedback loops, the asymptotic 
regime features strong periodicity with sustained indi-
vidual periods of oscillations. The element of criti-
cality is seen from the fact that there is a bifurcation 
parameter, L, in the system. If this parameter is too 
low, the genome will remain quiescent. If this param-
eter is sufficiently high, the whole-genome oscillatory 

regime will be reached with the probability one. As it 
will be shown in subsequent sections, the transition 
from the regime of quiescence to the regime of sus-
tained oscillations is very sharp. It should be noted 
also that the type of self-organized criticality embod-
ied in the gene expression paradigm is not reduced to 
the popular sand-pile or forest-fire paradigms. At this 
point, to the best of the author’s knowledge, the gene 
expression paradigm introduced in this paper is a new 
model for studying self-organized criticality in sys-
tems of very large dimensions.

3. Some Technicalities
The majority of computations presented below have 
been performed with the size of genome N = 1000, 
unless stated otherwise. For brevity, the gene-specific 
numbers of TFs which are necessary for sparking 
transcription, t1:N, are called thresholds. These num-
bers have been generated probabilistically as a part of 
set up prior to launching the simulation. Specifically, 
they have been generated in accordance with the 
gamma distribution (and rounded to integers), in 
which shape, r, and rate, θ−1,8 have been selected in 
such a way as to fix the pre-specified genome-wide 
average threshold, t r= /θ . Since the variance of the 
gamma distribution is r t r/ ( ) / ,θ 2 2= the asymptotic 
limit r  →  ∞ (with fixed t ) provides the transition 
to constant thresholds. In the opposite case of small 
r, the procedure generates skewed distributions with 
high variability of gene-specific thresholds. Note that 
selection of the gamma distribution has been moti-
vated only by considerations of technical convenience 
and bears no further meaning. All the results will be 
valid with any other reasonable probabilistic param-
eterization of the thresholds. The parameter t  serves 
as a characteristic of the average complexity of the 
genes: the greater is t , the more TFs are required, on 
average, to spark the transcription. The dimension-
less critical parameter controlling the dynamics of the 
system is λ = L Nt/ . Its meaning is the ratio of the 
total number of proteins available in the system to 
the total capacity of all the regulatory sites. We will 
refer to this parameter as the degree of completeness.

4. Regime of Self-Sustained Oscillations
We first consider a typical case when the average 
complexity, t = 30 , and the coefficient of variation of 
the thresholds, ζ = =var( ) / .t t 0 3. Figure 1 shows 
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the sample distribution of thresholds corresponding 
to this choice. It is worth noting that the majority of 
the thresholds lie between 10 and 50 with a negligible 
number of thresholds too close to zero. In this com-
putation, the degree of completeness is set to λ = 0.6. 
This means that from the total Nt = 30 000,  TFs which 
are required for completely filling all the regulatory 

sites, only 18,000 are actually available. This lack of 
proteins makes it impossible for all the genes to tran-
scribe simultaneously. Figure 2 depicts the temporal 
evolution of gene-specific levels of TFs (hereafter, we 
will call these numbers loads). For the purpose of this 
demonstration, four genes have been selected at ran-
dom from the totality of 1000 genes. As stated above, 
initial loads are distributed multinomially; hence, due 
to random fluctuations of initial loads and presence of 
the genes with comparatively low thresholds, a certain 
number of genes may be fully equipped for transcrip-
tion from the very beginning. Subsequent behavior 
of the loads has a number of notable features. After 
a certain initial period when the proteins randomly 
travel from one site to another, some additional loads 
sooner or later reach the threshold level, thus produc-
ing transcriptions of the corresponding genes. After 
that, according to the rules of the gene expression par-
adigm, these regulatory sites are emptied, all the TFs 
are released for random repossession between all other 
genes, and the process begins anew. The most surpris-
ing result is that, despite purely random redistribution 
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Figure 1. Sample distribution of the gene-specific thresholds (ie, num-
bers of TFs required for transcription initiation) for t- = 30 and r = 0.3.
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Figure 2. Examples of temporal dynamics of gene-specific transcription factors for four genes selected at random from the genome of size 1000.
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of newly available proteins between the non-empty 
regulatory sites, strict periodicity emerges for all the 
genes, each with its own autocorrelation structure. 
Generally, the oscillatory motions of different genes 
are not mutually correlated. Figure 3 shows examples 
of auto-and cross-correlation structure for a pair of 
genes selected at random. As seen from this graph, 
the autocorrelation structures of the genes are mark-
edly different. In order to assign a global measure of 
cross-correlations to the entire set of 1000 individual 
time-series, we have computed the average of abso-
lute values of non-diagonal correlations; in this case 
it was found to be 0.23.

It is easy to envision from Figure 2 a connection 
between the periods of oscillations and thresholds 
of corresponding genes: for those genes with larger 
thresholds, the number of cycles necessary to reach 
the transcription status are greater; hence, their periods 
are longer. In order to quantify this dependence, we 
have parameterized the autocorrelation structures of 

individual time series using autoregressive stochastic 
sequences. Namely, the time series of loads, xi (t), for 
the gene i, were presented as

x t x t x t f
t i

i
i i

i f
i

i
i

( ) ( ) ( )
( ), ,

= + − + + −
+ =
α α α
ε

0 1 1
1



…, Ν
	 (2)

where α1: f
i{ }  are autoregressive coefficients, εi(t) 

are the Gaussian renovations, and f is the order of 
autoregressive processes.9 It is of particular conve-
nience to use the third order process (AR3) which 
combines simplicity of interpretation with flexibility 
in representation of a wide variety of autocorrelation 
structures. For an AR3 process, the autocorrelation 
function, ρ(τ), takes the general form

ρ(τ) = Aexp(−τ/tp) + Bexp (−τ/tq) cos(2πτ/t0 + ψ),	 (3)

where tp is the characteristic time of pure attenuation, tq 
is the time of attenuation of oscillations, and t0 is the qua-

 y1  

A
C

F

 y1 and y2

 y2 and y1

Lag

A
C

F

 y2  

Lag

Auto- and cross-correlations: Genes #627 and #407

1.
0

0.
2

0.
1

0.
0

−0
.1

−0
.2

0.
5

−0
.5

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
0

1.
0

0.
5

−0
.5

0.
0

0

0−10−20−30−40

10 20 30 40 0 10 20 30 40

0 10 20 30 40

Figure  3. Auto- and cross-correlations for two genes selected at random. Individual autocorrelations are markedly different. Cross-correlations are 
small.
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si-period. (For reference purposes, explicit expressions 
for A, B and ψ are given in Appendix A.) Each load has 
been represented as an AR3 series, and the parameters tp, 
tq, t0 have been estimated from simulated data. Figure 4, 
left panel, reveals an almost linear dependence between 
the periods of oscillations, t0, and the thresholds of cor-
responding genes. In other words, more complex genes 
oscillate slower. The right panel of Figure 4 shows an 
obvious linear relationship between standard deviations 
of fluctuations and the thresholds: loads of more com-
plex genes fluctuate with greater amplitude.

Figure 5 depicts the overall dynamics of the sys-
tem in terms of the number of simultaneously active 
genes. As seen from this picture, after a relatively 
rapid “take-off” consisting of about 15  cycles, the 
system enters a self-organized mode with an almost 
constant level of activity with ∼300  genes (out of 
1000) transcribing simultaneously. Note that about 
9000 TFs are engaged in this activity which is a half 
of all the TFs available in the system. While these 

300 genes are in the transcription mode, the remain-
ing 700 genes are busy redistributing the remaining 
9000 proteins among one another.

6. Criticality
If the total number of proteins available in the system 
is not sufficiently large then the probability of simul-
taneous transcription initiation by a large number of 
genes may be too small to launch the whole-genome 
gene expression. Remarkably, the borderline between 
the regime of whole-genome oscillatory motion and 
the regime of quiescence is very sharp, in the essence, 
critical. Figure 6 illustrates this premise. The solid line 
corresponds to the super-critical parameter, λ+ = 0.549, 
whereas the dashed line corresponds to the sub-critical 
parameter, λ− = 0.547. If one runs the simulation repeat-
edly for λ = λ+ then one would always end up with the 
whole-genome oscillatory transcription with identical 
asymptotic levels of activity. For the reference, we 
provide the time course of activity above the critical 
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Figure 4. Left panel: dependence of quasi-periods of oscillations on the genes’ complexities (thresholds). Right panel: the same for standard deviations 
of fluctuations. This picture shows that the genes with greater complexities oscillate slower and with greater amplitude.
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region, that is, for λ = 0.56 (dotted line). In contrast, if 
the simulation is run repeatedly with λ = λ−, then the 
asymptotic limit will always be complete quiescence. 
The critical value of λ lies somewhere in the interval 
[λ−, λ+], and our best estimate for it is λc  =  0.5748. 
The behavior of the system with λ = λc may vary. In 
approximately half of all simulations, the dynamics of 
expression follows the path of λ = λ+ (with some varia-
tions during the transition period). In all other cases, 
the dynamics follows the path λ = λ−. No intermediate 
scenarios noticeably different from the two described 
above appear for λ = λc. The transition of gene-specific 
loads to their asymptotic limits is illustrated in 
Figures 7 and 8. As seen from Figure 7, the genes make 
a number of uncoordinated transcriptions prior to enter-
ing the mode of coherent self-sustained oscillations. The 

effect of spontaneous self-organization is vividly seen 
in Figure 8 in which the time courses of 50 randomly 
selected genes are shown as a heat map. It is worth 
noting that, although the asymptotic level of activity 
is maintained at an approximately constant level, the 
genes themselves perpetually change their status from 
the quiescent to the preparatory sub-critical stage and 
further to the super-critical transcription stage. This 
process may be characterized as random walk in the 
N-dimensional space of the genome’s states. The cor-
relation between the sequential states is low. In order 
to demonstrate this fact we have computed the correla-
tion matrix between the sequential N-vectors of state. 
Thus, in Figure 8, the average of absolute non-diagonal 
correlations is as low as 0.13.

The heat map in Figure 9 provides a deeper insight 
into the dynamics of transition to the regime of self-
sustained oscillation. In this picture, the bottom half 
depicts the timelines of loads for 25 genes with the 
smallest thresholds (ie, the simplest genes) while the 
top half depicts the timelines of loads for 25 genes 
with the largest thresholds (the most complex genes). 
As seen from this picture, the paths of these two groups 
of genes towards their corresponding asymptotic 
regimes are markedly different. However, these dia-
metrically opposite groups of genes enter the regime 
of self-sustained oscillations almost simultaneously. 
This tells us that we are dealing here with the whole-
genome self-synchronization phenomenon emerging 
without any external organizing forces or determin-
istically introduced feedback loops.

The position of the critical region, [λ−, λ+] on the 
scale of λ depends on the width of the distribution of 
the thresholds. When the variability of the thresholds 
increases, the borderline between the regimes of qui-
escence and oscillations moves down towards smaller 
values of λc. In a biological context this means that the 
greater the diversity of genes’ complexities, the easier 
it is to find some low-threshold genes which initiate 
the whole-genome self-organization. To illustrate this 
premise, we have simulated the case with λ = 0.53 and 
ζ = 0.75. This value of λ lies far below the critical value, 
λc, computed above for ζ = 0.3. As seen from Figures 10 
and 11, the regime of self-sustained oscillations which 
was unachievable with ζ = 0.3 is now achievable with 
ζ = 0.75. In our estimates, critical value of λ for the 
latter case is ∼0.5. We were unable to obtain oscillatory 
solutions with λ , 0.5 no matter what other parameter 
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Figure 9. Comparison of transitions to asymptotic oscillatory mode for the 25 simplest genes (minimal thresholds) with those for the most complex genes 
(maximal thresholds). The thresholds are given in ascending order on the left side of the graph with the smallest ones in the bottom. Transcription fires up 
from simple genes and propagates towards complex genes. The whole-genome oscillations emerge almost simultaneously.

values were selected. This means that if the degree of 
completeness is smaller than 0.5 then the genome-wide 
transcription initiation becomes impossible.

There exists another type of criticality in the gene 
expression paradigm. For a given genome size, there 
exists a certain maximal complexity of genes above 
which the transcription initiation becomes impossible. 

Similarly, the borderline between the full-fledged tran-
scription and complete quiescence is amazingly thin. 
As an example, the solid line in Figure 12 depicts the 
time course of transcriptional activity when the genome 
size N = 500 and average threshold is t = 100.  It shows 
that under these conditions the whole-genome oscilla-
tion does exist and that the asymptotic level of activ-
ity is approximately the same as in the entire region 
of smaller thresholds (ie, for much simpler genes). 
As a reference, we provide the time course of activity 
for t = 30  (dotted line). However, when the genes’ 
complexity is just one step above the critical value, ie, 
t = 101, the gene expression excitation is no longer 
possible, periodic or otherwise (dashed line).

6. Stiff Excitation and Oscillations
When λ is well above the critical value, and the varia-
tions in genes’ thresholds are small (say, ζ = 0.1), an 
interesting phenomenon of almost simultaneous exci-
tation and highly synchronized oscillations occurs. As 
seen from Figure 13, for λ = 0.9 the whole-genome oscil-
latory regime is established almost immediately upon 
starting the process. This oscillatory mode features not 
only oscillations of loads of individual genes, but also 
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Figure 11. Heat maps of time courses for the 25 simplest (bottom half) and 25 of the most complex genes (top half) for the coefficient of variation ζ = 0.75.
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Figure 13. Stiff oscillations for high degree of completeness 0.9 and nar-
row distribution of genes’ complexities (coefficient of variation 0.1).

the periodic oscillations of the total number of active 
genes. Another notable feature of this regime transpires 
in Figure 14. All the individual oscillations are tightly 
synchronized and have identical periods of oscilla-
tions, regardless of their individual complexities. Dur-
ing the onset of the oscillatory regime, the genes with 
the highest thresholds are just one step behind those 

with the smallest thresholds. Oscillations are synchro-
nized not only between each other but also with the 
total number of active genes. In this oscillatory mode, 
a majority of all the periods reach their minimal pos-
sible value 2. One may refer to this regime as a regime 
of stiff oscillations. In this regime, the total number of 
proteins available in the system is so large that each 
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gene is forced to reside in only one of two possible 
stages, that is, to be either overloaded or transcribed.

7. Gene Expression Initiation
As mentioned in Introduction, in1 the author has 
made a conjecture that the whole-genome gene 

expression starts with those genes which require the 
smallest number of TFs, and propagates upward on 
the scale of complexity as an avalanche-like process. 
The simulations within the gene expression paradigm 
corroborate this premise. Figure  15  shows how the 
complexities of active genes change with time. First, 
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Figure 14. Regime of stiff oscillations. Oscillations throughout the entire genome are tightly synchronized in terms of lengths of transition periods. It takes 
just one cycle of simulation to trigger the oscillatory mode. Periods of all the individual oscillations are identical regardless of thresholds.
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the transcription follows a narrow path involving a 
small fraction of all the genes, and these genes are 
predominantly the ones of relatively low complex-
ity. Complexity of the transcribing genes, as well as 
their total number, gradually increase. Upon reaching 
some critical state the number and complexity grows 
explosively, encompassing the entire genome.

Discussion
The gene expression paradigm that we have intro-
duced in this paper emerged from our long-standing 
interest in the fundamentals of nonlinear dynamics of 
genetic regulatory networks.1,10–16 However, given the 
popularity and importance of the sand-pile paradigm 
in the science of self-organized criticality, it makes 
some sense to formulate the gene expression paradigm 
in terms of sand dynamics as well, thus emphasizing 
its simplicity and generality. Let us imagine a large 
number of sand pits and an equal number of children 
standing with shovels next to each of them. Suppose 
that each pit has a certain limiting capacity. The game 
goes as follows. When the content of a pit reaches its 
limiting capacity, the child responsible for it randomly 
shovels the sand from his pit to all other pits and does 
it until his pit is emptied. In this process, some other 
pits may become overloaded, and the corresponding 
child takes care about his pit in the same manner. A 
remarkable property of this game is that shortly after 
starting the process, the content of each pit enters the 
quasi-periodic mode, with the amplitudes and periods 
of oscillations being proportional to the pits’ limiting 
capacities. It is easy to notice the fundamental differ-
ence of this process with the sand-pile paradigm. In 
the latter, the excess of sand is randomly redistributed 
between the neighboring sites, thus causing an ava-
lanche. In our model, the sand is randomly redistrib-
uted between all the sites, thus causing a somewhat 
opposite phenomenon of the self-organized oscilla-
tions. As often happens in the dynamics of cellular 
automata,17 this simple modification of the rules of 
updating leads to a completely different behavior.

In a sense, the model we have considered is one-
dimensional. To wit, we have assumed that all the 
proteins are equivalent in their roles as TFs; hence, 
only their total quantity was of importance. Per-
haps a more realistic approach would require refor-
mulation of the entire problem in terms of very 
high-dimensional configuration space in which each 

TF plays a unique role and a certain assortment of 
them would be necessary to start a transcription. Such 
a move towards realism, albeit intriguing, would 
probably mean a death sentence to the model due to 
tremendous computational difficulties.

In natural sciences, simplified theoretical models 
of complex phenomena are often called toy models. 
This terminology explicitly highlights the fact that a 
toy model is not intended to serve as a comprehensive 
theory of the phenomenon; rather, it attempts to pro-
vide a description of its certain core elements. Obvi-
ously, it would be a fallacy to attack a toy model on the 
basis that it is unable to provide a realistic description 
of the phenomenon in its entirety. In biology, a con-
trast between the theoretical toy models and the func-
tionality of complex biological entities is tremendous. 
In this sense, the theoretical considerations offered in 
this paper do not intend to provide a comprehensive 
framework for description of cellular dynamics in its 
entirety. It only focuses on one fundamental property 
of gene expression machinery, that is, on the possibil-
ity of self-organized self-sustained oscillations with-
out any deterministic mechanism behind it. In the 
literature, there is no lack of experimental evidence 
and theoretical considerations regarding oscillations 
in gene expression. Thus, in the Atlas of Cellular 
Oscillations18 published as early as in 1979, more 
than 450 experimental sources were cited featuring 
various types of intracellular oscillations. Rhythms in 
gene expression have been discussed in much detail 
in more recent reviews.19,20 Numerous theoretical 
models have been developed to explain this class of 
phenomena.21,22 An attempt to demonstrate the pos-
sibility of whole-genome oscillations has been under-
taken through introducing the model of artificial 
genome.23 Similar to the gene expression paradigm, 
the artificial genome may be also seen as a version of 
cellular automata but with much more complex rules 
of updating. The gene expression paradigm vividly 
demonstrates that behind all the intricacies of gene 
expression machinery there exist simple, general and 
inescapable rules that lead to the whole-genome self-
sustained oscillations.

Summary
We have introduced a new model of self-organized 
criticality called the gene expression paradigm. 
We have shown that in this model a critical total 
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number of proteins exist below which transcription is 
impossible. Above the critical threshold, the system 
enters the regime of self-sustained stochastic oscilla-
tions with standard deviations and periods proportional 
to the genes’ thresholds with probability one. Impor-
tantly, such a self-organization appears without any 
deterministic feedback loops or external supervision.

Given the size of the genome, the domain of 
self-organized oscillatory motion is also limited by 
the maximal genes’ complexities. Below the critical 
complexity, the regimes of self-organized oscillations 
are self-similar and largely independent of the genes’ 
complexities. Above the level of critical complexity, 
the whole-genome transcription is impossible. The 
borderline between the domains of oscillations and 
quiescence is very sharp.

The gene expression paradigm is an example of 
cellular automata with the domain of application 
potentially far beyond its biological context. The model 
seems to be simple enough for staging an experiment 
for verification of its remarkable properties.
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Appendix A
AR3 parameterization of  
autocorrelations
For a general autoregressive process of order f 

x(t) = α0 + α1x(t − 1) + ... + αf   x(t − f  ) + ε(t),
the autocorrelation structure may be presented as
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The roots s1:f  may be found per solution of the 
difference equation with respect to x(t) and present-
ing the solution as
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with Â being a shift operator: Âε(t) = ε(t − 1). For the 
third order process, when one root, s1, is real and two 
roots, s2:3 = ρ exp(±iθ), are complex-conjugate
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