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Abstract
Motivation: Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient 
AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins 
such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular 
interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo 
feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral 
strains with altered drug resistance levels.
Results: We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us 
expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, 
Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties 
of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular mean-
ing of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previ-
ously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering.
Availability: A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained 
at: http://www.ipipan.eu/staff/m.draminski/software.htm.
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Introduction
For more than two decades rapid emergence of 
drug-resistant mutants remains a serious obstacle to 
designing efficient anti-HIV therapies. Approximately 
109 new viral particles are produced in a single infected 
individual every day and 3 × 105 mutations emerge in 
this population.1 Some mutations lead to the produc-
tion of functionally impaired viruses whereas other 
give rise to drug-resistant strains. Clinical studies 
have demonstrated that after 2–4 weeks of treatment 
with anti-HIV drugs the wild-type virus is almost 
completely replaced by drug-resistant strains.2

Currently, 25 different anti-HIV drugs are approved 
for treatment and many new drug candidates have 
reached phase I and phase II clinical trials. Twelve 
drugs belong to a group of RT inhibitors targeted 
against an important viral enzyme, reverse tran-
scriptase (RT).3 Provided with a single-stranded viral 
genome RNA template, the RT catalyzes the synthesis 
of double-stranded proviral DNA. In turn, the proviral 
DNA is incorporated into a host genome, expressed 
and replicated by the native cellular machinery. This 
results in the production of new HIV particles capable 
of infecting other host cells and, thus, completing the 
HIV life cycle.

Two groups of reverse transcriptase inhibitors 
are in clinical use, namely the nucleoside/-tide 
RT inhibitors (NRTIs) and the non-nucleoside RT 
inhibitors (NNRTIs). NRTIs mimic dNTPs, the natu-
ral substrates of the RT enzyme, but once incorpo-
rated into a newly synthesized strand, they terminate 
DNA elongation. The members of the second group, 
the NNRTIs inhibit RT by binding in the so-called 
NNRTI-binding pocket which, in turn, induces 
function-disrupting structural changes in the enzyme. 
The state-of-the-art highly-active antiretroviral 
therapy (HAART) regimens frequently include a 
nucleoside RT inhibitor, a non-nucleoside RT inhibi-
tor and a protease inhibitor.4

A need for new antiviral drugs has been recog-
nized. New generation of drugs should be effective 
against viruses that carry the already known resistance 
mutations. Drugs belonging to the so-called “second 
generation RT inhibitors”, eg, Dapivirine, have been 
introduced recently.5

The availability of resistance-annotated sequence 
data and the inherent complexity of analyzing the 

560 amino acids of the RT p66  subunit call for an 
application of suitable computational methods. In 
our previous study,6 we have developed a number 
of rule-based models that relate mutation-induced 
changes in the physicochemical properties of HIV-1 
RT to the level of resistance to several antiviral drugs. 
A remaining issue was how the individual mutations 
interact in altering resistance.

Approach
We used our interdependency discovery method based 
on Monte Carlo feature selection (MCFS-ID)7,8 to 
reveal molecular interaction networks leading to drug 
resistance. It results in a network of resistance-altering 
molecular interactions between physicochemical 
properties of mutating amino acids. We applied the 
method to find molecular interaction networks that 
underly resistance to six anti-HIV drugs: four nucleo-
side RT inhibitors (Abacavir, Lamivudine, Stavudine, 
Zidovudine); one nucleotide RT inhibitor (Tenofovir) 
and one non-nucleoside RT inhibitor (Nevirapine).

The molecular-interaction networks that we con-
structed are based on thousands of decision-tree clas-
sifiers. Each pair of immediately neighboring nodes 
reflects their joint, statistically valid contribution to 
co-determination of the outcome. We used this fact 
to elucidate molecular interaction networks between 
mutating amino acids.

Methods
Data and discretization
From the Stanford HIV Database9 we obtained a num-
ber of resistance-annotated amino acid sequences of 
HIV-1  reverse transcriptase p66  subunit. The 91% 
of the sequences were complete within the first 240 
aa sites, 31% within all the sites. As suggested by 
Zhang et al,10 we used only the sequences with resis-
tance determined by the Monograms® PhenoSense® 
assay. Following well established clinical practice, 
we discretized continuous drug resistance values into 
three classes: “susceptible”, “moderately resistant” 
and “resistant”. Cut-off values used for the discreti-
zation were taken from the work by Rhee et al.9

Description
Rather than modeling the resistance in terms of mut-
ing amino acids (eg, work by Beerenwinkel et  al11), 
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we represent mutations as changes in the physico-
chemical properties of the enzyme. In contrast to the 
approach proposed by Kjaer et al.12 we consequently 
use the same set of descriptors for each class of antivi-
ral drugs. Previously,13,6 we have selected 7 descriptors 
–physicochemical properties from the aaIndex 
database;14 see Table 1. The descriptors are relatively 
low-correlated (cf. Kierczak et  al6), easy to interpret 
by structural biologists and cover various aspects of 
protein biophysics including solvent interactions, 
thermodynamics, secondary and tertiary structure and 
electrostatic properties. We use the selected properties 
to describe each amino acid in the sequence.

Thus, each sequence is described by 3,920 features 
(560 aa × 7 physicochemical properties). Each amino 
acid in the sequence was encoded as a difference between 
the 7-vector of its properties and the 7-vector repre-
senting properties of the corresponding site in the wild 
type HXB2 reference sequence. Therefore, if no muta-
tion was observed at a given position, it was encoded 
by the zero vector. Our final dataset is an ensemble of 
sequences described in such way and annotated with 
their resistance category. The detailed characteristics of 
each data set are provided in Table 2.

Monte Carlo feature selection  
and interdependency discovery
The description step was followed by the selection 
of significant resistance-altering interdependen-
cies between the physicochemical properties of the 

560 amino acids of p66. We applied Monte Carlo 
Feature Selection (MCFS) method as described in 
Dramiński et al.7 In our most recent study,22 we show 
that, unlike Breiman’s Random Forests, our method 
is not biased towards features with many categories. 
The MCFS method relies on the construction of a 
large number of decision trees. We trained the trees 
on s different random subsets of attributes and dif-
ferent random subsets of objects. For each subset, we 
constructed t trees. Each of the trees was trained and 
evaluated on a different, randomly selected training 
set–test set pair. The evaluation results obtained from 
all the s  ⋅  t trees let us build a ranking of physico-
chemical properties reflecting their influence on drug-
resistance. The final ranking of all features does not 
give the information about the cut-off value that sepa-
rates informative features from the non-informative 
ones. We find the cut-off by applying Student’s 
t-test with its critical value (significance level set 
to: P-value ≤ 0.05) determined on a set of rankings 
that have been obtained for data sets with randomly 
permuted values/labels of the class attribute. For the 
detailed description and for the comparison of the 
MCFS method to other feature selection techniques 
see our previous works.6–8

Our approach to interdependency discovery (ID) is 
significantly different from known approaches which 
consist in finding correlations between features or find-
ing groups of features that behave in some sense simi-
larly across samples. A typical bioinformatics example 
of this problem is finding co-regulated features, most 
often genes or, rather more precisely, their expression 
profiles. Searching groups of similar features is usually 
done with the help of various clustering techniques, 
frequently specially tailored to a task at hand.23–26

In our approach to interdependency discovery 
(ID) we focus on identifying features that cooper-
ate in determining that a sample belongs to a par-
ticular class. Assume that for a given training set of 
samples, a rule-based classifier (or a decision tree), 
has been constructed. Now, for each class, a set of 
decision rules defining this class is provided. Each 
decision rule is in fact a conjunction of conditions 
imposed on a particular subset of separate features 
and, thus, points to some interdependencies between 
these features. It is worthwhile to note that in this way 
any nonlinear interdependencies are sought which 

Table 1. Descriptors of the physicochemical properties 
of amino acids used in this study.

No. Descriptor Short name aaindex code
1 Transfer free  

energy from  
octanol to water15

E oct. -wat. RADA880102

2 Normalized  
van der Waals 
volume16

vdW vol. FAUJ880103

3 Isoelectric point17 isoel. point ZIMJ680104
4 Polarity18 polarity GRAR740102
5 Normalized  

frequency of turn19
freq. turn CRAJ730103

6 Normalized  
frequency  
of alpha-helix20

freq. helix BURA740101

7 Free energy of  
solution in water21

E sol. wat. CHAM820102
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best correlate with the decision attribute (within 
regression setting such an approach can be said to 
rely on additive expansion interaction models based 
on regression trees27 (Sec. 2)).

This general idea of looking at interdependencies 
among features seems to be rather plausible but we 
have refined it further, so that it is not dependent on 
just one classifier. In each of the s ⋅ t trees the nodes 
represent features (a given node represents the fea-
ture on which the split is made). For each path in a 
tree, we define the distance between two nodes as the 
number of edges between them. Now, the strength of 
interdependency between two nodes along the same 
path in the tree is defined as the inverse of the dis-
tance between them. For a given pair of features, 
the strength of interdependency between them is 
computed as the sum of the strengths between them 
along all paths in all trees (if the two features do not 
appear along a path, the contribution of this path to 
the overall strength is zero). Here, we consider only 
the pairs where the distance d #  3. This value is a 
trade-off between the complexity of reviewing a tree 
and searching for the strongest dependencies. Even-
tually, we normalize every strength by dividing its 
value by the strength-value of the strongest observed 
interdependency.

Since the strength is calculated on the basis of 
thousands of trees rather than on the basis of just a 
single classifier, it provides stable and reliable infor-
mation about the degree of the observed interdepen-
dency between the features.

Final results of the analysis are presented in the 
form of graphs where nodes represent features and 
edges represent interdependencies. Only the nodes 
corresponding to the informative features are shown. 
An edge connecting two nodes corresponds to the 

observed interaction between them. The interaction 
relation is not transitive, ie, if node A interacts with 
node B and node B interacts with node C, it does not 
imply that node A interacts with node C. It is, how-
ever, plausible that the adjacent pairs of interacting 
nodes co-determine resistance. Nodes corresponding 
to the same aa site occupy the same level and follow 
top to bottom order from N-terminal to C-terminal 
part of the sequence.

We visualize the discovered networks in Figure 1. 
Each node represents a physicochemical property at 
a particular site. Color of a node corresponds to the 
property and the number to the position of the site in 
the RT sequence. For instance (Fig. 1a, leftmost part), 
free energy of solution in water at site 184 interacts 
frequently with either of the following site-property 
pairs: normalized frequency of turn at site 41, isoelec-
tric point at site 41, normalized frequency of turn at 
site 210 or transfer free-energy from octanol to water 
at site 215. These interactions determine the level of 
resistance to Abacavir. Interestingly, all properties but 
polarity appear in the resistance-to-Abacavir network 
at site 184 (Fig. 1a–d). This indicates high degree of 
conservation at the site and points out its central role 
in resistance complexes.

Discussion
We examined the top 20% of interactions among the 
physicochemical properties that contribute to resis-
tance and analyzed these networks in attempt at better 
understanding the combined contribution of individ-
ual mutation-sites. The discovered networks are pre-
sented in Figure 1.

Below we provide a brief overview of the RT 
structure and function. Next, we describe structural 
properties of each of the 17 aa residues that occur in 

Table 2. The detailed characteristics of the analyzed datasets. Table summarizes the exact numbers of examples per drug 
and per resistance class.

Class Drug Susceptible Moderately res. Resistant Total
NRTI Abacavir 198 (28.0%) 321(45.5%) 187 (26.5%) 706

Lamivudine 214 (29.9%) 118 (16.5%) 383 (53.6%) 715
Stavudine 368 (52.1%) 227 (32.2%) 111 (15.7%) 706
Zidovudine 342 (48.6%) 178 (25.3%) 183 (26.0%) 703

NtRTI Tenofovir 230 (66.9%) 76 (22.1%)   38 (11.0%) 344
NNRTI Nevirapine 395 (52.9%) 53 (7.1%) 299 (40.0%) 747

Abbreviations: res., resistant; NRTI, nucleoside RT inhibitors; NtRTI, nucleotide RT inhibitors; NNRTI, non-nucleoside RT inhibitors.

http://www.la-press.com


Computational analysis of molecular interaction networks

Bioinformatics and Biology Insights 2010:4	 141

the discovered networks. This is followed by an indi-
vidual discussion of each drug-resistance network. 
A summary of the findings concludes this section.

The RT is responsible for both RNA-dependent and 
DNA-dependent DNA polymerization. The enzyme 

consists of two subunits: 560 aa-long p66 and 440  
aa-long p51. Although both the subunits share 440 
amino acids, their arrangement and function differ 
significantly: the functional p66  subunit contains a 
DNA-binding groove and the active site whereas p51 

Legend
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Figure 1. Interaction networks determining resistance to six HIV-1 RT inhibitors. Numbers refer to the aa sites of the RT p66 subunit. Colors correspond 
to physicochemical properties.
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lacks enzymatic activity and serves as a scaffold for 
p66. Mutations in the p66 subunit are responsible for 
the emergence of drug resistance.The ternary structure 
of the p66 subunit is often compared to a right hand con-
sisting of a thumb, a palm and a fingers subdomain.2,5 
These three, together with the connection subdomain, 
are present in both the p55 and the p66 subunits. The 
p66 subunit contains also an RNaseH domain.

The mechanism of polymerization by HIV-1 RT 
is similar to that described for other DNA poly-
merases and involves: 1) template/primer binding to 
the enzyme; 2) binding of dNTP and bivalent cations 
(Mg2+) to the RT-template/primer complex; 3) forma-
tion of a phosphodiester bond between the 3’-OH 
primer terminus and the α-phosphate of a dNTP; 
4) translocation of elongated DNA primer from the 
dNTP binding site to the primer site or release of the 
template/primer complex. A large conformational 
shift and rotation of the fingers subdomain towards 
the thumb subdomain occurs upon step 2.28,29

Val 75: Lamivudine
Stavudine
Zidovudine

Leu 74: Nevirapine

Met 41: Abacavir
Lamivudine

Glu 203: Abacavir
Tenofovir

Leu 210: Abacavir
Stavudine
TenofovirVal 179: Nevirapine

Lys 101: Nevirapine

Leu 100: Tenofovir

Arg 211: Nevirapine

Lys 70: Stavudine
Zidovudine

Tyr 181: Nevirapine

Met 184: Abacavir
Lamivudine
Tenofovir

Thr 215: Abacavir
Stavudine
Zidovudine
Tenofovir

Lys 219: Tenofovir

Asp 67: Lamivudine

Gly 190: Nevirapine

Leu 228: Lamivudine

Incoming dNTP

Magnesium ion

Amino acid site (alpha-carbon)
Novel sites in bold.

different colors used for clarity only

Viral DNA fragment

Legend

180°

Figure 2. Resistance to RT-inhibitors. (PDB structure: 1RTD). A number of amino acid sites that occur in the resistance networks is mapped onto the 3D 
structure of the HIV-1 RT p66 subunit. For more clarity the structure to the right is rotated 180° Novel sites that have not been associated with resistance 
to a particular drug are presented in boldface. For the sake of legibility, the sites that are described on the current panel are presented in red while while 
the sites described on the other panel in grey.

The palm subdomain contains three catalyti-
cally active residues: Asp 110, Asp 185 and Asp 186 
embedded in a hydrophobic region.29,30 Both Asp 185 
and Asp 186, together with Tyr 183 and Met184 con-
stitute a highly-conserved YXDD motif found in all 
reverse transcriptases.2

It has been suggested that during polymerization the 
fingers subdomain and both alpha-helices of the thumb 
form a clamp that holds the nucleic acid in the right 
place over the palm. The template/primer interactions 
occur between the sugar-phosphate backbone of the 
DNA/RNA and residues of the p66 subunit.2,28,29

Seventeen different amino acid residues occur in 
the discovered interaction networks (Figs. 1 and 2): 
Met 41, Asp 67, Lys 70, Leu 74, Val 75, Leu 100, 
Lys 101, Val 179, Tyr 181, Met 184, Gly 190, 
Glu 203, Leu 210, Arg 211, Thr 215, Lys 219 and 
Leu 228. Mutations at residues 100, 101, 179, 
181, 190, 203 and 228 have been associated with 
resistance to NNRTI drugs.9,31 Mutations at residue  
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211 can be found in some non-B HIV subtypes32 
and they are suspected to increase viral fitness by 
alleviating the deleterious effect of other drug-
resistance mutations.33 Mutations at the remaining 
sites are known to contribute to resistance to NRTI 
drugs.9,3,31

Methionine at residue 184 is located in the close 
vicinity of the catalytic triad and may therefore play 
crucial role in modifying RT selectivity towards 
incoming dNTPs and drug triphosphates (drug-TP). 
Residues Met 41 (inside the 28–44 alpha-helix), Leu 
74 and Val 75 belong to the fingers subdomain, part 
of which is involved in the template positioning.34 
Residues Asp 67 and Lys 70 belong to the fingers 
domain while residues Leu 210 and Thr 215 are 
embedded inside the palm subdomain and consti-
tute a fragment of the dNTP binding pocket.29 They 
are located opposite to Met 184. Asp 67 remains in 
direct contact with a Mg2+ ion that catalyses enzy-
matic reaction.30 Glu 203, Leu 210 and Arg 211 are 
all part of the 195–212 alpha-helix. The C-terminal 
part of this helix interacts directly with an incom-
ing dNTP or drug-TP. Leucine 228 is a part of a 
short (227–229) beta-strand in the palm subdo-
main. Leucine 100 is located in the palm, on the 
surface of the NNRTI-binding pocket. Mutations 
of Leu 100  give moderate resistance to a number 
of NNRTI drugs.5 Tyrosine residues 181 and 188 
are involved in the ring stacking interaction with 
NNRTIs and their mutations to non-aromatic amino 
acids leads to drug resistance.5 Residues Phe 227, 
Leu 228 and Trp 229 are building-blocks of the 
NNRTI-binding pocket. Mutations resulting in the 
decrease of chain-bulk at residue 227 lead to loss 
of favorable contacts with some NNRTIs.35 Trypto-
phane 229 apperas to be highly conserved and it has 
been suggested that new generation of drugs should 
interact with this particular residue in order to avoid 
drug resistance.36

Figure 1 presents all the discovered networks that 
we discuss below. Whenever we refer to a graph 
by a letter eg, (a)—we refer to this figure. The fol-
lowing section discusses each RT inhibitor indi-
vidually. In supplementary materials, Figure S1, we 
present the detailed information on the distances 
between α-carbon atoms of interdependent and non-
interdependent significant residues.

Abacavir
Five different amino acid sites: 41, 184, 203, 210 and 
215 are selected by the MCFS-ID method (a)–(d). 
In graphs: (b), (c) and (d), either of the 203, 210 
and 215 residues, interacts with residue 184. Each 
of these interactions appears to be a good descriptor 
of the dNTP binding pocket which follows directly 
from the 3D structure of the enzyme, see eg, work by 
Menedez-Arias29 and Figure 2. In graph (a), residue 
184 co-occurs with two sites: 41 and 203. Since Glu 
203 and Leu 210 are parts of the same alpha-helix, 
mutations at site 203 may affect structure and posi-
tion of this helix. Therefore the 184–203 interaction 
may be another good descriptor of the selectivity of 
the pocket. This is further supported by the fact that 
the normalized frequency of alpha-helix has been 
selected at site 203. The second pair (41–184) reflects 
the possible interaction between the binding pocket 
and the fingers subdomain.

Lamivudine
Graphs (e)–(g), present interactions discovered for 
Lamivudine. Apart from the already discussed pairs, 
isoelectric point at site 67 and normalized frequency 
of turn at site 228 constitute a pair. Closer look at the 
3D structure (Fig. 2) of the p66 subunit reveals that 
Leu 228 is located inside the short (227–229) beta 
sheet. Mutations disturbing this structure may result 
in repositioning the 178–183 and the 186–191strand. 
This, accompanied by mutations at residue 67, may 
affect substrate selectivity of the enzyme preventing 
incorporation of drug-triphopsphates.

Stavudine
A new type of interaction emerges in the case of 
Stavudine, another NRTI drug ((h), (i)). Here, normal-
ized frequency of turn at residue 75 (the 71–75 strand) 
co-occurs with free energy of solution in water at resi-
due 215; see graph (h). The latter descriptor charac-
terizes hydrophobic properties of amino acid and its 
emergence in the context of the hydrophobic dNTP-
binding pocket is not surprising. Changes in both the 
electrostatic properties and the propensity to form 
alpha-helix characterize drug-resistance mutations at 
site 210. Interestingly enough, an interaction involving 
hydrophobicity-related properties at sites 70 and 210 
has been selected by the MCFS-ID; see graph (i).
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Tenofovir
In the case of Tenofovir (graphs (j)–(l)), a NRTI drug, 
normalized frequency of turn is selected at site 100. 
Mutations at this particular site are typically con-
nected with resistance to NNRTI drugs only.5,3,31 
It might have emerged as a result of past treatment, 
but it may also play a role in resistance to Tenofovir. 
Although its significance in the context of NRTI drugs 
remains unclear, this in silico discovered interaction 
deserves further attention. The two remaining groups 
of interactions (graphs (k) and (l)) always involve 
site 184 and either of the sites located within or near 
the 195–212 alpha-helix. These interactions seem to 
characterize geometry and general properties of the 
dNTP-binding pocket.

Zidovudine
Interaction of sites 75 and 215 is also important for 
resistance to Zidovudine (graphs (m) and (n)). Here, 
mutations that lead to the change of van der Waals 
volume seem to matter (Fig.  2). Site 215 is also 
involved in interactions with site 70; see graph (m). 
Both sites are also parts of the dNTP binding pocket.

Nevirapine
Several interactions selected as relevant in the case 
of Nevirapine (graphs (o)–(r)) seem to reflect proper-
ties of the NNRTI-binding pocket. Mutations at sites 
100, 101, 181 and 190 are well known to contribute 
to resistance.3,31 The selected interactions involve 
also site 74 that is associated with resistance to 
NRTI drugs, but not to NNRTIs. The occurrence of 
the 74 site in this context may, again, be the result of 
past treatment. The MCFS-ID selects also sites 179 
and 211. Valine 179 is located in the NNRTI-binding 
pocket and mutations there have been associated with 
drug-resistance.5 Our analysis indicates that changes 
in normalized van der Waals volume play important 
role in the emergence of resistance. Mutations at site 
179 seem to interact with NRTI mutations at site 74 
(graph (q)). Although mutations at site 211 have not 
been reported as contributing to resistance, mutations 
at the adjacent site 210 are well known. It is normal-
ized van der Waals volume that has been selected at 
this position. We can speculate that certain mutations 
at site 211 disrupt the structure of the 195–212 alpha-
helix thus contributing to resistance.

Conclusion
We were able to uncover and analyze several 
networks of molecular interactions responsible 
for the change of resistance levels to six anti-
viral drugs. The discovered networks encompass 
numerous previously known resistance mecha-
nisms which is a strong evidence of the validity 
of the method. Significantly, application of the 
MCFS-ID method pinpoints also some new mech-
anisms potentially affecting drug resistance lev-
els. These newly discovered mechanisms deserve 
further experimental investigation. While mecha-
nisms leading to resistance to Lamivudine and 
Zidovudine are described by relatively simple 
networks, resistance to Abacavir and Nevirapine 
appears to be determined in more complex way. 
There are several structural fragments and sites 
that seem to play central role in altering resis-
tance. For instance, site 184 plays important role 
in resistance to Abacavir, Lamivudine and Teno-
fovir. Similarily, many members of the 195–212 
helix appear in the discovered networks indicat-
ing its functional importance. On the other hand, 
there are interactions and sites that emerged in the 
context of only one drug eg, 67–228  interaction 
determining resistance to Lamivudine. Some net-
works eg, (l), (o)–(q) contain sites that were asso-
ciated with resistance to another class of drugs. 
These may be the result of past treatments, but 
they may also play accessory role that, since dif-
ficult to notify, was previously neglected. It would 
be highly interesting to include information on 
the history of treatment and on viral fitness to our 
analysis. Unfortunately, there is not enough pub-
licly available data containing this information. 
Last but not least, some of the discovered interac-
tions may play compensatory role by increasing 
viral fitness. The novel interactions deserve fur-
ther attention and laboratory validation.

Importantly, the method itself shows inter-
actions between physicochemical properties of 
mutating amino acids. This gives deeper insight 
into molecular mechanisms of drug resistance. 
The majority of the drug resistance mutations 
act simultaneously, in cooperative manner. The 
MCFS-ID method allows us to see these complex 
interactions. In our opinion the presented approach 
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can be applied to several similar problems in the 
domain of proteomics.
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Supplementary Figure
Distances

41 67 70 74 75 100 101 179 181 184 190 203 210 211 215 219 228
41 0
67 21.42 0
70 14.59 8.00 0
74 13.94 17.14 13.08 0 Mean distance between interdependent pairs: 17.81
75 14.98 20.92 16.68 3.80 0 Mean distance between non-interdependent pairs: 20.77
100 37.22 26.86 32.18 33.36 35.58 0
101 39.81 29.72 35.04 36.80 39.06 3.85 0
179 32.98 28.11 31.44 32.54 34.51 9.75 9.74 0
181 29.16 23.48 26.82 26.92 28.90 9.12 11.39 6.23 0
184 21.19 18.84 20.13 17.47 19.20 17.47 20.56 15.41 9.76 0
190 32.79 25.58 29.55 32.71 35.15 9.73 9.44 5.24 8.20 16.71 0
203 26.22 25.67 26.53 31.77 34.22 22.78 22.84 15.48 17.13 20.04 13.41 0
210 17.26 24.11 22.19 24.71 26.51 26.88 28.15 19.57 18.66 16.48 19.44 10.31 0
211 18.63 27.74 25.45 26.77 28.14 28.90 29.98 20.82 20.45 18.47 21.42 12.23 3.84 0
215 14.61 18.86 17.04 20.60 22.89 25.50 27.29 19.87 17.59 13.91 19.06 11.92 5.31 8.91 0
219 20.99 11.74 14.17 22.71 26.10 22.48 24.29 20.49 17.89 16.52 17.28 14.23 15.27 19.09 11.00 0
228 29.14 13.65 20.14 25.37 28.60 14.06 16.50 17.32 13.78 15.46 14.12 20.34 23.13 26.50 19.40 11.59 0

Figure S1. Distances between interdependent (grey) and non-interdependent pairs of important residues. Distances (in Å) between alpha-carbon atoms 
were calculated from PDB: 1RTD structure, chain A.
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