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Abstract: In the frame of the Cox proportional hazard (PH) model, a novel two-step procedure for estimating age-period-cohort (APC) 
effects on the hazard function of death from cancer was developed. In the first step, the procedure estimates the influence of joint APC 
effects on the hazard function, using Cox PH regression procedures from a standard software package. In the second step, the coef-
ficients for age at diagnosis, time period and birth cohort effects are estimated. To solve the identifiability problem that arises in esti-
mating these coefficients, an assumption that neighboring birth cohorts almost equally affect the hazard function was utilized. Using 
an anchoring technique, simple procedures for obtaining estimates of interrelated age at diagnosis, time period and birth cohort effect 
coefficients were developed.
As a proof-of-concept these procedures were used to analyze survival data, collected in the SEER database, on white men and women 
diagnosed with LC in 1975–1999 and the age at diagnosis, time period and birth cohort effect coefficients were estimated. The PH 
assumption was evaluated by a graphical approach using log-log plots. Analysis of trends of these coefficients suggests that the hazard 
of death from LC for a given time from cancer diagnosis: (i) decreases between 1975 and 1999; (ii) increases with increasing the age at 
diagnosis; and (iii) depends upon birth cohort effects.
The proposed computing procedure can be used for estimating joint APC effects, as well as interrelated age at diagnosis, time period 
and birth cohort effects in survival analysis of different types of cancer.
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Introduction
In cancer epidemiology, survival and hazard functions 
are valuable characteristics of severity for a given 
type of cancer. By analyzing temporal trends of these 
functions, clinicians can evaluate their achievements 
in cancer diagnosis and treatment. This analysis can 
also help researchers develop novel approaches and 
strategies for fighting cancer.

The survival function, S(τ), is the probability for 
a cancer patient to stay alive longer than a speci-
fied time, τ, after cancer diagnosis. This function is 
related to the hazard function, h(τ), that determines 
the instantaneous risk (hazard) of death from the can-
cer at time, τ, given that the patient has survived up 
to this time:

 S(τ) = e–H(τ), (1)

where H h z dz( ) ( )τ τ= ∫0  is the so-called cumulative 
hazard function.1,2

For each cancer type, these functions, along with 
the most common risk factors, such as gender, race, 
geographical areas of living, etc., also depend on 
age at diagnosis (ages at which patients were diag-
nosed with cancer), time period (calendar years when 
patients were diagnosed with cancer) and birth cohort 
(calendar years when cancer patients were born) 
effects.

Traditionally, survival functions have been evalu-
ated from cohort-based follow-up observations by 
monitoring cancer patient survival in clinical-based 
registries. To analyze survival data, a single vari-
able Kaplan–Meier method has been widely used.3 
The survival functions obtained from these obser-
vations adequately describe survival data on cancer 
cases diagnosed many years ago. Data collected more 
recently have lower impact on evaluation of survival 
functions.

To overcome this shortcoming, the period analysis 
approach and its modification (called period analysis 
modeling technique) were introduced.4–8 The latter 
technique assumes the existence of a linear trend for 
the conditional survival estimates within the 5-year 
periods used for modeling. A period of five calendar 
years was chosen to optimize the most up-to-date 
and precise estimation of cancer survival function. 
Compared to traditional cohort-based approaches, 
the period analysis modeling technique allows one 

to derive more up-to-date and more precise estimates 
of survival function for cancer patients. However, 
the period analysis approach does not consider birth 
cohort effects.

A multivariate Cox regression approach in the 
frame of the proportional hazard (PH) model was 
used to assess the comparative risks or hazard func-
tions of death from cancer.9 The PH model assumes 
that values of the hazard function are proportionally 
dependent upon the risk factors. A graphical approach 
using log-log plots was utilized to evaluate the PH 
assumption. A multivariate Cox regression approach 
was applied to estimate differences in hazards by his-
tological types of pancreatic cancer. Along with other 
variables, such as gender, race, histological type, 
surgery status and cancer stage, age at diagnosis and 
time period effects were considered, while cohort 
effects were ignored. As we show below, in the frame 
of the PH model, age at diagnosis, time period and 
birth cohort effects are interrelated. To date, there is 
no numerical method for simultaneous estimation of 
these interrelated effects.

In this paper we are proposing to extend the 
Cox PH model and apply it for estimation of the inter-
related age-period-cohort effects on cancer survival. 
It should be noted that this model can be utilized if 
the parallelism of log-log survival curves is  present. 
In contrast to the single variable Kaplan–Meier 
approach that accounts only for time to event (sur-
vival) data, a multivariate Cox regression approach 
accounts for many confounding variables, as well as 
for censored data. In cancer research, the Cox PH 
model has been widely used for the analysis of data 
collected in nested case-control, case-cohort, and 
cohort studies, as well as in clinical trials. However, 
to our best knowledge, this approach was not used 
for analysis of data from population-based studies 
to estimate the interrelated age-period-cohort (APC) 
effects on cancer survival. The main reason for that 
is an identifiability problem with multiple estimators 
that arises in estimating these effects. In this paper 
we introduce a simple, computationally effective 
method to solve this identifiability problem. The pro-
posed solution of this problem is analogous to one 
that we recently utilized for accounting APC effects 
on cancer incidence rates.10,11

As a proof-of-concept, the proposed approach 
was utilized to analyze the SEER data on lung  cancer 
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(LC) survival in white men and women. The validity 
of the PH assumption for analyzing this data was ini-
tially checked by assessing the parallelism of log-log 
survival curves. The proposed approach allowed us 
to estimate numerically the interrelated age at diag-
nosis, time period and birth cohort effects on sur-
vival and hazard functions of LC in white men and 
women.

Methodology
Generally, APC analysis refers to a family of statis-
tical techniques for understanding temporal trends 
of an outcome under consideration (such as cancer 
incidence or mortality rates, hazard function of death 
from cancer, etc.). The purpose of this analysis is to 
determine separate contributions of age, time period 
of observations, and birth cohort to this outcome.12 
This kind of analysis, along with other data, can also 
be performed with the use of cancer follow-up sur-
vival data collected over a long period of time from 
large population-based cancer registries (such as, for 
instance, the Surveillance, Epidemiology, and End 
Results (SEER) Program).13

Statement of the problem
Let us assume that for each patient with a particular 
type of cancer, there is information on age at diagnosis, 
date of diagnosis, date of birth, as well as follow-up 
data on death from the cancer at time, τ, given that 
the patient has survived up to this time and the right 
censorship is presented by a dichotomous value (0 or 
1). We can group the data by their belonging to the 
categorical intervals noted by the i, j and l indexes, 
where index i (i = 1,2, …, n) denotes successive 
age at diagnosis intervals, index j (  j = 1,2, …, m) 
denotes successive time period intervals, and index 
l ( l = 1,2, …, k) denotes successive birth cohort inter-
vals. Let us denote the corresponding hazard func-
tions for cancer patients with (i,j,l) grouped data by 
hi, j,l(τ). This function, along with τ, also depends on 
the i, j, and l indexes, which are related by the follow-
ing linear relationship:

 l = j − i + n. (2)

This relationship directly follows from the fact that 
if an event occurs to an individual of age a in year p 
then a particular cohort c = p − a must be involved.12

To determine the separate contributions of age, 
period, and cohort effects to the hi, j,l(τ) function let us 
use the PH model, which is widely utilized in cancer 
survival analysis.1,2 In the frame of this model, the 
hi, j,l(τ) function proportionally depends upon age at 
diagnosis (wi), time period (vj) and birth cohort effect 
coefficients (ul), as well as on the baseline hazard 
function (h0(τ)) the following way:

 hi, j,l(τ) = wivjulh0(τ). (3)

Now, the APC analysis problem is to estimate the 
wi , vj , and ul coefficients and the h0(τ) function, using 
the patient’s survival time data, τ, grouped by the i, j 
and l indexes. These survival time data also contain 
information for right censorship presented by dichot-
omous values (0 or 1). Since the i, j and l indexes are 
connected by linear relationship (2), values of these 
coefficients are interrelated and the estimation of these 
coefficients is an identifiability problem with multiple 
estimators.14 It means that there are many solutions to 
this problem that equally satisfy the observed survival 
time data and this problem needs to be transferred 
into the problem that has a single  solution. This is the 
main difficulty in solving this problem. To the best of 
our knowledge in survival studies, the identifiability 
problem of APC analysis stated in such a way has not 
been solved yet.

Computational procedure for solving  
the problem
Below, we introduce a simple, computationally 
effective two-step procedure to solve the aforemen-
tioned identifiability problem. In the first step, it 
estimates the influence of joint APC effects on the 
hazard function, using a Cox PH approach. In the 
second step, the coefficients for age at diagnosis, 
time period and birth cohort effects are estimated. 
To solve the identifiability problem in estimating 
these coefficients, an additional assumption that 
neighboring birth cohorts almost equally affect the 
hazard function is utilized. The proposed proce-
dure uses the same assumption that we have effec-
tively used for accounting APC effects on cancer 
incidence rates.10,11 Using an anchoring technique, 
simple algorithms for obtaining estimates of inter-
related age at diagnosis, time period and birth cohort 
effect coefficients are developed and coded into a 
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computer program. A detailed explanation of this 
two-step procedure is presented below.

Step 1. determination of joint  
age-period-cohort effect coefficients
Let us present (3) in the following way:

 hi, j,l(τ) = ai, j,lh0(τ) i = 1,2, …, n;
 j = 1,2, …, m; l = j − i + n; 

(4)

where ai,j,l designates the product of wivjul and h0(τ). 
Since l = j − i + n, grouping by three indexes i, j, and l 
can be reduced to the grouping by two indexes, i and j, 
and the system (4) can be presented as:

 hi, j(τ) = ai, jh0(τ) i = 1,2, …, n; j = 1,2, …, m. (5)

Now, using system (5) with observed survival 
data, one can assess each ai, j and its standard error 
(SE), as well as h0(τ). For this purpose, the Cox PH 
regression approach that uses maximum likelihood 
estimates can be utilized. The a*i, j estimates (here and 
below the asterisks designate the estimates) need to 
be anchored to one of the coefficients to be estimated. 
This coefficient, say, ai j

*
,0 0

, is assumed to be equal to 
1 and its SE is assumed to be equal to 0, (i.e. ai j*,0 0

1=  
and SE ai j( * ),0 0

0= , where i0 and j0 are indexes of the 
anchored coefficient ai, j).

Note: The Cox PH model, that is a particular case 
of the PH model, is usually written in terms of an 
exponential expression:

 h h ei j
ai j

,
ln( ) ( ) ,,τ τ= 0  (6)

where parameters to be estimated are ln ai, j. This 
exponential form of the expression (6) provides non-
negative estimates of ai, j.

1

Step 2. Determination of coefficients for  
interrelated age at diagnosis, time period  
and birth cohort effects
The estimates a*i, j, obtained on the previous step, can 
be used for estimating the wi, vj, and ul coefficients. For 
this purpose, three sets of estimates can be obtained 
from the system of i × j conditional equations

 a*i, j = wivjul i = 1,2, …, n; j = 1,2, …, m;  
 l = j −i + n.  

(7)

These sets are: (i) estimates for the age at diagnosis 
coefficients (wi* ); (ii) estimates for the time period 
coefficients (vj* ); and (iii) estimates for the birth 
cohort effect coefficients (ul* ). However, due to the 
linear relationship (2) between indexes i, j and l, 
these three effects are interrelated. As a result, the 
 identifiability problem with multiple estimators arises 
in system (7): different combinations of correspond-
ing effect coefficients equally satisfy the observations 
of cancer  survival. This problem is analogous to the 
problem of accounting for effects of age, period, and 
cohort on cancer incidence rates.12,15–18

To solve the identifiability problem in APC 
analysis it is necessary to make additional 
assumptions.12,15–18 For such an assumption, we 
hypothesize that the neighboring birth cohorts 
almost equally affect the cancer survival data. The 
rationale for this assumption is that, in practice, the 
adjacent cohorts are overlapping in time intervals 
and thus the values of the corresponding cohort 
effects should be close.14 Based on this assump-
tion, we proposed a novel computing procedure for 
numerical estimation of interrelated age at diagno-
sis, time period and birth cohort coefficients on can-
cer survival and hazard functions.

estimation of age at diagnosis effect 
coefficients
Let us consider the i × j matrix with a*i, j elements 
presented in system (7). By dividing the corre-
sponding elements of the neighboring rows (with 
indexes i and i + 1 or i + 1 and i) of this matrix, one 
can obtain two systems of equations (vj coefficients 
are  canceled out):

 

a
a

w
w

u
u i n

j m l j i n

i j

i j

i

i

l

l

,

,

*
* ; , , ;

, , ;
+ + −

= = −

= = − +
1 1 1

1 1

1

…

…

 
(8)

and

 

a
a

w
wi

u
u i n

j m l j i n

i j

i j

i l

l

+ + −= = −

= = − +

1 1 1 1 1

1

,

,

*
* ; , , ;

, , ; .

…

…

 
(9)

Note: (8) provides (n − 1) × m conditional equations 
for assessing n − 1 ratios of time period coefficients 
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(wi/wi+1, i = 1, …, n − 1), and m − 1 + n − 1 ratios of the 
cohort effect coefficients (ul/ul−1, l = 2, …, m − 1 + n). 
 Analogously, (9) provides (n − 1) × m conditional equa-
tions for assessing n − 1 ratios of time period coefficients 
(wi+1/wi, i = 1, …, n − 1), and m − 1 + n − 1 ratios of 
cohort effect coefficients (ul−1/ul, l = 2, …, m − 1 + n).

Assuming that any pair of the neighboring cohorts 
has a cohort effect coefficient ratio close to 1, the fol-
lowing pair of systems can be obtained:

 

a
a

w
w i n j mi j

i j

i

i

,

,

*
* ; , , ; , ,
+ +

= = − =
1 1

1 1 1… …  (10)

and

 

a
a

w
w i n j mi j

i j

i

i

+ += = − =1 1 1 1 1,

,

*
* ; , , ; , , .… …  (11)

When coefficients of variation of estimates a*i, j are 
small, SEs of the ratios a ai j i j, ,* / *

+1 and a ai j i j, ,/+1* *  can 
be calculated by standard rules of error propagation.19 
For estimation of wi/wi+1 and wi+1/wi, a least squares 
method can be applied and the most efficient estimates 
for these ratios are the weighted means of the values 
a ai j i j, ,* / *

+1 and a ai j i j, ,
* / *

+1  averaged through index j, cor-
respondingly (weights are given as reciprocals of the 
square of their standard errors). The SEs of the estimates 
(wi/wi+1)* and (wi+1/wi)* can be calculated in a standard 
way. In fact, after anchoring the age at diagnosis coeffi-
cient at index i0, assuming wi0 1=  and SE wi( )

0
0= , one 

can obtain the following recurrent estimates of wi
*:

 

w
w
w w

w
w w

w
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 (12)

and
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0
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w
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 (13)

Note 1: Index i0 is defined from the corresponding 
index of the anchored coefficient ai j*,0 0

1= . The SE 
of wi*

 can be calculated by the standard rules of error 
propagation by means of the estimates (wi/wi+1)*, 
(wi+1/wi)* and their SEs.

Note 2: Analogous to our previous works for the 
APC analysis of cancer incidence rates,10,11 one can 
show that errors of the estimates wi*  (as well as errors 
of vj*  and ul* ) are distributed approximately normally. 
This was used to test the null hypotheses (w wi i=

0
, 

v vj j=
0
, and u ul l=

0
) by the standard z-test.

Estimation of time period effect coefficients
By dividing the corresponding elements of the 
 neighboring columns (with indexes j and j + 1 or 
j + 1 and j) of the i × j matrix with a*i, j elements, one 
can obtain the following two systems of equations 
(wi coefficients are canceled out):

 

a

a

v
v

u
u i n

j m l j i n

i j

i j

j

j

l

l

,

,

*

* ; , , , ;

, , , ;

+ + +
= = …
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1 1 1

1 2

1 2 1

 (14)

and

 

a
a

v
v

u
u i n

j m l j i n

i j

i j

j

j

l

l

,

,

*
* ; , , , ;

, , , ; .
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= … − = − +
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1 2 1
 (15)

Note: (14) provides n × (m − 1) conditional 
equations for assessing m − 1 ratios of time 
period coefficients (vj/vj+1, j = 1, …, m − 1), and 
m − 1 + n − 1 ratios of cohort effect coefficients 
(ul/ul+1, l = 1, …, m − 1 + n − 1). Analogously, (15) 
provides n × (m − 1) conditional equations for assess-
ing m − 1 ratios of time period coefficients (vj+1/
vj, j = 1, …, m − 1), and m − 1 + n − 1 ratios of cohort 
effect coefficients (ul+1/ul, l = 1, …, m − 1 + n − 1). 
Assuming that for any pair of the neighboring 
cohorts, the ratio of their cohort effect coefficients is 
close to 1, one can obtain from (14) and (15) a pair 
of systems:

a
a

v
v i n j mi j

i j

j

j

,

,

*
* ; , , , ; , , ,

+ +
= = = −

1 1
1 2 1 2 1… …  (16)
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and

 

a
a

v
v i n j mi j

i j

j

j

,

,

*
* ; , , , ; , , , .+ += = = −1 1 1 2 1 2 1… …  (17)

When coefficients of variation of estimates a*i, j 
are small, SEs of the ratios a ai j i j, ,* / *

+1 and a ai j i j, ,* / *+1  
can be calculated by standard rules of error propa-
gation.19 For estimation of vj/vj+1 and vj+1/vj, a least 
squares method can be applied and the most efficient 
estimates for these ratios are the weighted means of 
the values a ai j i j, ,* / *

+1  and a ai j i j, ,* / *+1  averaged through 
index i, correspondingly (weights are given as recip-
rocals of the square of their standard errors). The SEs 
of the estimates (vj/vj+1)* and (vj+1/vj)* can be calcu-
lated in a standard way.

After anchoring the age at diagnosis coefficient at 
index j0, assuming v j0 1=  and SE v j( )

0
0= , one can 

obtain the following recurrent estimates of v j*:
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and
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 (19)

The SE of vj*  can be calculated by the standard 
rules of error propagation by means of the estimates 
(vj/vj+1)* and (vj+1/vj)* and their SEs.

Note 1: Index j0 is defined by the anchored coef-
ficient ai j* ,0 0

1= .
Note 2: The preceding method for estimation of 

time period effect coefficients is similar to the method 
for estimation of age at diagnosis effect coefficients. 
In the first case, the conditional equations are derived 
dividing the corresponding elements of the neighbor-
ing rows of i × j matrix with a*i, j. In the second case, 

the conditional equations are derived dividing the 
corresponding elements of the neighboring columns.

Estimation of birth cohort effect coefficients
One way to assess ul is as follows. After evaluating 
the time period effect coefficients, vj* , one can correct 
the ai, j*  coefficients for time period effects by divid-
ing them by vj* . From (7) and (14), the following two 
systems of conditional equations can be derived:

 

a v

a v

u
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and
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 (21)

By the standard rules of error propagation, one 
can obtain SEs of the ratios of the corrected coeffi-
cientsa vi j j* / *,  and a vi j j* / *, + +1 1  by means of the standard 
errors of a*i, j, vj* , a*i, j+1 and v j+1* . Similar to the ratios 
of the time period coefficients, the ratios ul/ul+1 and 
ul+1/ul can be estimated by the weighted means of val-
ues of the left sides of systems (20) and (21). Weights 
should be given according to the SEs of the corrected 
coefficients (reciprocal of squares of the SEs). The 
index of the cohort coefficient to be anchored can be 
simply obtained from the relationship (2) between the 
j, l, and i indexes.

By setting ul0 1=  and (SE ul( )
0

0= ), all cohort coef-
ficients and their SEs can be estimated by a proce-
dure analogous to one used for determination of time 
period coefficients:
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 (22)

and
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Note: Index l0, for anchoring the birth cohort coef-
ficient is simply derived as: l0 = j0 − i0 + n. The SE of 
ul* can be calculated by the standard rules of error 
propagation by means of the estimates (ul/ul+1)* and 
(ul+1/ul)*, and their SEs.

Additional details of the proposed procedure are 
discussed below on the example of analysis of lung 
cancer (LC) survival data collected in the SEER 
database.

Potential limitations
The proposed extension of the Cox PH model has sev-
eral potential limitations. First, this model can be uti-
lized only if the parallelism of log-log survival curves 
is present. However, the problem of visual evaluation 
of the parallelism by graphical approaches is to decide 
“how parallel is parallel?” For a given data set, this 
decision can be quite subjective. Therefore, we uti-
lized the recommendation of a conservative strategy 
proposed by Kleinbaum and Klein1 suggesting that 
the PH assumption is satisfied if there is not strong 
evidence for the non-parallelism of considered log-
log survival curves.

Second, to solve the identifiability problem, the 
proposed approach uses an assumption that neighbor-
ing birth cohorts almost equally affect the cancer sur-
vival data. Therefore, after estimating the birth cohort 
coefficients and their SEs, the validity of this assump-
tion needs to be verified. If the obtained estimates of 
some neighboring birth cohort coefficients are statis-
tically different (i.e. validity of this assumption will 
not be proved by obtained results of calculations), the 
results cannot be fully justifiable.

It could also be argued that the requirement for cat-
egorizing the age at diagnosis, time-period, and birth 
cohort by equally-sized time intervals reduces areas 
of possible application of the proposed  procedure. By 
admitting this limitation, we suggest that in practice, 
the quantitative estimation of the age at diagnosis, 

time period and birth cohort effect  coefficients mainly 
depends on the amount and quality of the collected 
data rather than on the use of the equally-sized time 
intervals. Indeed, according to common practice used 
in cancer epidemiology, to smooth out random fluctu-
ations in cancer incidence rates, the age at diagnosis, 
time period and birth cohort intervals are grouped in 
5-year time intervals.18 When the amount of analyzed 
data is large enough, these time intervals can be dimin-
ished to, say, 3 or 4 years that will result in improved 
accuracy of coefficients  determination. However, 
when the collected data is relatively small, the length 
of these intervals can be enlarged up to 10 years.12 
The price of this, however, will be the lower accuracy 
in calculated coefficients.

In principle, the approach proposed in this work 
can be further extended for cases when the age at 
diagnosis and time period intervals have different 
durations. For this purpose, the technique proposed 
in the literature20 can be utilized. However, it poses 
additional identifiability problems24 and the use of 
this technique requires the development of a more 
complicated computational procedure, while benefits 
of its use are questionable. Therefore, we decided to 
keep such an extension out of the scope of this work.

example
estimation of APC effects in lung cancer  
survival analysis
The proposed procedure was used for estimation of the 
APC effects in LC survival of white men and women. 
Selections of LC cases and data preparation, as well as 
implementation of the proposed procedure and analy-
sis of the obtained results, are presented below.

Selection of LC cases and data preparation
In this work, we used the SEER database that contains 
cancer follow-up survival data collected 1973 through 
2004 in the SEER 9 Registries13 (Connecticut, Detroit, 
Hawaii, Iowa, New Mexico, San Francisco-Oakland, 
Utah, Atlanta (1975–2004), and Seattle-Puget Sound 
(1975–2004)). From this database, we selected cases 
for white men and white women aged 40–84 and diag-
nosed with LC in the 1975–1999 time period, for a 
total of 272,604 cases. By using the same data process-
ing methodology as described in the SEER Survival 
Monograph21 and our previous study,22 we excluded 
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38,463 cases that were not first primary cancers; from 
the obtained subset, we excluded 5,006 cases that were 
diagnosed via death certificate or at autopsy only; 
then, we excluded 16,413 cases that were not micro-
scopically confirmed by a pathologist, yielding a total 
of 212,722 cases (134,360 male and 78,362 female). 
Choosing the 1975–1999 time period allowed us to 
analyze the survival with a minimum of five years of 
follow-up data for LC patients diagnosed in 1999 or 
earlier. For the selected cases, the survival time was 
measured in months from the date of diagnosis until 
the date of death. Cases lost to follow-up were right-
censored at the time of the last known follow-up, and 
patients alive at the end of our study period  (December 
31, 1999) were right-censored at this date.

The ages of LC patients at the time of  diagnosis 
were divided in nine age at diagnosis intervals, denoted 
by index i: i = 1 for 40–44; i = 2 for 45–49; …; i = 8 for 
75–79; and i = 9 for 80–84. To get a sufficiently large 
sample size for statistical analysis, data for the age 
groups 40 years and over was used (in this case, the 
number of patients within each age at the  diagnosis 

group exceeds 300). The considered 25-year range of 
observations (1975–1999) of LC patients was divided 
into five 5-year time period intervals denoted by index j: 
j = 1 for 1975–1979; j = 2 for 1980–1984; j = 3 for 
1985–1989; j = 4 for 1990–1995; and j = 5 for 1995–
1999. In addition, 13 birth cohorts corresponding to 
the aforementioned age at diagnosis and time periods 
were divided into 5-year intervals denoted by index l 
(l = j − i + 9): (l = 1) 1895–99; (l = 2) 1900–04; …; 
(l = 12) 1950–54; and (l = 13) 1955–59.

For the PH model, the hazard function of LC was 
presented as hi, j,l(τ) = wivjulh0(τ), which is a function 
of the age at diagnosis (wi), time period (vj) and birth 
cohort (ul) coefficients, as well as the baseline hazard 
function, h0(τ). For further convenience, we present 
this model in Table 1. In this table, hazard functions 
hi, j,l(τ) = wivjulh0(τ) are located in the following way: 
for a given age at diagnosis interval (i) along the row; 
for a given time period interval (  j) along the column; 
and for a given birth cohort interval (l) along the 
diagonal. From this table, it is clear that indexes i, j 
and l are interrelated: any combination of two indexes 

Table 1. Presentation of the hazard function h(τ, wi, vj, ul) by age at diagnosis (wi), time period (vj) and birth cohort (ul) effect 
coefficients, and the baseline hazard function, h0(τ).

Age group period of observation Birth cohort
i mp, ti 1975–79 1980–84 1985–89 1990–94 1995–99 l years, 19xx

j = 1 j = 2 j = 3 j = 4 j = 5
1 42.5 w1v1u9h0(τ) w1v2u10h0(τ) w1v3u11h0(τ) w1v4u12h0(τ) w1v5u13h0(τ) →13 55–59

2 47.5 w2v1u8h0(τ) w2v2u9h0(τ) w2v3u10h0(τ) w2v4u11h0(τ) w2v5u12h0(τ) →12 50–54

3 52.5 w3v1u7h0(τ) w3v2u8h0(τ) w3v3u9h0(τ) w3v4u10h0(τ) W3v5u11h0(τ) →11 45–49

4 57.5 w4v1u6h0(τ) w4v2u7h0(τ) w4v3u8h0(τ) w4v4u9h0(τ) w4v5u10h0(τ) →10 40–44

5 62.5 w5v1u5h0(τ) w5v2u6h0(τ) w5v3u7h0(τ) w5v4u8h0(τ) w5v5u9h0(τ) →9 35–39

6 67.5 w6v1u4h0(τ) w6v2u5h0(τ) w6v3u6h0(τ) w6v4u7h0(τ) w6v5u8h0(τ) →8 30–34

7 72.5 w7v1u3h0(τ) w7v2u4h0(τ) w7v3u5h0(τ) w7v4u6h0(τ) w7v5u7h0(τ) →7 25–29

8 77.5 w8v1u2h0(τ) w8v2u3h0(τ) w8v3u4h0(τ) w8v4u5h0(τ) w8v5u6h0(τ) →6 20–24

9 82.5 w9v1u1h0(τ) w9v2u2h0(τ) w9v3u3h0(τ) w9v4u4h0(τ) w9v5u5h0(τ) →5 15–19

  ↓   ↓   ↓   ↓   ↓
  1   2   3   4   5
  1895–99   1900–04   1905–09  1910–14  1915–19

notes: The abbreviation, “mp, ti,” indicates the midpoint of the i-th age at diagnosis interval. Arrows show directions (along diagonals) of changing hazard 
functions of death from cancer for patients born in the given intervals of calendar years (birth cohort intervals).
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 simply defines the third index (for instance, the row 
and column defines the diagonal, etc.).

Validation of the Ph model
To test the validity of the PH model given by formu-
las (1) and (2), we used a graphical approach using 
log-log plots.1 According to this approach, for each 
(i, j) cell of Table 1 we plotted the survival curves, 
S*, as a function of time τ determined by the method 
of Kaplan-Meier and then considered the ln(−ln S*) 
curve.1 The parallelism of the log-log survival plots 
for different cells (i,j) provides one with a graphical 
approach for assessing the PH assumption. In fact, 
from (1) and (3) it follows:

 
− = ∫ln ( , , , ) ( )S w v u w v u h z dzi j l i j lτ

τ
00

 (24)

and

 

ln( ln ( , , , ) ln( , , )

ln ( ) .

− =

+ 



∫

S w v u w v u

h z dz
i j l i j lτ

τ
00

 (25)

When the PH assumption is valid, it follows 
from formulas (24) and (25) that ln(−ln S(τ,vj,ul,wi) 
will represent the logarithm of the cumulative 
baseline hazard function of death from cancer, 
ln ( ) ln[ ( ) ],H h z dz0 00τ τ= ∫  shifted along the ordinate 
axis by the value of ln(wivjul). After inspecting the 
log-log survival plots for each cell of Table 1, we 
accepted the PH models for LC for both men and 
women (data not shown).

Results and Discussion
To estimate the joint APC effects in the frame of the 
Cox PH model, we used Table 2, where for each cell 
ai, j = wivjul (see the section Step 1, above).

To estimate the ai, j coefficients, we used the Cox PH 
model, written in terms of an exponential expression 
(6), and utilized the MATLAB function, “coxphfit”. (It 
should be noted that for this purpose, other programs 
for Cox PH regression analysis can also be used.) For 
each (i,j) cell (where i = 1,2, …, 9; j = 1,2, …, 5) two 
files were used as input for this function. The first file 
contained the survival time data, τi, j,ρ = τi, j,l,ρ, where 
l = j − i + 9, and ρ denotes the patient’s identification 
index. The second file contained dichotomous values 
(0 or 1) for the censorship status of each patient. As 
output data, the coxphfit function provided the esti-
mates (ln ai, j)* and SE[(ln ai, j)*], and the estimates of 
the cumulative baseline H0*( )τ  for τ = τi, j,ρ.

We obtained the estimates ai j,*  and SE ai j( ),*  by the 
formulas:

 a ei j
ai j

,
(ln )* *,=  (26)

and

 
SE a a SE ai j i j i j( * ) * (ln )* ., , ,= 



  (27)

To obtain estimates of the age at diagnosis, time 
period and birth cohort effect coefficients (wi*,vj*  and 
ul*, correspondingly), we used our newly developed 
MATLAB computing program, called the  “apcsur” 
function. This program implements algorithms 

Table 2. Presentation of the hazard function h(τ, wi, vj, ul) as a function of joint age-period-cohort effect coefficients  
ai, j(ai, j = wi vj ul) and the baseline hazard function, h0(τ).

period of observation
Age group 1975–79 1980–84 1985–89 1990–94 1995–99
i mp, ti j = 1 j = 2 j = 3 j = 4 j = 5
1 42.5 a1,1h0(τ) a1,2h0(τ) a1,3h0(τ) a1,4h0(τ) a1,5h0(τ)
2 47.5 a2,1h0(τ) a2,2h0(τ) a2,3h0(τ) a2,4h0(τ) a2,5h0(τ)
3 52.5 a3,1h0(τ) a3,2h0(τ) a3,4h0(τ) a3,4h0(τ) a3,5h0(τ)
4 57.5 a4,1h0(τ) a4,2h0(τ) a4,3h0(τ) a4,4h0(τ) a4,5h0(τ)
5 62.5 a5,1h0(τ) a5,2h0(τ) a5,3h0(τ) a5,4h0(τ) a5,5h0(τ)
6 67.5 a6,1h0(τ) a6,2h0(τ) a6,3h0(τ) a6,4h0(τ) a6,5h0(τ)
7 72.5 a7,1h0(τ) a7,2h0(τ) a7,3h0(τ) a7,4h0(τ) a7,5h0(τ)
8 77.5 a8,1h0(τ) a8,2h0(τ) a8,3h0(τ) a8,4h0(τ) a8,5h0(τ)
9 82.5 a9,1h0(τ) a9,2h0(τ) a9,3h0(τ) a9,4h0(τ) a9,5h0(τ)
note: The abbreviation, “mp, ti”, indicates the midpoint of the i-th age at diagnosis interval.
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Figure 1. Variation of age at diagnosis coefficients, anchored at index 5, with time period index (i), in white men (A) and white women (B). 
notes: error bars indicate 95% confidence intervals. Open circles indicate coefficients significantly different than 1.0; closed circles indicate coefficients 
not significantly  different from 1.0; “x” indicates anchor point.

described above (see the section Step 2) and uses the 
estimates ai j,*  and SE ai j( * ), , as well as indexes of the 
age at diagnosis, time period and birth cohort intervals 
to be anchored as input data. The coefficients for the 
anchored intervals were taken equal to 1 and their SE 
equal to 0. Values of other coefficients were estimated 
relative to the values of the anchored coefficients. 
The estimates of the wi*,v j* and ul* coefficients were 
obtained as output data of the “apcsur” function.

In this work, the age at diagnosis, time period, and 
birth cohort effect coefficients with median indexes of 

i = 5,  j = 3 and l = 7 were chosen as anchors; values of 
these coefficients were taken as w5 = 1, v3 = 1 and u7 = 1 
and their SEs were taken equal to 0. The anchored coef-
ficients were chosen based on our numerical experi-
ments and showed (data not presented) that, in this case, 
the SEs of the majority of coefficients to be estimated 
were smaller than for any other combination.

Table 3 presents the estimates of the age at diagnosis 
effect coefficients, wi*, and their SEs for white men and 
women with LC. Statistical differences between these 
coefficients and the coefficient for the anchored age 
interval, 60–64, with a value set to be equal to 1, were 
measured by P-values calculated using the standard 
z-test. The obtained P-values are shown in Table 3; 
P-values for the coefficients statistically distinguishable 
from 1 (with the significance level of 0.05) are shown in 
italics. Figure 1 shows the trends of the age at diagnosis 
effect coefficients in white men (A) and women (B). As 
can be seen, for both men and women, the estimates of 
age at diagnosis coefficients increase with age, i.e. the 
hazard of death from LC increases with age. Because, 
for a given τ, from formula (1) it follows that when 
the hazard function is increasing, the survival function 
is decreasing, we can conclude that LC survival rates 
decrease with age. This statement is consistent with the 
conclusion made in this work,23 which is that the cancer 
survival rates decrease with age.

Table 4 presents for white men and women with 
LC estimates of the time period effect coefficients 

Table 3. estimated values of the age at diagnosis 
coefficients wi*, their standard errors (Se), and P-values 
characterizing the statistical difference between the esti-
mated coefficient and the anchored coefficient.

Age 
interval 
index

White men White women
wi*  ±  se P-value wi*  ±  se P-value

1 0.77 ± 0.03 ,0.0001 0.78 ± 0.04 ,0.0001
2 0.85 ± 0.02 ,0.0001 0.84 ± 0.03 ,0.0001
3 0.88 ± 0.02 ,0.0001 0.86 ± 0.02 ,0.0001
4 0.95 ± 0.01 ,0.0001 0.94 ± 0.02 ,0.0001
5 1.00 1.00
6 1.08 ± 0.02 ,0.0001 1.06 ± 0.02 ,0.0001
7 1.20 ± 0.02 ,0.0001 1.19 ± 0.02 ,0.0001
8 1.34 ± 0.03 ,0.0001 1.36 ± 0.04 ,0.0001
9 1.33 ± 0.04 ,0.0001 1.37 ± 0.05 ,0.0001
notes: The coefficient for age interval 5 is the anchored coefficient and 
is defined as 1.0. Italicized P-values denote coefficients statistically 
distinguishable from 1.0 (with significance level 0.05).
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v j* and their SEs, as well as P-values calculated using 
the standard z-test, for four time period effect coef-
ficients compared to 1 (that is the anchored coeffi-
cient for the 1985–89 time period). Figure 2 shows 
that trends of these coefficients in white men (A) 
and women (B) demonstrate a slight decrease with 
time, i.e. the hazard of death from LC has somewhat 
decreased since the 1975–1999 time period. (More 
detailed analysis of improvement in LC survival over 
time is given below, see Table 6). This conclusion is 
different from the conclusion made by Bassily et al.23 
that states that the LC survival has not improved over 
three decades. One possible explanation of this dis-
crepancy is the use of different approaches in analysis 

of the observed survival data: in this work23 a single 
variable Kaplan-Meier approach that accounts only 
time to event (survival) data was used, while in our 
work we used a modified multivariate Cox regression 
approach that additionally accounts for interrelated 
APC effects on cancer survival.

Table 5 presents for white men and women 
with LC estimates of the birth cohort effect coef-
ficients, ul*, and their SEs, as well as P-values cal-
culated using the standard z-test for twelve birth 
cohort effect coefficients compared to 1 (that is the 
anchored coefficient for the 1925–29 birth cohort). 
Figure 3 presents trends of these coefficients in 
white men (A) and women (B). As can be seen, 
for men three (from eight) birth cohort effect coef-
ficients (namely, the coefficients for the 1895–99, 
1945–49, and 1950–54 birth cohort periods) are sta-
tistically distinguishable from the coefficient of the 
anchored cohort, 1925–29. For women, only one 
birth cohort effect coefficient for 1895–99 is statis-
tically distinguishable from the coefficient 1 of the 
anchored cohort, 1925–29. These data suggest that 
influence of the birth cohort effects on the hazard 
of death from LC should not be ignored in the LC 
survival analysis.

Overall, our analysis suggests that for both white 
men and women diagnosed with LC during the 1975–
1999 time period, the hazard for the death from LC 
depends not only on age at diagnosis (wi) and time 

Table 4. Estimated values of the time period coefficients 
vj  

*, their standard errors (Se), and P-values characteriz-
ing the statistical difference between the estimated coef-
ficient and the anchored coefficient.

Time 
period 
index

White men White women
vj*  ±  se P-value vj*  ±  se P-value

1 1.06 ± 0.02 0.0003 1.04 ± 0.02 0.06
2 1.00 ± 0.01 0.62 1.02 ± 0.02 0.18
3 1.00 1.00
4 0.92 ± 0.01 ,0.0001 0.95 ± 0.01 0.0003
5 0.91 ± 0.01 ,0.0001 0.93 ± 0.02 ,0.0001
notes: The coefficient for time period index 3 is the anchored coefficient 
and is defined as 1.0. Italicized P-values denote coefficients statistically 
distinguishable from 1.0 (with significance level 0.05).
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Figure 2. Variation of time period coefficients, anchored at index 3, with time period index (j), in white men (A) and white women (B).
notes: error bars indicate 95% confidence intervals. Open circles indicate coefficients significantly different than 1.0; closed circles indicate coefficients 
not significantly different from 1.0; “x” indicates anchor point.
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S*(τ,wi,vj,ul). In the frame of the PH model, these 
estimates can be obtained by the following formula:

 
S w v u e

i j
i j l

a Hi j*( , , , ) * *

, ..., ; , ..., .
, ( )τ τ=

= =

− 0

1 9 1 5
 (28)

As an example, Table 6 presents estimated prob-
abilities (in %) of 12-, 36- and 60-month LC survival 
(τ = 12, τ = 36 and τ = 60, correspondingly) for the 
60–64 age groups of white men and women. These 
data show that in men diagnosed with LC in the age 
interval of 60–64 years, 12-month survival prob-
ability has increased about 5%, 36-month survival 
probability about 4%, and 60-month survival proba-
bility about 4%. For women diagnosed with LC at the 
60–64 age interval, 12-month survival probability has 
increased about 4%, 36-month survival probability 
about 4%, and 60-month survival probability about 
3%. Analogous improvements of the LC survival for 
the time period of 1975–1999 were revealed for the 
majority of the considered age at diagnosis groups of 
white men and women.

It should be noted that the estimates of survival 
functions for the observed data, indexed by (i,j), 
can also be obtained by the Kaplan-Meier method.3 
Our calculations showed that the estimates obtained 
by the proposed approach were close to values of 

Table 5. Estimated values of the birth cohort coefficients, 
ul*, their standard errors (Se), and P-values characteriz-
ing the statistical difference between the estimated coef-
ficient and the anchored coefficient.

Birth 
cohort 
index

White men White women
ul* ± se P-value ul* ± se P-value

1 1.20 ± 0.08 0.006 1.25 ± 0.12 0.04
2 0.94 ± 0.04 0.15 0.97 ± 0.06 0.56
3 1.04 ± 0.03 0.23 0.98 ± 0.04 0.72
4 0.99 ± 0.02 0.24 1.00 ± 0.04 1.00
5 1.04 ± 0.02 0.08 1.01 ± 0.03 0.73
6 1.01 ± 0.01 0.48 1.01 ± 0.02 0.61
7 1.00 1.00
8 1.02 ± 0.02 0.24 1.01 ± 0.02 0.71
9 1.04 ± 0.02 0.12 1.00 ± 0.03 0.93
10 1.06 ± 0.04 0.07 1.01 ± 0.04 0.76
11 1.13 ± 0.05 0.009 1.06 ± 0.06 0.33
12 1.19 ± 0.07 0.01 0.99 ± 0.07 0.85
13 1.14 ± 0.11 0.23 0.99 ± 0.16 0.95
notes: The coefficient for birth cohort index 7 is the anchored coefficient 
and is defined as 1.0. Italicized P-values denote coefficients statistically 
distinguishable from 1.0 (with significance level 0.05).

period (vj) coefficients, but also on birth cohort (ul) 
coefficients.

The obtained estimates of the joint (age at diag-
nosis, time period and birth cohort) effect coeffi-
cients, ai j,* , and estimates of the cumulative hazard,
H0

*( )τ , were used for estimates of survival functions 
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Figure 3. Variation of birth cohort coefficients, anchored at index 7, with birth cohort index (l), in white men (A) and white women (B).
notes: error bars indicate 95% confidence intervals. Open circles indicate coefficients significantly different than 1.0; closed circles indicate coefficients 
not significantly different from 1.0; “x” indicates anchor point.
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survival functions obtained by the Kaplan–Meier 
method (data not shown). However, the single vari-
able Kaplan–Meier approach accounts only for time 
to event (survival) data, while our approach allows 
modeling survival functions and, in the frame of 
the PH model, estimating the joint, as well as sepa-
rate influences of interrelated age at diagnosis, time 
period and birth cohort effects on the survival and 
hazard functions.

conclusion
A novel, computationally effective two-step proce-
dure for estimating APC effects for cancer survival in 
the frame of the PH model was developed. This pro-
cedure allows one to estimate joint APC effect coef-
ficients, as well as interrelated age at diagnosis, time 
period and birth cohort effect coefficients.

A standard software package for Cox PH regres-
sion analysis was used to estimate joint APC effect 
coefficients. To obtain estimates of the interrelated 
age at diagnosis, time period and birth cohort effect 
coefficients, we assumed that the neighboring birth 
cohorts almost equally affect the hazard function 
for the death from cancer. It should be noted that 
this assumption is milder than assumptions utilized 
in APC analysis of cancer incidence rates by other 
authors (such as, for example, that cohort effects are 
absent,18 or trends of cohort effects can be presented 
as smooth functions,14 etc.). Our assumption allows 
one to solve the identifiability problem of estimat-
ing these coefficients. Using an anchoring technique, 
we developed simple algorithms to obtain estimates 
of the age at diagnosis, time period and birth cohort 
effect coefficients. These algorithms were coded into 
our newly developed MATLAB computing program, 
called the “apcsur” function.

As the proof-of-concept, the proposed approach 
was utilized for analyzing SEER data of LC sur-
vival for white men and women, observed within the 
 following successive 5-year time periods: 1975–1979, 

1980–1984, 1985–1989, 1990–1994, and 1995–1999. 
A graphical approach using log-log plots was applied 
to evaluate the PH assumption. The estimates of 
coefficients of age at diagnosis, time period and birth 
cohort effects were obtained. Analysis of trends of 
these estimates suggests that the hazard of death from 
LC for a given time passed after the cancer diagnosis: 
(i) decreases between 1975 and 1999; (ii) increases 
with increasing the age at diagnosis; and (iii) depends 
upon birth cohort effects. Our analysis, performed in 
the frame of the PH model, clearly suggests that there 
is a small but statistically significant improvement 
of the LC survival in the time period of 1975–1999. 
Biological and clinical insights of the obtained results 
need further analysis, which is out of the scope of this 
methodologically-oriented work.

Overall, we suggest that the proposed computing 
procedure could also be used for estimating APC effects 
in survival analysis of different types of cancer.
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