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Abstract: Aberrant microRNA activity has been reported in many diseases, and studies often find numerous microRNAs  concurrently 
dysregulated. Most target genes have binding sites for multiple microRNAs, and mounting evidence indicates that it is important 
to  consider their combinatorial effect on target gene repression. A recent study associated the coincident loss of expression of six 
microRNAs with metastatic potential in breast cancer. Here, we used a new computational method, miR-AT!, to investigate  combinatorial 
activity among this group of microRNAs. We found that the set of transcripts having multiple target sites for these microRNAs was 
 significantly enriched with genes involved in cellular processes commonly perturbed in metastatic tumors: cell cycle regulation, 
cytoskeleton  organization, and cell adhesion. Network analysis revealed numerous target genes upstream of cyclin D1 and c-Myc, 
indicating that the collective loss of the six microRNAs may have a focal effect on these two key regulatory nodes. A number of genes 
previously  implicated in cancer metastasis are among the predicted combinatorial targets, including TGFB1, ARPC3, and RANKL. 
In summary, our analysis reveals extensive combinatorial interactions that have notable implications for their potential role in breast 
cancer  metastasis and in therapeutic development.
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Introduction
Involved in the regulation of many cellular processes, 
microRNAs are short, endogenous  oligonucleotides 
that have been implicated in a wide variety of 
 diseases. The mature form of microRNAs (miRNAs) 
are approximately 22 nucleotides in length and anneal 
to complementary sites in the 3′ untranslated region 
(UTR) of target transcripts as part of an RNA-induced 
silencing complex (RISC). While microRNAs appear 
to act through multiple mechanisms, two general 
modes of action have been identified: transcript 
degradation and inhibition of protein translation.1–3 
The former is associated with near-perfect base 
complementarity between a miRNA and its target 
sequence, while non-perfect miRNA-target matches 
result in inhibition of protein translation. A number 
of recent reports have shown that non-perfect com-
plementarity can also result in mRNA degradation 
through poly(A) deadenylation.4,5 Therefore, the 
effect of microRNA activity may be reflected by 
changes of either mRNA or protein levels,  depending 
on the microRNA and target transcript involved. 
There are currently over 700 known miRNAs in 
the human genome, and each miRNA may regulate 
 dozens to hundreds of target transcripts. Reports have 
shown numerous miRNAs aberrantly expressed in a 
variety of diseases, including cancer, and indicate 
that hundreds and perhaps thousands of transcript 
 targets could potentially be affected in neoplastic 
tissue. The 3′ UTR in a single messenger RNA may 
contain binding sites for a number of microRNAs, 
and a transcript can be concurrently repressed by 
multiple microRNA species.6 Therefore, the genome-
wide complexity of microRNA interactions presents 
a formidable challenge to understanding cellular 
regulation, particularly when assessing the impact of 
multiple dysregulated miRNAs.

Mounting evidence reveals that microRNAs can 
exert a cooperative effect on target gene repression. 
Since a gene product may be simultaneously 
repressed by multiple microRNAs, and a num-
ber of microRNAs may be differentially expressed 
in a given disease  condition, it is essential to con-
sider their combinatorial interactions.1,3,7,8 A recent 
genome-wide investigation demonstrated a signifi-
cant and positive correlation between the number 
of microRNA binding sites in a transcript and the 
mRNA decay rate.9 This additive effect is believed 

to be due primarily to the combinatorial contribution 
of  multiple microRNAs since only a small fraction of 
transcripts contain multiple binding sites for any sin-
gle miRNA. The authors noted that the vast majority 
of target genes have sites for multiple microRNA 
species, thus  providing a mechanism for cooperative 
repression of target genes. Another recent study iden-
tified combinatorial activity among four microRNAs 
involved in monocyte differentiation.10 Concurrent 
over-expression of the four microRNAs resulted in 
numerous gene expression changes that were not 
observed with any one of the four individual miRNA 
transfections, demonstrating cooperative interactions. 
Two microRNAs in a bicistronic cluster (miR-143 
and miR-145) were reported to be repressed in most 
gastric and colon cancer patients that were tested.11 
By over-expressing these microRNAs in a gastric 
cancer cell line, the authors confirmed an additive 
effect on target gene repression, and their observa-
tions indicate combinatorial activity by the two 
microRNAs. A separate study demonstrated that while 
these two microRNAs are nonhomologous, they share 
numerous common targets involved in actin dynam-
ics and cytoskeletal function, suggesting cooperative 
regulation of cellular pathways.12 Based on growing 
evidence of cooperative microRNA activity, it is 
imperative to consider and investigate combinatorial 
effects where multiple dysregulated microRNAs are 
identified in expression profiling studies.

While several computational tools have been 
developed to address components of this goal, there is 
a need for freely available software that can perform 
combinatorial target analysis of microRNAs and 
functional annotation of the target genes.7,13–16 A recent 
review on computational methods for microRNA 
studies called for the development of tools for 
combinatorial analysis and noted that “it is important 
to develop novel computational methods that explic-
itly capture dependencies between individual miRNA 
targeting and reveal synergistic effects on function-
ally related genes”.17 Here, we introduce a web-based 
bioinformatics application, miR-AT! (microRNA 
Combinatorial Analysis of Targets), which leverages 
and integrates several existing, high-quality data-
bases to enable combinatorial microRNA target 
characterization and functional analysis. Among the 
features of miR-AT! are: the ability to predict combi-
natorial targets of multiple microRNAs, user specified 
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parameters for minimum number of sites and number 
of unique microRNAs found in each target, minimum 
score criteria, integrated functional annotation of pre-
dicted targets, and a novel clustering implementation 
that enables identification of transcripts with similar 
microRNA target site patterns. In this work we have 
applied miR-AT! to investigate combinatorial activ-
ity associated with a set of microRNAs implicated in 
breast cancer metastasis.

Tavazoie et al recently identified six microRNAs 
(hsa-mir-335, 126, 206, 122, 199a-3p, and 489) that 
were significantly decreased in highly metastatic breast 
cancer cell derivatives.18 All six of the microRNAs 
were consistently downregulated in cell derivatives that 
aggressively metastasized to bone or lung, as compared 
to the parental cells. The authors focused on this set of 
miRNAs based on the combined results of microarray 
profiling and RT-PCR, and subsequently investigated 
the effect of each of the six microRNAs by individu-
ally restoring expression with retroviral transduction. It 
was determined that individually, miR-335, miR-206, 
and miR-126 had the greatest effect on metastasis, and 
restoration of either of these microRNAs resulted in 
a significant decrease in lung colonization at the end 
point. Restoration of either of miR-122, miR-199a-3p, 
or miR-489 also decreased colonization, but at earlier 
timepoints. The six microRNAs reside on five dif-
ferent chromosomes, and there is no evidence of co-
regulation of these microRNAs. The coincident loss 
of all six microRNAs in each of the highly metastatic 
cell derivatives suggests that cooperative activity 
among them may be important in maintaining post-
transcriptional regulation of target genes involved in 
tumor growth and metastasis. We have used miR-AT! 
to perform computational target analysis of the aggre-
gate set of six miRNAs, considering potential combi-
natorial activity and multiple microRNA binding sites 
in predicted target genes.

Methods
miR-AT!
miR-AT! is a web accessible application available at 
http://mir-at.org. A user guide is provided through the 
“help” link available at the home page. The application 
leverages several high quality databases and software 
applications to provide target prediction and  subsequent 
functional annotation of target genes. Additionally, 
miR-AT! provides the capability to cluster target 

genes by the pattern of microRNA binding sites in 
their 3′ UTR.

From a user-submitted list of miRNA identifiers, 
the miR-AT! application scans a local  implementation 
of the MicroCosm Targets database, formerly 
known as miRBase Targets (http://microrna.sanger.
ac.uk/targets/v5/).19 The application identifies all 
 transcripts having predicted target sites matching the 
microRNAs provided in the input set and meeting 
user-specified score criteria. Target identification in 
MicroCosm  Targets is accomplished using 3′ UTRs 
of Ensembl transcripts and the miRanda algorithm,20 
allowing no more than one mismatch in the critical 
“seed” region on the 5′ end of the miRNA. Each 
 target site in the database has an associated score 
and P-value. User selectable parameters in miR-AT! 
allow the  specification of a minimum score required 
for each target site and a maximum P-value allowed. 
The user can specify a minimum number of total 
 target sites required for each transcript, and these 
can be satisfied by any combination of the input 
microRNAs.  Additionally, a minimum number of 
unique microRNAs represented in each transcript can 
be specified. miR-AT! currently recognizes miRNA 
identifiers for human, mouse, and rat. Addition model 
organisms will be added in the future.

A range of computational methods have been 
developed for microRNA target site prediction, 
but few have included consideration of combi-
natorial effects. Of established methods, perhaps 
the two most closely aligned with our objective of 
investigating microRNA combinatorial activity are 
miRGator and microRNA.org.15,21 Both methods 
allow for the input of multiple microRNAs, and both 
report  targets having one or more predicted sites 
associated with the input microRNA set. However, 
miR-AT! provides additional capabilities essential 
to investigating  combinatorial effects, including the 
ability to  specify a minimum number of target sites 
per gene, a minimum number of unique microRNAs 
from the input set that must target each gene, and 
filtering tools for individual target site scores and 
P-values. Furthermore, miRGator restricts queries 
to fewer than five microRNAs, and microRNA.org 
is limited to searches for targets of one or all of the 
input microRNAs, not intermediate combinations. 
Collectively, miR-AT! provides greater flexibility 
to construct combinatorial queries and enables the 
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selection and filtering of high quality targets based 
on site number, score, and significance. Additionally, 
the target score distribution analysis tool available in 
miR-AT! allows the user to visualize a histogram of 
scores associated with the target gene set, thus provid-
ing assistance in identifying cutoff scores to remove 
low confidence target predictions.

In addition to the identification of combinatorial 
target gene sets, an important feature of miR-AT! 
is the ability to submit the target sets to DAVID for 
comprehensive functional annotation and pathway 
analysis. MirGator and microRNA.org do not provide 
functional annotation capability for combinations of 
microRNAs. Another unique feature of miR-AT! is 
the ability to cluster target genes based on the combi-
natorial pattern of target sites found in each 3′ UTR. 
This feature identifies groups of genes that have simi-
lar target site combinations and thus are predicted to 
be under similar influence of the input microRNAs. 
The method also clusters the input microRNAs based 
on their target site patterns in the identified target 
gene set. The clustering tool can be used to explore 
the predicted combinatorial effect of microRNAs 
on sub-clusters of target genes and also to identify 
microRNAs having potential cooperative activity as 
discussed below and exemplified by our findings with 
miR-122 and miR-206.

In this work we submitted six microRNAs 
 previously identified as repressed in highly  metastatic 
breast cancer cells: hsa-miRs 335, 126, 206, 
122, 199a-3p, and 489. We used the synonymous 
 designations of hsa-mir-199a-3p and hsa-mir-122 for 
199a* and 122a respectively, the latter having been 
used in the Tavazoie report.

Target list output
Each target with a miRNA site satisfying the 
specified selection criteria is included in the output 
list of  transcripts. miR-AT! calculates a cumulative 
score for each transcript, derived from the sum of 
all miRNAs meeting the specified selection criteria. 
The cumulative score provides for the identification 
of transcripts most likely affected by the combined 
set of input miRNAs. Multiple bound miRNAs can 
additively affect messenger RNA translation and/
or stability, thus it is crucial to consider the cumu-
lative set of miRNA sites when assessing putative 

targets. By default, the output list is sorted by the 
cumulative score. Thus, targets with multiple, high 
scoring sites will be found towards the top of the list 
and transcripts with a lower cumulative score will 
be found towards the bottom. For each target in the 
output list the NCBI Gene ID, Ensembl gene and 
transcript  identifiers, description, number of target 
sites, and cumulative score are provided. The NCBI 
and Ensembl IDs are hyperlinked to the respective 
databases to provide extensive information for each 
target transcript. The total number of miRNA sites sat-
isfying the selection criteria is provided for each tran-
script. Clicking on this value generates an  additional 
panel that provides the chromosomal location of each 
site along with the associated miRanda score and 
P-value. The  target site panel also provides a list of 
all known miRNAs that target the selected transcript. 
The list of transcripts generated by miR-AT! can be 
sorted by either the cumulative score (default) or by 
using any of the other data columns, eg, gene name. 
The target list can be saved as a tab delimited text 
file. An additional feature of miR-AT! is the ability to 
generate histograms of target site score distributions. 
Histograms are provided for both individual scores 
and cumulative scores.

Functional analysis of identified targets
Microarray experiments often produce lengthy 
lists of differentially expressed genes. During the 
maturation of microarray technology it became 
apparent that such lists require computational tools 
that can identify biological processes and pathways 
that are associated with the genes in a given list. 
We have integrated miR-AT! with one of the most 
widely utilized and cited tools that belong to this 
class of bioinformatics resources: DAVID (Data-
base for Annotation, Visuali zation and Integrated 
Discovery).22 DAVID allows for the rapid identifica-
tion of enriched gene ontologies and biological path-
ways associated with a given gene list, and it also 
provides comprehensive functional annotation drawn 
from numerous biological databases. Among the 
resources available through DAVID are KEGG and 
Biocarta pathways. An output list of target genes in 
miR-AT! can be automatically submitted to DAVID 
by simply clicking the “Functional Annotation” 
button at the top of the output list. The automated 
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miR-AT! procedure utilizes NCBI Entrez Gene IDs 
for submission to DAVID, and a new browser window 
will appear with DAVID results. Users are encouraged 
to explore the extensive help available at the DAVID 
web site (http://david.abcc.ncifcrf.gov/). Functional 
annotation clustering performed in this work was 
accomplished using the default  settings of DAVID 
version 6.7. Ontology analysis utilized the GO_BP_
FAT records within DAVID, and the conservative 
EASE P-values were used.

hierarchical clustering
To facilitate the identification of transcripts with similar 
microRNA target site patterns, we  developed a novel 
adaptation of hierarchical clustering within miR-AT!. 
We integrated Java Treeview and Cluster 3.0 software 
libraries within the miR-AT! application.23,24 After using 
miR-AT! to identify predicted transcripts for a set of 
input microRNAs the user can press the “Clustering” 
button at the top of the page to produce a hierarchi-
cal clustering result. Predicted transcripts with similar 
patterns of target sites, considering the input microR-
NAs, are clustered together. Quantitative values used 
in the clustering are derived from the scores of each 
microRNA/transcript combination. The clustering 
distance between two transcripts is determined by the 
correlation of microRNA target site scores in their 3′ 
UTRs.  Additionally, microRNAs are clustered based 
on their target site patterns among all of the predicted 
targets, thus allowing for two-dimensional clustering. 
The clustering implementation in miR-AT! allows 
for the selection of a variety of distance metrics. 
The Spearman correlation distance metric was used 
in this work.

Analysis of signaling networks
To identify key nodes in signaling networks 
 downstream of genes targeted by the collective 
group of microRNAs we utilized the ExPlain 3.0 
analysis system (http://biobase-international.com/).25 
This application requires a license and therefore is 
not integrated within miR-AT!. The key node analysis 
algorithm in the ExPlain system identifies downstream 
molecules that are connected to a maximal number 
of input molecules, within a specified distance. The 
default parameter settings and false discovery rate 
(FDR) computation were used.

Results
We used miR-AT! to predict the aggregate activity of 
six microRNAs that were repressed in metastatic breast 
cancer cells (hsa-mir-335, 126, 206, 122, 199a-3p, and 
489) in the Tavazoie et al study. Focusing on target 
genes with multiple miRNA binding sites, we used the 
selectable parameters available in miR-AT! to iden-
tify transcripts having at least two miRNA binding 
sites representing at least two unique microRNAs 
from the input set. To avoid sites with low prediction 
confidence, we required each miRNA binding site to 
have a minimum MicroCosm score of 15. Analysis of 
nearly 900,000 target scores in MicroCosm revealed 
a near-normal distribution with a mean score of 
16.398 and a standard deviation of 0.883 (data not 
shown). Based on the score distribution, a cutoff 
score of 15 eliminates the lowest 5% of scores from 
the MicroCosm database. Using miR-AT! with these 
parameter settings we identified 529 genes  having 
multiple target sites of the six miRNAs. The list of 
transcripts is provided in Supplementary Table 1, 
ranked by cumulative score. One target transcript 
had six miRNA sites, four transcripts had five sites, 
18 had four sites, 89 had three sites, and 417 had 
two sites. The cumulative scores for each transcript 
ranged from 30.4 to 95.1.

Predicted targets that have previously 
been confirmed
Among the list of combinatorial targets predicted 
by miR-AT! are genes associated with proliferation 
and metastasis and for which post- transcriptional 
regulation by at least one of the predicted microRNA 
interactions has previously been confirmed. Our 
combinatorial target analysis identified  Aldolase 
A (ALDOA) as a putative target of miR-122 and 
miR-489. ALDOA is one of three aldolase isozymes 
which play a role in glucose metabolism. The 
dependency of proliferating tumors on  elevated 
levels of glucose metabolism has been known for 
many years, and increased levels of aldolase in 
 malignancies was first  identified in 1953.26,27 Since 
then, numerous  publications have reported elevated 
levels of ALDOA in a variety of cancers,  including 
breast,  hepatocellular, and lung.28–32 Increased 
 levels of ALDOA have also been associated with 
invasiveness and metastasis.33,34  Consistent with the 
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prediction obtained through miR-AT!, several labs 
have  verified that ALDOA is a target of mir-122, and 
miR-122 expression results in a reduction of ALDOA 
mRNA levels.35–37 Our analysis indicates that miR-
122 and miR-489 may cooperatively provide post-
transcriptional regulation of Aldolase A and that their 
combined loss may contribute to dysregulation of 
Aldolase A expression.

General transcription factor 2B (GTF2B) is 
the third highest scoring target transcript of the 
collective group of six microRNAs. It is predicted 
by miR-AT! to be a target of microRNAs miR-122 
(two sites), miR-126, miR-199a-3p, and miR-206, 
for a total of five sites. Validation of GTF2B regu-
lation at the mRNA level by miR-122 has been 
reported in rat hepatocytes.36 Since GTF2B is a ubiq-
uitous transcription factor involved in the regulation 
of many genes, concurrent repression of these four 
microRNAs could have extensive secondary effects 
on gene regulation.38

Functional annotation of the cumulative 
target gene set
We sought to identify genes associated with  
metastasis and proliferation from among the 
transcripts targeted by the collective set of the  

six miRNAs. An important feature of miR-AT! is 
the ability to seamlessly submit target gene lists to 
DAVID for functional annotation and analysis of 
enriched biological processes and pathways. The set 
of 529 genes identified with multiple target sites of 
the six miRNAs was submitted to DAVID for func-
tional annotation using the automated hyperlink 
available in miR-AT!. Default DAVID settings were 
used. Of the input set, 414 genes were recognized 
in the DAVID database. Within DAVID we selected 
gene ontology biological process (GOTERM_BP_
FAT) to identify cellular processes associated with 
the genes targeted by the six microRNAs.

Several biological processes pertinent to prolif-
eration and metastasis were flagged as statistically 
 significant in the DAVID analysis, based on the 
number of target genes belonging to each category 
and compared to the number of genes in the given 
category found throughout the genome. Among the 
significant ontologies were cell cycle checkpoint 
(P = 0.0054) and negative regulation of cell adhe-
sion (P = 0.018). Table 1 lists target genes associated 
with these categories and the microRNAs that target 
each gene.

Among the 529 predicted targets, five genes are 
involved in negative regulation of cell adhesion. 

Table 1. enriched biological processes among the 529 target genes having multiple microRNA binding sites.

entrez  
ID

Gene  
symbol

Gene name number of microRnA sites
miR- 
335

miR- 
126

miR- 
206

miR- 
122

miR- 
199a-3p

miR- 
489

cell cycle checkpoint (P = 0.0054, 3.8-fold enrichment)
51499 TRIAP1 TP53 regulated inhibitor of  

apoptosis 1
1 1

7272 TTK TTK protein kinase 1 1
1029 CdKN2A Cyclin-dependent kinase inhibitor 2A 1 1
60561 RINT1 RAd50 interactor 1 1 1
8525 dgKZ diacylglycerol kinase, zeta 104kdA 1 1
56984 PSMg2 Proteasome assembly chaperone 2 1 1
11200 CheK2 ChK2 checkpoint homolog 1 1
7040 TgFB1 Transforming growth factor, beta 1 1 1
negative regulation of cell adhesion (P = 0.018, 5-fold enrichment)
7045 TgFBI Transforming growth factor,  

beta-induced, 68kdA
1 1

1029 CdKN2A Cyclin-dependent kinase inhibitor 2A 1 1
5921 RASA1 RAS P21 protein activator  

(gTPASe activating protein) 1
1 1

395 ARhgAP6 Rho gTPASe activiating protein 6 1 2
7040 TgFB1 transforming growth factor, beta 1 1 1
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Compared to the number of genes in the human 
genome that belong to this ontology, the frequency 
of occurrence in the target gene set represents 5-fold 
enrichment, as calculated in the DAVID functional 
annotation analysis. Several of these genes have 
been implicated in metastasis. TGFBI (transform-
ing growth factor, beta-induced, 68kDA) is a gene 
that codes for an extracellular matrix (ECM) protein 
involved in cell adhesion and migration. Our results 
indicate that the 3′ UTR of TGFBI contains pre-
dicted binding sites for miRs 122 and 489, and that 
a decrease in expression of these two microRNAs 
may result in increased expression of TGFBI protein. 
Elevated expression of TGFBI has been associated 
with the progression and metastatic spread of human 
pancreatic cancer and hepatoma cells.39,40 Overex-
pression of TGFBI was demonstrated to significantly 
increase metastatic potential by promoting extrava-
sation in colon cancer cells.41 TGFBI has also been 
associated with metastasis of esophageal squamous 
cell carcinoma.42

The biological process with the greatest statistical 
significance was cell cycle checkpoint (P = 0.0054). 
This category included eight genes from the set of 
529 predicted targets and was enriched 3.8-fold, 
 compared to the overall genome. A predicted  target 
gene associated with metastasis and involved in 
both cell cycle checkpoint and negative regulation 
of cell adhesion is TGFB1 (transforming growth 
factor, beta1). This gene has two high-scoring target 
sites for miRs-122 and 199a-3p. While TGB1 inhib-
its early stage tumorigenesis, it promotes invasion 
and metastasis in later stages of the disease.43,44 
Elevated plasma levels of TGFB1 are correlated 
with decreased survival in metastatic breast cancer 
patients.45 In a mouse xenograft model using 
metastatic MDA-MB-435 cells, knockdown of 
TGFB1 using siRNA resulted in a 90% decrease in 
the number of macroscopic lung metastases.46 The 
potential role of these two microRNAs in TGFB1 
regulation warrants further investigation.

Interestingly, three transcripts associated with 
cell cycle checkpoint each have target sites for both 
miRs 335 and 489: TTK, TRIAP1, and RINT1. TTK 
is a dual-specificity kinase involved in centrosome 
 duplication. Expression of TTK has been associated 
with cell proliferation.47 Excessive  accumulation of 

TTK protein was linked to the production of extra 
centrosomes during mitosis and may lead to genomic 
instability and tumorigenesis.48 Dramatically 
increased TTK mRNA levels were found in  genetically 
unstable breast cancer cell lines and in high-grade 
primary breast cancer tissue.49 Over-expression of 
TRIAP1 (Tp53 regulated inhibitor of apoptosis) has 
been reported to inhibit apoptosis induced by DNA 
damage,50 and elevated levels of TRIAP1 were found 
in greater than 50% of multiple myeloma cases.51 Our 
results indicate that concurrent loss of miRs 335 and 
489 may result in dysregulation of this group of genes 
involved in cell cycle regulation.

Evaluation of statistical significance
We have relied on the established statistical model 
in DAVID to identify biological processes that 
are enriched with genes from the target gene set. 
The P- values provided by DAVID are derived 
using a modified Fisher exact test. The test deter-
mines if the proportion of genes from the target set 
 belonging to a given gene ontology is significantly 
 different than the proportion of genes from the over-
all genome belonging to the same ontology. The 
DAVID implementation of the Fisher Exact test 
(EASE score) subtracts one from the number of genes 
in an ontology category prior to calculating the sig-
nificance, and is therefore more conservative than the 
standard Fisher test. To  further assess the robustness 
of DAVID scores applied to microRNA target sets we 
sought to determine if the biological processes identi-
fied in our analysis of the six Tavazoie microRNAs 
would arise by chance when using randomly selected 
groups of microRNAs. We performed a bootstrap 
analysis with 100 trial sets, each comprised of six 
microRNAs randomly drawn from the MicroCosm 
database. For each trial the predicted target  transcripts 
were identified with miR-AT! using the same param-
eter settings specified above, and the number of 
target genes associated with each gene ontology or 
biological process was tabulated. We then calculated 
an empirical P-value that represents the probability 
that the number of genes associated with a given 
ontology from the Tavazoie target set would occur by 
chance. The bootstrap P-value was obtained using pb 
= r/t where t is the total number of trials, and r is the 
 number of trials that produced a gene count equivalent 
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or greater to that obtained with the Tavazoie micro-
RNAs for the given biological process.

We had previously noted that cell cycle  checkpoint 
and negative regulation of cell adhesion are among 
the statistically significant ontologies identified 
by DAVID analysis of the 529 predicted targets 
of the six Tavazoie microRNAs (detailed above). 
From this target set, eight genes belong to the cell 
cycle  checkpoint category, with a corresponding 
DAVID P-value of 0.0054. Of the 100 bootstrap tri-
als the greatest number of target genes found in this 
 category was five,  providing a bootstrap P-value 
of zero. For the  negative regulation of cell adhe-
sion category five genes were originally identified 
among the 529  predicted targets, with a DAVID 
P-value of 0.018. Again, none of the bootstrap  trials 
produced an  equivalent or greater number of tar-
get genes for this ontology. Our bootstrap analysis 
clearly  demonstrates that the number of genes from 
the Tavazoie set  belonging to these ontologies is 
 statistically significant and highly unlikely to have 
occurred by chance.

Using the statistical results obtained for all gene 
ontologies where more than one gene was  identified 
from the Tavazoie target set, Figure 1 provides a 
comparison of the P-values from DAVID enrichment 

analysis to those derived from our bootstrap  analysis. 
Each data point represents one gene  ontology, and a 
clear trend is evident. For 96% of ontologies the DAVID 
P-value is greater than that obtained empirically with 
our bootstrap analysis, revealing that the DAVID val-
ues are indeed conservative and often underestimate 
significance of enrichment for microRNA target sets. 
We recognize that the bootstrap approach may offer 
greater statistical power, and implementation of this 
method within miR-AT! would be of value. However, 
the computational requirements necessary to accom-
plish bootstrap analysis for any possible combination 
of parameter settings and input microRNA set size 
precludes implementation at this time. We hope to 
offer this feature in a subsequent release of the soft-
ware, but our results demonstrate that the enrichment 
P-values available through DAVID are reliable and 
generally underestimate significance.

Cyclin d1 and c-Myc are key nodes 
downstream of the cumulative set 
of genes targeted by the repressed 
microRNAs
To detect central signaling nodes that may be focal 
points of dysregulation due to the collective loss of 
the six microRNAs, we identified converging  signal 
transduction pathways downstream of the 529 pre-
dicted target genes. We used the key node search 
algorithm of the ExPlain 3.0 system (Biobase GmbH) 
to perform the analysis.25 This application requires a 
license and therefore is not integrated within miR-AT!. 
The ExPlain method explores cell signaling networks 
within a specified range from each input molecule 
(gene/protein) to find the most proximal molecule hav-
ing the maximal number of connections to the overall 
set of input molecules. Since the resulting score may 
be influenced by the level of connectivity of each mol-
ecule, the total number of connections for each node 
is taken into account by the algorithm. Using the 529 
predicted target genes as the input set and searching 
for key downstream nodes, the two highest scoring 
nodes were c-Myc and cyclin D1 (CCND1). c-Myc is 
downstream of 37 target transcripts and cyclin D1 is 
downstream of 36 target transcripts. The probability 
that these key nodes would achieve their scores by 
chance (false discovery rate) is 0.04 for c-Myc and 
0.076 for cyclin D1. Figure 2 shows the network of 
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target genes upstream of c-Myc and cyclin D1. Blue 
color indicates genes that are predicted targets of the 
six microRNAs. Supplementary Table 2 provides a 
list of the associated target genes.

Amplification and over-expression of cyclin D1 
and c-Myc are widely known to contribute to onco-
genesis in a variety of tumors, including breast cancer, 
and is associated with decreased patient survival.52–57 
A study using a mouse model of breast tumorigenesis 
demonstrated a synergistic interaction in response to 
concurrent over-expression of cyclin D1 and c-Myc, 
resulting in cells that were highly invasive and 
metastatic.58 Our computational analysis indicates 
that numerous genes targeted by the six repressed 
microRNAs are involved in signaling networks that 
converge upon cyclin D1 and c-Myc, potentially 
 contributing in a focal manner to their dysregulation.

Clustering of transcripts  
by microRNAs target site patterns
As noted above, several target genes associated 
with cell cycle checkpoint each have target sites for 
both miRs 335 and 489. This observation raised the 

question as to whether some biological processes 
are under greater influence of specific combinations 
of microRNAs. To further explore combinatorial 
patterns of microRNA regulation in the cumulative 
set of target genes we implemented a novel adaptation 
of a clustering method frequently used in microar-
ray gene expression analysis. Hierarchical clustering 
is widely used to identify subsets of genes having 
similar expression profiles when measured over a 
series of biological samples.59 This method is also 
commonly used to cluster biological samples that are 
similar based on gene activity assayed in a microarray 
experiment. Here, we utilized hierarchical clustering 
to identify clusters of target genes based on similarity 
of predicted microRNA target site patterns in their 
3′ UTRs. For each of the 529 target transcripts, the 
total MicroCosm score of predicted target sites was 
tabulated individually for each of the six microRNAs. 
Transcripts with similar target site patterns were 
clustered together. Transcripts are represented as 
rows in our clustering results. This approach enabled 
us to identify clusters of genes that are similarly 
regulated by the six Tavazoie microRNAs, based on 

Key

c-myc cyclin D1

Figure 2. Cyclin d1 and c-Myc are key nodes downstream of the collective set of genes targeted by the six microRNAs. Analysis of convergent signaling 
pathways downstream of the 529 predicted target genes was performed using the key node algorithm of the exPlain Analysis System (Biobase). Blue 
indicates transcripts that are predicted targets of two or more of the six repressed microRNAs. 37 targeted transcripts converge upon c-Myc and 36 
 converge upon cyclin d1, with some transcripts common to the two paths. Target genes are listed in Supplementary Table 2.
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computational prediction of target sites. Additionally, 
we clustered the six microRNAs based on the target 
site tabulation, grouping together microRNAs that 
tend to co-occur within the same transcripts, as indi-
cated by the columns in the clustering result.

The clustering result is shown in Figure 3, 
where rows represent the 529 target transcripts and 

 columns represent the six microRNAs. The block 
representing each row-column intersection is col-
ored to indicate the total score of target sites pre-
dicted within the transcript 3′ UTR for the given 
microRNA. Blue indicates no target site present, 
and red indicates a predicted target site. The red 
color intensity represents the cumulative score for 
all sites of the specified target-microRNA combi-
nation, with more intense color indicating a higher 
individual site score or multiple sites for the given 
microRNA. The dendrogram above the columns 
reveals that miR-122 and miR-206 are clustered 
together and is the most similar pair of microRNAs 
due to the coexistence of their sites in large number 
of target genes. The hierarchical clustering result 
shows that this group of transcripts is by far the 
largest sub-cluster associated with a pairwise com-
bination of microRNAs.

We then used miR-AT! to tabulate target genes 
having both sites for each pairwise microRNA 
combination. The results are summarized in Figure 4 
and reveals that there are 174 transcripts having both 
miR-122 and miR-206 sites. This microRNA target site 
pair is found in nearly three times as many transcripts 
as the next most frequent pair of microRNAs. Inspec-
tion of the mature sequences for miRs 122 and 
206 reveals that their seed regions are nearly identical; 
therefore, target sites for these two microRNAs tend to 
co-occur in the 3′ UTR. An alignment of microRNAs 
122 and 206 was performed using the R-coffee algo-
rithm which is suited for aligning non-coding RNA 
sequences (http://www.tcoffee.org).60 The alignment 
result shown in Figure 5 highlights the similarity 
between these two microRNAs. The seed region at 
the 5′ end of a microRNA is critical to its activity, and 
hybridization to a target transcript is greatly depen-
dent on near-perfect base-pairing within this region.61 
The eight base seed region of miRs 206 and 122 are 
identical with the exception of a single base difference 
which introduces an allowable G:U wobble. The G:U 
base pair occurs widely in RNA secondary structure.62 
A number of confirmed miRNA target sites have been 
identified with G:U base pairs in the seed region, and 
it has been demonstrated that a G:U base pair can be 
tolerated within a 7mer or 8mer seed, albeit with some 
reduction in regulatory efficiency.6,61 The similarity of 
miRs 122 and 206 actually extends through the first ten 
nucleotides at the 5′ end, with a second G:U w obble 
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found in the ninth position. These microRNAs are thus 
predicted to target an overlapping set of transcripts 
which would be dependent on the additive abundance 
of the two miRs. Based on our analysis, we propose 
that these two microRNAs could potentially act in a 
concerted and failsafe manner for many target genes, 
where the partial loss of one of the microRNAs might 
be compensated by the other microRNA in the pair. A 
loss of both microRNAs, as observed in the Tavazoie 
work, would result in extensive dysregulation of 
numerous target genes.

We applied miR-AT! and the integrated DAVID 
analysis to examine enrichment of biological processes 
associated with sets of genes targeted by pairwise com-
binations of the six microRNAs, which are reflected 
as subclusters in Figure 3. For the target gene set of 
each pairwise microRNA combination we identified 
enriched Gene Ontology Consortium biological pro-
cess categories using the default statistical cutoff in 

DAVID and further filtering to identify categories 
with a minimum 2-fold enrichment. We found that 
the 174 transcripts targeted by both miRs 206 and 
122 are enriched 5-fold for genes associated with 
 regulation of cytoskeleton organization (P = 0.016) 
and 6-fold for cell matrix adhesion (P = 0.026). The 
50 transcripts targeted by both miR-335 and miR-489 
are 15-fold enriched with genes involved in cell cycle 
checkpoint (P = 0.016). The enriched sub-clusters are 
indicated in Figure 3.

Remodeling of the actin cytoskeleton is essen-
tial to migration and invasion of tumor cells.63,64 
Five genes co-targeted by miR-122 and miR-206 
are involved in this biological process, including 
ARPC3 (actin related protein 2/3 complex, sub-
unit 3, 21 kDa). The ARP2/3 complex is part of the 
“minimum motility machine” that facilitates cell 
migration by creating cell protrusions driven through 
actin polymerization.65,66 This multiprotein complex 
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is necessary for the formation of “invadopodia” 
 protrusions that enable metastasizing cancer cells to 
invade the extracellular matrix and migrate into blood 
vessels during intravasation.67–69 Genes critical to the 
minimum motility machine were found to be dra-
matically up-regulated in invasive breast cancer cells 
that were selected using an in vivo invasion assay.66 
Among this group was the p21 subunit of the ARP2/3 
complex (ARPC3) which was found to be more than 
two-fold up-regulated. Our analysis suggests that the 
motile nature of the highly metastatic breast cells 
isolated in the Tavazoie work may be facilitated by 
the simultaneous loss of miRs 122 and 206 which 
are predicted to coordinately repress a number of 
genes involved in regulation of the actin cytoskel-
eton, including ARPC3. The loss of just one of these 
microRNAs may not be sufficient to significantly 
increase the level of transcripts which have both sites 
if sustained levels of the alternative microRNA are 
present. However, coincident loss of both microRNAs 
could result in a critical loss of post-transcriptional 
repression.

Thymosin beta 4 (TMSB4X) is a regulator of 
actin polymerization and has been implicated in 
tumor metastasis and cell motility. The TMSB4X 
transcript contains target sites for both miRs 122 and 
206. A dramatic increase of invasiveness and motility 
has been observed in response to  overexpression of 
TMSB4X in SW480 colon cancer cells.70 The same 
report also noted increased expression of TMSB4X 
in human liver metastases as compared to matched 
 primary colorectal adenocarcinoma samples. 
 Elevated expression of TMSB4X was correlated with 
metastatic potential in malignant mouse fibrosarcoma 
cells.71 Additionally, TMSB4X expression  levels 
were found to be elevated in metastatic human 
 melanoma cells, and overexpression was associated 
with increased tumor growth and lung metastases in a 
mouse melanoma model.72,73

Figure 4 reveals that the combination of miR-126 
with any one of the other five microRNAs results 
in very few predicted targets having sites for both 
miRs. This appears to be due to the overall scarcity 
of miR-126 targets found throughout the genome. In 
the MicroCosm Targets database there are 212 human 
transcripts having at least one site with minimum score 
of 15.0 for miR-126. This compares to 976  targets 
for miR-335, 938 for miR-206, 1012 for  miR-489, 

and 1091 for miR-199a-3p. Despite the relatively 
small set of target genes for miR-126, the loss of this 
microRNA appears to play a role in the metastasis of 
breast cancer. Tavazoie et al reported that the major-
ity of primary tumors from breast cancer patients 
who relapsed demonstrated a loss of  expression for 
miR-126.18 Investigating potential combinatorial 
activity of miR-126, an important target emerged 
from our computational analysis: RANKL. This 
gene codes for a member of the tumor necrosis fac-
tor (TNF) cytokine family and is known to induce 
osteoclast activity.74 Increased levels of RANKL have 
been associated with bone metastasis in a variety of 
cancers, and RANKL is actively being pursued as 
a therapeutic target.75–79 A recent study of renal cell 
carcinoma suggests that RANKL may be involved 
in metastasis to sites other than bone by stimulating 
cancer cell migration.80 Another study demonstrated 
that RANKL induced breast and prostate cancer cell 
migration.81 There are conflicting reports regarding 
RANKL expression in MDA-MB-231 cells. Some 
reports indicate that MDA-MB-231 cells alone in 
culture do not express RANKL but can induce RANKL 
expression through cell-cell contact with osteoblastic 
or stromal cells.82,83 However, a recent report found 
basal expression and secretion of RANKL in MDA-
MB-231 cells using ELISA assays.84 It is currently 
unknown if microRNAs influence RANKL expres-
sion in tumor cells. Here, we find that four of the six 
Tavazoie microRNAs (miRs-126, 199a-3p, 335, 489) 
are predicted to target RANKL. Loss of expression 
for this collective set of microRNAs may result in 
RANKL dysregulation and over-expression. Addi-
tional investigations of RANKL regulation by these 
microRNAs are warranted.

Predicted microRNA activity  
is consistent with previously  
reported gene expression changes  
for PdgFA and KRT81
Since one of the modes of microRNA  activity can 
produce changes in expression levels of  target 
transcripts it is of interest to examine available 
expression data for predicted target genes. In miR-AT! 
we included an option to integrate gene expression 
data alongside microRNA target transcript  predictions. 
The option is available in the results page following 
submission of a set of microRNAs and allows for 
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import of a text file containing gene identifiers in the 
first column and quantitative expression values in the 
second column. The gene identifiers can be either 
NCBI Entrez or Ensembl identifiers. The quantitative 
values may be a ratio, fold change, or log ratio repre-
senting a change in transcript abundance.

In an earlier microarray report from the same 
laboratory that performed the Tavazoie et al 
microRNA study, a set of differentially expressed 
genes was identified in derivative MDA-MB-
231 cells that  produce aggressive lung metastases.85 
Supplementary Table 2 from that publication 
provides gene expression changes for a select sub-
set of genes identified as differentially expressed and 
having a minimum 3-fold change when comparing 
lung metastatic LM2 derivative cells and parental 
MDA-MB-231 cells. Since the same derivative cells 
were also used in the Tavazoie microRNA study we 
investigated if any of the predicted targets of the six 
down-regulated microRNAs were over-expressed in 
the highly metastatic derivatives, indicating poten-
tial microRNA activity at the transcriptional level. 
We cross referenced the Affymetrix probe identifiers 
from the supplemental table to Entrez Gene IDs using 
DAVID and created a tabular file with the Entrez IDs 
and reported fold changes. This file was imported into 
miR-AT! on the results page using the “Expression” 
button. The subsequent results displayed in miR-AT! 
revealed predicted targets with a corresponding 
expression change.

Several predicted target genes were over-expressed 
in the lung metastatic derivative cells, including PDGFA 
(platelet derived growth factor alpha polypeptide) and 
KRT81 (keratin, hair, basic 1; KRTHB1). The genes 
had 5.02 and 6.34-fold increased mRNA expression 
respectively in the highly metastatic cells as compared 
to parental cells (Minn et al Supplementary Table 2).85 
Since these transcripts are also predicted to be targets 
of the repressed Tavazoie microRNAs, which were 
identified using the same cell lines, the evidence col-
lectively suggest the increase in transcript level may 
be due to the loss of the microRNAs. PDGFA has one 
predicted miR-206 target site and two miR-122 sites, 
and is classified in the cell cycle control and cytoskel-
eton organization ontologies. PDGFA is expressed 
more frequently in breast tumors than in non- tumor 
breast tissue and also much more frequently in  primary 
tumors with lymph node metastasis than in tumors 

from patients without metastasis.86 Elevated plasma 
levels of PDGF are correlated with decreased survival 
times of breast cancer patients and a greater extent of 
metastatic involvement.87,88 Inhibition of PDGF recep-
tor signaling reduced tumor growth of human breast 
cancer cells implanted into mouse bone.89

The KRT81 gene encodes for a hair keratin 
 protein and has predicted sites for miRs 335 and 
206. This gene is normally expressed in the hair 
follicle; however, a 5′-truncated form of this gene 
(hHb1-∆N) was found to be expressed in metastatic 
and primary breast carcinomas and is notably absent 
in non- malignant cells.90 Over-expression of the trun-
cated form was also reported in four Epstein-Barr 
virus infected  epithelial carcinoma cell lines.91 Using 
 several breast cancer cell lines, it was  determined 
that the truncated form of the gene was transcribed 
through an alternative promoter located in the fourth 
intron of the gene.92 The authors demonstrated that 
the protein product of hHb1-∆N participates in 
cytoskeleton structure, and they suggested that it 
may alter the adhesive properties of cancer cells. 
Collectively, the previous reports from the Massague 
lab indicate that KRT81 gene expression was signifi-
cantly elevated in both lung and bone metastatic cell 
derivates that were also used in the microRNA study. 
On the Affymetrix microarrays employed in the asso-
ciated gene expression studies, the probe set targeting 
this gene (213711_at) hybridizes within exon 9 and 
would therefore  measure expression of the full length 
and truncated transcripts. It is intriguing to consider 
that the reported increase of KRT81 messenger RNA 
 levels in highly metastatic MDA-MB-231 cells reflects 
expression of the truncated transcript associated with 
malignancies. Since the truncation occurs at the 5′ 
end, it is expected that predicted microRNA bind-
ing sites for miRs 335 and 206 in the 3′ UTR would 
remain intact in hHb1-∆N. Consequently, loss of these 
microRNAs may contribute to the over- expression of 
the truncated transcript which may affect cell adhe-
sion in breast malignancies.

Discussion
Microarray and next generation sequencing tech-
nologies have enabled high-throughput analysis of 
microRNA expression profiles associated with disease 
progression. Numerous studies have found multiple 
microRNAs concurrently dysregulated in a variety of 
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diseases. In these investigations,  microarray assays 
are often followed by computational analysis to 
identify putative target genes of aberrant microRNAs. 
To date, most computational work has focused on 
individual microRNA-target interactions. However, 
recent reports have demonstrated cooperative and 
synergistic activity among microRNAs. Therefore, 
it is imperative to consider combinatorial activity 
when predicting the effect of multiple dysregulated 
microRNAs.

In this report we introduced a web-based tool, 
miR-AT!, that enables computational analysis of 
combinatorial microRNA activity. The application 
provides the ability to perform fully integrated path-
way and ontology analysis of predicted target genes. 
Additionally, miR-AT! provides novel features for 
combinatorial analysis and clustering of transcripts 
using target site patterns. We applied miR-AT! to 
predict target interactions of six microRNAs that 
have been implicated in breast cancer metastasis.18 
While the loss of individual microRNAs among 
this set may contribute towards metastatic progres-
sion, the  consistent loss of the six microRNAs as 
a group in highly metastatic MDA-MB-231 cell 
derivatives  suggests that cooperative activity may 
be involved in the aggressive behavior of these cells. 
Our in silico analysis identified numerous predicted 
combinatorial target genes previously implicated in 
cancer metastasis. The loss of only one of multiple 
microRNAs targeting a gene may not incur complete 
loss of suppression of the target, but coincident loss 
of multiple microRNAs could result in more dramatic 
changes in target transcript and/or protein levels.

Our analysis revealed that miR-122 and miR-206 
are predicted to cooperatively target a large set of genes 
due to considerable similarity in their seed regions. 
The set of co-targeted transcripts is enriched for genes 
involved in cytoskeleton regulation and cell adhesion. 
The two microRNAs appear to  function in tandem 
and perhaps offer a level of regulatory redundancy. 
Coincident loss of both microRNAs is predicted to 
result in extensive target gene  dysregulation affecting 
cytoskeleton regulation and cell adhesion.

The metastatic spread of malignant cells is a 
 complex process involving a number of steps, 
 including local invasion, intravasation, extravasation, 
and remote colonization. These steps require dynamic 
activity in a range of cellular processes, and  several 

are crucial to metastatic progression. A systems 
biology analysis of multiple cancer datasets identified 
cell cycle regulation, cytoskeletal organization, cell 
motility, antigen presentation, and energy metabolism 
as key processes perturbed in all metastatic tumors 
regardless of the primary tissue type.93 Our analysis 
revealed that the genes collectively targeted by the six 
microRNAs are significantly enriched for transcripts 
involved in the first three of these processes and thus 
may cooperatively contribute to the metastatic pro-
gression of breast cancer through the deregulation of 
these pathways. We also used cell network analysis 
to identify central signaling nodes downstream of the 
collective set of predicted target genes. The highest 
scoring nodes were cyclin D1 and c-Myc, indicating 
that the coincident loss of the six microRNAs may 
have a focal effect on these two important regulatory 
nodes, both implicated in oncogenesis and metastasis. 
These findings are consistent with observations 
that microRNAs play a vital role in regulating key 
pathways involved in metastasis.94,95

Our computational approach is a hypothesis 
generating method that enables the exploration of 
combinatorial microRNA activity. We have identified 
genes and cellular processes implicated in cancer 
metastasis that are predicted to be collective targets 
of the six dysregulated microRNAs. While beyond 
the scope of this report, additional investigations 
to  characterize and validate these interactions are 
 warranted. It is important to note that the  predictions 
are based on computational models and potential 
false positives must be considered. However, our 
focus on target genes having multiple, high-scoring 
microRNA binding sites is expected to diminish false 
positives. Previously reported laboratory validation 
of some microRNA-target interactions identified in 
our analysis also provides confidence in the approach 
and the underlying prediction method.

Cooperative microRNA activity is likely an integral 
component of most cell regulatory networks, and the 
analysis of combinatorial effects may be of benefit in 
the development of miR-based  therapeutic  strategies. 
Both anti-miR and miR replacement approaches 
show promise, with the latter being of particular 
interest in cancer treatment since a  number of  studies 
have reported extensive repression of microRNAs in 
tumors.96 Combinatorial targeting may provide greater 
efficacy in repressing hyperactivated  pathways than 
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that which could be obtained through the use of a 
single microRNA.
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