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Abstract: Transcription factors control gene expression by binding to short specific DNA sequences, called transcription factor binding 
sites (TFBSs), in the promoter of a gene. Thus, studying the spatial distribution of TFBSs in the promoters may provide insights into 
the molecular mechanisms of gene regulation. I developed a method to construct the spatial distribution of TFBSs for any set of genes 
of interest. I found that different functional gene clusters have different spatial distributions of TFBSs, indicating that gene regulation 
mechanisms may be very different among different functional gene clusters. I also found that the binding sites for different transcription 
factors (TFs) may have different spatial distributions: a sharp peak, a plateau or no dominant single peak. The spatial distributions of 
binding sites for many TFs derived from my analyses are valuable prior information for TFBS prediction algorithm because different 
regions of a promoter can assign different possibilities for TFBS occurrence.
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Introduction
Cells regularly face variable environments and can 
sense many different signals, including temperature, 
oxidative, and osmotic pressure, beneficial nutrients, 
and harmful chemicals.1–5 Through signal  transduction 
pathways, these signals can modulate the activities of 
transcription factors (TFs). The active TFs can regulate 
the gene expression of many targets genes to produce 
appropriate proteins, which work together to enable 
cells to adapt to new environmental conditions.6–14 
TFs regulate gene expression by binding to specific 
DNA sequences, called transcription factor binding 
sites (TFBSs), in the promoters of the target genes. 
Therefore, studying the spatial distribution of the 
TFBSs in the promoters may provide insights into the 
molecular mechanisms of gene regulation.

By using the TFBS data derived from the ChIP-chip 
data, Harbison et al15 constructed the spatial distribu-
tion of the TFBSs in yeast promoters. They found that 
binding sites are not uniformly distributed over the 
promoter regions. Although their findings are interest-
ing, their method has two problems. First, their spatial 
distribution of the TFBSs was inferred relative to the 
translation start codon. Since TFs control gene expres-
sion at the transcriptional level and transcription is ini-
tiated from the transcription start site (TSS), it is more 
biologically meaningful to infer the spatial distribu-
tion of the TFBSs relative to the TSS than to the trans-
lation start codon.16,17 Second, their spatial distribution 
of the TFBSs was constructed by counting the number 
of TFBSs located at each site of a promoter. Because 
the number of promoter sequences that contain a site 
near the TSS (say 100 bp upstream from the TSS) is 
much larger than that of a site far upstream from the 
TSS (say 1000 bp upstream from the TSS), the num-
ber of TFBSs found at a site near the TSS will tend 
to be larger than that of a site far upstream from the 
TSS. Therefore, to avoid the bias caused by unequal 
numbers of promoter sequences that contain different 
sites, it is better to construct the spatial distribution 
of the TFBSs by counting the frequency of TFBSs 
than counting the number of TFBSs. The frequency 
of TFBSs located at a site is calculated by dividing the 
number of TFBSs located at that site by the number of 
promoter sequences which contain that site.

In this study, I developed a method to construct 
the spatial distribution of the TFBSs, which can solve 

the two problems of Harbison et al’s method.15 My 
method constructed the spatial distribution of the 
TFBSs relative to the TSS by counting the frequency 
of TFBSs located at each site of a promoter. Using 
my method, I can construct the spatial distribution of 
the TFBSs for any set of genes of interest. I found 
that different functional gene clusters have different 
spatial distributions of the TFBSs. I also found that 
binding sites of different TFs may have different spa-
tial distributions.

Methods
Datasets
The TFBS locations in the yeast genome for 117 TFs 
were retrieved from the paper of MacIsaac et al.18 They 
used two binding motif discovery algorithms, Phylo-
Con and Converge, to identify the genome-wide loca-
tions of the TFBSs. These two algorithms are based 
on TF-DNA binding evidence (determined by the 
P-value of the ChIP-chip data) and the phylogenetic 
conservation constraint (requiring the same binding 
sites present in the orthologous promoter regions of 
phylogenetically related yeast species). In this paper, 
I used four TFBS datasets from MacIsaac et al’s 
paper,18 which were derived from different ChIP-
chip binding P-value and phylogenetic conservation 
 constraints: I) ChIP-chip binding P-value ,0.001 
and conserved in at least three of the four yeast 
 species: S. cerevisiae, S. paradoxus, S. mikatae and 
S. bayanus; II) P , 0.001 and conserved in at least 
two yeast  species; III) P , 0.005 and conserved in 
at least three yeast species, and IV) P , 0.005 and 
conserved in at least two yeast species.

The genomic coordinates of the TSS of 4560 
yeast genes were retrieved from Nagalakshmi et al’s 
paper,19 in which a high-resolution transcriptome of 
the yeast genome was generated by a high-throughput 
RNA-seq method. The lists of 2803 singleton and 
1501 duplicate genes were defined according to 
Ensembl gene family annotation.20 The lists of 914 
essential and 3387 non-essential genes were down-
loaded from Saccharomyces Genome Deletion 
Project Website.21 The lists of 2079 stress and 2290 
non-stress genes were defined according to Gasch 
et al’s paper.3 A gene is called a stress gene if it has a 
fold change larger than two under at least one of the 
five stress conditions: heat shock, oxidative shock, 
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osmotic shock, amino acid starvation, and nitrogen 
depletion.

constructing the spatial distribution of 
the TFBSs for a functional gene cluster
Let A be a functional gene cluster, eg, essential genes, 
singleton genes, stress genes, etc. The procedure of 
constructing the spatial distribution of the TFBSs for 
A is as follows. Let x be the site relative to the TSS,  
ie, x = -10 stands for the site that is 10 bp upstream 
from the TSS. For each x in the promoter of a gene in A, 
I checked whether a TFBS is located at that site or not 
by using the TFBS data of 117 TFs in MacIsaac et al’s 
paper.18 The same process was applied to all genes in A. 
Then I counted the total number, n(x), of TFBSs 
located at site x for all genes in A. Finally, the TFBS 
frequency f (x) at site x was obtained by dividing n(x) 
by the total number, s(x), of promoter sequences in 
A that contain site x, ie, f (x) = n(x)/s(x). For exam-
ple, in the spatial distribution of the TFBSs for the 
2803 singleton genes in yeast (see Fig. 1), I found 
f (-116) = 0.073 = 196/2684, which means that at the 
site 116 bp upstream from the TSS, 196 TFBSs were 
found to occupy that site and 2684 promoter sequences 
of the 2803 singleton genes contain that site. Note that 
all the spatial distributions shown in the figures are 
smoothed with a sliding window of size 41 bp.

Identifying the enriched TFBSs  
in a functional gene cluster
Let A be a functional gene cluster, eg, essential genes, 
singleton genes, stress genes, etc. The  procedure of 
identifying the enriched TFBSs in A is as follows. 
A model based on hypergeometric distribution10 is 
used to test whether the enrichment of a specific 
TFBS (eg, Abf1) in A is statistically higher than ran-
dom expectation. The P-value for rejecting the null 
hypothesis that enrichment of the specific TFBS in 
A is by chance can be computed as the following 
formula:
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where N = 6576 is the number of genes in the yeast 
genome, M is the number of genes in A, na is the num-
ber of genes (in the yeast genome) whose promoter 
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Figure 1. The spatial distributions of the TFBSs for singleton and duplicate genes. It can be seen that singleton genes have a sharply peaked distribution 
of the TFBSs, whereas duplicate genes have a dispersed distribution of the TFBSs. The difference between the spatial distributions for singleton and 
duplicate genes is statistically significant (K-S test, P-value ,10-4).
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contain the specific TFBS, ma is the number of genes 
(in A) whose promoter contain the specific TFBS, and 
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each of the 117 TFBSs used in this study.

constructing the random expectation  
of the spatial distribution of the TFBSs
The random expectation of the spatial distribution of 
the TFBSs is calculated by averaging the  distributions 
constructed using 1,000 “randomized” genomes in 
which the binding sites in each promoter region were 
redistributed randomly and independently in each 
promoter region.15

Statistical testing for the difference  
between two spatial distributions  
of the TFBSs
Kolmogorov-Smirnov (K-S) test was used to test if 
two spatial distributions of the TFBSs are statisti-
cally different in location or shape.22 Assume that 
Fn(x) is the empirical distribution constructed by 
the n samples collected from the first distribution 
and Fm(x) is the empirical distribution constructed 
by the m samples collected from the second dis-
tribution, then the  Kolmogorov–Smirnov  statistic 
Dn,m = sup

x
  |Fn(x) - Fm(x)| quantifies a distance between 

Fn(x) and Fm(x). The null hypothesis of K-S test is 
that these two distributions are the same and the 
null hypothesis is rejected with a P-value equals to 
P K nm n m Dn m / ,+ ⋅( )  where K denotes the Kol-
mogorov distribution and the cumulative distribution 
function of K is given by P(K # x) = 1 - 2∑

i=1

∞  
(-1)i-1 

e-2i2x2. 

Results
The spatial distributions of the TFBSs 
for singleton genes and duplicate  
genes are significantly different
Gene duplication plays an important role in evolu-
tion because it is the primary source of new genes. 
Many studies showed that gene duplicability varies 
considerably among genes.23–25 Some genes only have 
a single copy whereas the other genes have multiple 
copies in an organism. It would be interesting to know 
whether singleton and duplicate genes have different 
gene regulation mechanisms. I studied this issue by 
constructing the spatial distributions of the TFBSs for 
singleton and duplicate genes. I found that singleton 
genes have a sharply peaked distribution of the TFBSs, 
whereas duplicate genes have a dispersed distribution 
of the TFBSs (see Fig. 1). The difference between the 
spatial distributions for singleton and duplicate genes 
is statistically significant (K-S test, P-value ,10-14). 
Moreover, the binding sites of Abf1 were found to be 
enriched in singleton genes but not in duplicate genes, 
while the binding sites of Rap1, Fhl1, Sfp1, Yap5 and 
Msn2 were found to be enriched in duplicate genes 
but not in singleton genes (see Table 1). This suggests 
that the gene regulation mechanisms for these two 
kinds of genes may be different.

The spatial distributions of the TFBSs  
for essential genes and non-essential  
genes are significantly different
Essential genes in yeast are those genes required 
for laboratory growth on rich media.21 The deletion 
of any one of these genes is sufficient to confer a 
lethal  phenotype. Such genes make excellent poten-
tial drug targets.26 It is estimated that 17.8% of the 

Table 1. The enriched TFBSs (P-value ,0.001) in the functional gene cluster under study (see Supplementary Table 2 for 
details).

singleton genes Abf1 Duplicate genes rap1, Fhl1, Sfp1, Yap5, Msn2
essential genes Abf1, rpn4, reb1 non-essential genes Skn7, Phd1, nrg1, Sut1, Sok2,  

cin5
non-stress genes none stress genes Fhl1, gcn4, cin5, Skn7, rap1, gln3, 

Sfp1, Xbp1, Ume6, Phd1, Yap7, 
hsf1, Sok2, Pho2, Msn2, Yap6, 
Yap1, Swi4, Bas1,Sut1, rox1, Yap5, 
nrg1, Met32, Ino4
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yeast genome is essential.27,28 On the other hand, 
 non-essential genes are those genes when deleted 
may have some fitness effects but the yeast still can 
survive. It would be interesting to know whether 
essential and  non-essential genes have different 
gene regulation mechanisms. I studied this issue by 
 constructing the spatial distributions of the TFBSs for 
essential and non-essential genes. I found that essen-
tial genes have a sharply peaked distribution of the 
TFBSs, whereas non-essential genes have a dispersed 
distribution of the TFBSs (see Fig. 2). The difference 
between the spatial distributions for essential and non-
essential genes is statistically significant (K-S test, 
P-value ,10-5). Moreover, the binding sites of Abf1, 
Rpn4 and Reb1 were found to be enriched in essential 
genes but not in non-essential genes, while the bind-
ing sites of Skn7, Phd1, Nrg1, Sut1, Sok2 and Cin5 
were found to be enriched in non-essential genes but 
not in essential genes (see Table 1). This suggests that 
the gene regulation mechanisms for these two kinds 
of genes may be different.

The spatial distributions of the TFBSs for 
stress genes and non-stress genes are 
significantly different
Stress genes are those genes whose protein products 
can help cells fight against the deleterious effects 
induced by environmental stresses such as high 

temperature, high acidity, nutrient depletion, etc.1–5 
On the other hand, non-stress genes are those genes 
whose functions are not related to the cell’s complex 
stress adaptation mechanism. It would be interesting 
to know whether stress and non-stress genes have 
different gene regulation mechanisms. I studied this 
issue by constructing the spatial distributions of the 
TFBSs for stress and non-stress genes. I found that 
non-stress genes have a sharply peaked distribution 
of the TFBSs, whereas stress genes have a dispersed 
distribution of the TFBSs (see Fig. 3). The differ-
ence between the spatial distributions for stress and 
non-stress genes is statistically significant (K-S test, 
P-value ,10-24). Moreover, no TFBSs were enriched 
in non-stress genes but the binding sites of 25 TFs 
were enriched in stress genes (see Table1). This sug-
gests that the gene regulation mechanisms for these 
two kinds of genes may be different.

The spatial distributions of the binding  
sites for different TFs are significantly  
different
In the previous results, the spatial distribution of the 
TFBSs for a functional gene cluster as constructed by 
considering the binding site data of all TFs. It would 
be interesting to know whether the spatial  distributions 
of the binding sites for different TFs are different. 
Therefore, I constructed the spatial  distribution of the 
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Figure 2. The spatial distributions of the TFBSs for essential and non-essential genes. It can be seen that essential genes have a sharply peaked distribu-
tion of the TFBSs, whereas non-essential genes have a dispersed distribution of the TFBSs. The difference between the spatial distributions for essential 
and non-essential genes is statistically significant (K-S test, P-value ,10-5). 
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binding sites for each available TF.18 For example, 
356 Abf1’s binding sites in the promoter regions of 
308 Abf1’s target genes in the yeast genome are used 
to construct the spatial distribution of the binding sites 
for Abf1. After constructing the spatial  distributions 
of the binding sites for various TFs, I found that these 
spatial distributions could be divided into three catego-
ries (see Fig. 4): 49 TFs in the first category, 27 TFs in 
the second category and 41 TFs in the third category 
(see Supplementary Table 1 for the detailed list of the 

TFs in each  category). The spatial distributions of the 
binding sites for the first group of TFs, eg, Abf1, Reb1, 
and Hap4, have a sharp peak and can be fitted by a 
Power-law distribution (  p(x) ∼ (x + 150)-0.2), suggest-
ing that a specific distance between the binding sites 
and the TSS is required for proper functioning of these 
TFs. The distributions for the second group of TFs, 
eg, Rap1, Fhl1, and Skn7, have a plateau and can be 
fitted by a Gaussian  distribution (  p(x) ∼ N(µ = -300, 
σ = 200)), suggesting that a range of distances between 
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Figure 3. The spatial distributions of the TFBSs for stress and non-stress genes. It can be seen that non-stress genes have a sharply peaked distribution 
of the TFBSs, whereas stress genes have a dispersed distribution of the TFBSs. The difference between the spatial distributions for stress and non-stress 
genes is statistically significant (K-S test, P-value ,10-24).
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Figure 4. The spatial distributions of the binding sites for different TFs.  It can be seen that spatial distributions of the binding sites for different TFs are 
different and can be roughly divided into three categories: I) the distributions have a sharp peak, II) the distributions have a plateau, and III) the distribu-
tions do not have any dominant peak.
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the binding sites and the TSS is important for proper 
functioning of these TFs.  However, the distributions 
for the third group of TFs, eg, Mot3, Phd1, and Yap6, 
do not have any dominant peak and can be fitted as an 
uniform distribution plus a random noise, suggesting 
that the distance between the binding sites and the TSS 
is not important for proper functioning of these TFs.

Discussions
The proposed method can extract  
biologically meaningful results
To show that my method can extract more biological 
insights than Harbison et al’s approach,15 I constructed 
the spatial distribution of the TFBSs for all genes in 

the yeast genome by using the TSS (in this study) and 
the translation start codon (in Harbison et al’s study) 
as the reference point, respectively. When the TSS is 
used as the reference point, I found that the TFBSs are 
highly enriched in a ∼100 bp region (ranging from 80 
to 180 bp upstream from the TSS) with a sharp peak 
at -115 bp. The sharp peak is significantly higher than 
random expectation, supporting a strong positioning 
bias of the TFBSs relative to the TSS (see Fig. 5). In 
contrast, no sharp peak can be observed when the start 
codon was used as the reference point (see Fig. 5). 
This observation suggests my method is more power-
ful than Harbison et al’s approach to construct biologi-
cally meaningful spatial distributions of the TFBSs.
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Figure 5. The spatial distributions of the TFBSs relative to the TSS v.s. the start codon. I constructed the spatial distribution of the TFBSs for all genes in 
the yeast genome by using the TSS (in this study) and the translation start codon (in harbison et al’s study) as the reference point, respectively. A sharp 
peak can be seen in the spatial distribution of the TFBSs relative to the TSS and the sharp peak is significantly higher than random expectation, support-
ing a strong positioning bias of the TFBSs relative to the TSS. however, such sharp peak cannot be seen in the spatial distribution of the TFBSs relative 
to the start codon, suggesting that my method is more powerful than harbison et al’s approach to construct biologically meaningful spatial distributions of 
the TFBSs.
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The proposed method is robust
Since the total number of TFBSs that could be iden-
tified strongly depends on the parameter settings in 
TFBS prediction algorithms, I performed my analy-
ses using four different TFBS datasets to ensure the 
robustness of my findings. I found that these four dis-
tributions of the TFBSs have very similar patterns, 
showing the robustness of my results (see Fig. 6a). 
Moreover, since TFBSs in divergent promoters 
(a common  promoter region shared by two  divergently 
transcribed adjacent genes) cannot be assigned to one 
of the two adjacent genes unambiguously, I excluded 
these TFBSs from my analyses to avoid the potential 
bias. I found that the distributions of the TFBSs are 

almost the same whether I included divergent promot-
ers in my analyses or not, showing that my method is 
very robust (see Fig. 6b). In addition, I used three dif-
ferent window sizes (31 bp, 41 bp, and 51 bp) of the 
sliding window for smoothing the spatial distributions 
of the TFBSs. I found that these three distributions 
of the TFBSs have very similar patterns, showing the 
robustness of my results (see Fig. 7).

The spatial distributions of the binding 
sites for various TFs are useful
The spatial distributions of the binding sites for dif-
ferent TFs derived from my analyses can be used 
as valuable prior information for TFBS prediction. 

T
F

B
S

 f
re

q
u

en
cy

T
F

B
S

 f
re

q
u

en
cy

0
−800 −700 −600 −500 −400 −300

Position relative to the TSS
−200 −100

TFBS dataset (I)
TFBS dataset (II)
TFBS dataset (III)
TFBS dataset (IV)

1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0
−800 −700 −600 −500 −400 −300

Position relative to the TSS
−200 −100

All genes excluding the divergently transcribed adjacent gene pairs
All genes

1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A

B

Figure 6. The robustness of my method. A) The four spatial distributions of the TFBSs constructed by using four different TFBS datasets have very similar 
patterns, showing the robustness of my method. B) The two spatial distributions of the TFBSs constructed by including or excluding the divergently tran-
scribed adjacent gene pairs are almost the same, showing that my method is very robust.
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For example, when a TFBS prediction algorithm is 
 performed to search Abf1’s binding sites in a promoter 
of interest, it should focus on the DNA sequences from 
100 bp to 200 bp upstream from the TSS because most 
of Abf1’s binding sites prefer to locate in this region 
(see Fig. 4). In contrast, when search Yap6’s bind-
ing sites in a promoter of interest, every region of the 
promoter should have equal attention because Yap6’s 
binding sites have no preference to locate in a particu-
lar region of the promoter (see Fig. 4).

conclusions
I developed a method to construct the spatial distri-
bution of the TFBSs for any set of genes of interest. 
Unlike Harbison et al’s approach, I used the transcrip-
tion start site (TSS) as the reference point and counted 
the frequency of TFBSs for each site in the promoter 
of a gene. These two features make my method more 
biologically meaningful than their approach. Besides, 
I constructed the spatial distributions of the TFBSs 
using four different TFBS datasets and found highly 
consistent results, showing the robustness of my 
method. Moreover, I used my method to construct 
the spatial distributions of the TFBSs for different 

functional gene clusters. I found that singleton genes, 
essential genes and non-stress genes have sharply 
peaked spatial distributions of the TFBSs, whereas 
duplicate genes, non-essential genes, and stress genes 
have dispersed spatial distributions of the TFBSs. In 
addition, I found that binding sites for different TFs 
may have different spatial distributions. For example, 
the spatial distributions of the binding sites of Abf1, 
Reb1 and Hap4 all have a sharp peak; the distributions 
of the binding sites of Rap1, Fhl1 and Skn7 all have 
a plateau, but the distributions of the binding sites of 
Mot3, Phd1, and Yap6’s do not have any dominant 
peak. In summary, my results show that different 
functional gene clusters have different spatial distri-
butions of the TFBSs, indicating that gene regulation 
mechanisms may be very different among different 
functional gene clusters.
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chosen window size.
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supplementary Data
supplementary Table 1. contains the detailed lists of the 
TFs for the three different categories.

supplementary Table 2. contains the enriched TFBSs 
for each functional gene cluster under study.
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