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Abstract: Each year, there are estimated to be approximately 200,000 hospitalizations and 36,000 deaths due to influenza in the 
United States. Reports have indicated that most deaths are not directly due to influenza virus, but to secondary bacterial  pneumonia, 
 predominantly staphylococcal in origin. Here we identify the presence of candidate blood and urine biomarkers in mice with 
 Staphyococcus aureus and influenza virus co-infection. In this pilot study, mice were grouped into four treatments: co-infected with 
influenza virus and S. aureus, singly infected with influenza virus or S. aureus, and a control group of uninfected mice (PBS treated). 
Gene expression changes were identified by DNA-microarrays from blood samples taken at day five post infection. Proteomic changes 
were obtained from urine samples collected at three and five days post infection using 2-D DIGE followed by protein ID by mass spec-
trometry.  Differentially expressed genes and/or proteins were identified as candidate biomarkers for future validation in larger studies.
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Introduction
Influenza has long been recognized as a major cause 
of illness worldwide and is generally characterized 
by fever, myalgia and respiratory symptoms.1 While 
infection is usually resolved inconsequentially,  current 
estimates indicate that influenza is responsible for 
approximately 36,000 deaths and 200,000 hospitaliza-
tions in the United States annually.1–3 Recent reports 
indicate that most deaths are not directly due to influenza 
virus infection, but to secondary bacterial pneumonia,2 
predominantly staphylococcal in origin.1,4 In children, 
which are a high risk group for influenza complications, 
co-infection with  Staphylococcus aureus has been 
shown to have increased fivefold between 2004 and 
2007, with older children showing higher  colonization 
prevalence. Furthermore, co-infection with S. aureus in 
lethal childhood cases has been on the rise from 2% in 
2004–2005 to 30% in 2006–2007.5 A study found that 
a substantial proportion of the S. aureus  bacteremia 
of infected patients was of endogenous origin, arising 
from colonies in the nasal mucosa.6 The anterior nares 
are the major reservoir in humans of the opportunistic 
pathogen S. aureus. Approximately 20% of humans are 
persistently  colonized intranasally, 60% are intermit-
tent carriers, and the remaining 20% are persistent non-
carriers.7,8 Nasal colonization is asymptomatic, but is a 
risk for subsequent infection, especially under circum-
stances such as hospitalization or in immunocompro-
mised patients.7 Secondary bacterial pneumonia from 
an influenza infection has been viewed by clinicians 
as more difficult to treat. With the rise in co-infection, 
it has been suggested that influenza virus-infected 
patients be treated with antibiotics.9 With the spread 
of MRSA and other resistant bacteria,  however, anti-
biotics should be used in a targeted  manner; only in 
high-risk or very ill patients with confirmed diagnosis 
of co-infection. To this end, identification of pertinent 
diagnostic or prognostic co-infection biomarkers would 
be invaluable. To our knowledge, there have been no 
published reports identifying specific diagnostic bio-
markers for respiratory dysfunction due to S. aureus, 
influenza virus, or co-infection. In this preliminary 
study, we sought to identify the presence of candidate 
blood and urine biomarkers in mice with S. aureus and 
influenza virus co-infection by analysis of proteomic 
changes obtained from 2D differential gel electro-
phoresis (2D-DIGE) and gene expression changes 
obtained from DNA-microarrays. As these methods 

are commonly employed for  identification of biomark-
ers, we believe they are appropriate tools for identify-
ing potential markers of co-infection.

Materials and Methods
Mice
Mouse experiments were conducted using  six-week 
old Balb/c mice from Simonsen Labratories  (Gilroy, 
CA) and were approved by Oregon State University’s 
(OSU) institutional animal care and use committee. In 
all experiments prior to intranasal  infection, mice were 
anesthetized by intraperitoneal injection of 67 mg/kg 
ketamine and 4.5 mg/kg xylazine.

Virus and bacteria
Influenza A/PR/8/34 (H1N1) was obtained from ATCC 
and grown in MDCK cells in virus growth medium 
consisting of MEM supplemented with 100 U/ml 
penicillin, 100 µg/ml streptomycin, and 1.0 µg/ml 
TPCK treated Trypsin (Sigma-Aldrich, St. Louis, 
MO). Virus was harvested two days  post- infection 
and stored at −80 °C for future use. Virus was titered 
by standard plaque assay on MDCK cells. S. aureus 
was obtained from Dr. Linda Bruslind, OSU and was 
grown in LB broth and titered.

Infections
Forty, six-week old, Balb/c mice were split equally 
into four treatment groups and infected  intranasally 
with 50 µl of phosphate buffered saline (PBS) con-
taining the infectious agents. Group 1 (G1) received 
2 × 103 PFU Influenza A/PR/8/34 (H1N1). Group 2 
(G2) was co-infected with both 2 × 103 PFU Influenza 
A/PR/8/34 (H1N1) followed by 1 × 106 CFU S. aureus. 
Group 3 (G3) received 1 × 106 CFU S. aureus. Finally, 
the control group, group 4 (G4) was uninfected and 
received only PBS. Urine was  collected at three and 
five days post-infection and blood was collected at 
five days post-infection.

Proteomics
Protein profiling for urine samples collected from 
the four treatment groups was conducted by Applied 
 Biomics (Hayward, CA). Samples were shipped to 
Applied Biomics on dry ice for 2D-DIGE. Briefly, total 
protein was extracted and labeled with Cy3 and Cy5 
dyes and run through isoelectric  focusing and sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis 
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(12% polyacrylamide; 0.1% SDS) (SDS-PAGE). Two 
samples and an internal control were run on each gel so 
expression differences could be examined between gels 
as well as within each gel by the in-gel Decyder analy-
sis software. Ratio change for differentially expressed 
protein spots between treatment groups was obtained 
and spots of interest were picked for identification by 
mass spectrometry. Protein identification was based on 
peptide fingerprint mass mapping (using MS data) and 
peptide fragmentation mapping (using MS/MS data). 
The MASCOT search engine was used to identify pro-
teins from primary sequence databases.

DnA-microarray analysis
Differential gene expression from blood samples 
was examined by DNA-microarray analysis using 
a standard Affymetrix Mouse GENE 1.0ST Array 
 (Affymetrix, Santa Clara, CA). Blood was collected 
at day five post infection with 50 µl of blood each 
from two animals  collected in one Qiagen RNApro-
tect Animal Blood Tube (Qiagen, Valencia, CA). 
Total RNA was extracted using the Qiagen RNeasy 
Protect Animal Blood Kit. Microarray assays were 
performed in the Center for Genome Research and 
Biocomputing Core Laboratories at  Oregon State 
University. Briefly, labeled target cDNA was pre-
pared from 125 ng mouse blood RNA samples using 
the NuGen Applause WT-Amp ST RNA amplification 
system kit protocols (NuGEN  Technologies, Inc., San 
Carlos, CA) and the Encore module V2.  Fragmented 
cDNA in the amount of 2.05 µg was hybridized to 
the affymetrix array. Cartridge arrays protocols 
were followed for washing, staining and scanning of 
Genechips. Image processing and data extraction was 
performed using AGCC software version 3.0. A total 
of eight chips with two replicates per treatment group 
consisting of four pooled mice each, with the excep-
tion of only two pooled mice in a replicate of the co-
infection treatment group (G2), were analyzed for 
expression differences using the Array Star software.

Results
Proteomics
The goal of this preliminary study was to identify 
 potential candidate blood and urine biomarkers for 
future testing. From urine samples, proteomic  analysis 
highlighted several proteins differentially regulated in 
the co-infection group compared to each other treatment 

group. A ratio of fold change in expression between 
groups was compared for the co-infection group against 
each other treatment group. The control group was 
compared as well to each of the groups representing a 
single infection. In addition, single infections were also 
compared. The single infection with influenza (G1) 
compared to uninfected control group (G4) yielded 
85 spots with a fold change baseline of $4. The single 
infection of S. aureus (G3) compared to G4 showed 
49 spots with a fold change $3. Co-infection group 
(G2) compared to G4 resulted in 106 spots $4 fold 
change while G1 and G3 compared to G2 resulted in 40 
and 95 spots with $2.5 or 4 fold, respectively.

Twelve of the 201 spots (Fig. 1) showing the 
unique characteristic of having differential  expression 
over the set baseline for the co-infection group com-
pared to each of the other treatment groups were 
then picked for further analysis and identification. 
These criterions were established as an ideal char-
acteristic for a protein to be a useful biomarker for 
co-infection, because a protein ideally would show 
a high  expression change in co-infection compared 
to an individual uninfected or infected with a single 
 pathogen of interest. Of the 12 spots identified using 
mass  spectrometry, 11 proteins showed high confi-
dence in the protein identification (Table 1).

Microarray analysis
Microarray analysis (Table 2) highlighted several 
genes of interest as potential biomarkers for validation 
in the future. Fold change was analyzed between the 
co- infection group and the other three treatment groups. 

Figure 1. 2D-DIGE gels: Location of spots picked for identification by mass 
spectrometry on the image overlay of the two 2D-DIge gels. Image on left 
is the overlay of gel images from treatment group, G1 (influenza) and G2 
(co-infection). green represents labeled proteins from g1 and red repre-
sents those labeled from g2. The image to the right is the overlay of gel 
images from the gel with treatment groups, g3 (S. aureus) and g4 (PBS). 
green represent proteins from g3 and red those from g4.  Imaging soft-
ware was used to compare intensities, fold changes were calculated and 
the 12 spots highlighted above were  chosen for  downstream analysis.
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After removing genes with unknown annotation, eight 
genes of interest were identified as having expression 
at least 3-fold lower in the co-infection group over the 
three other groups, and 26 genes showed expression at 
least 2-fold lower in the co-infection group, not includ-
ing the eight showing a 3-fold difference. A total of seven 
genes showed expression levels at or above a 2-fold 
increase in co-infection group compared to all three 
remaining treatment groups, and three genes showed 
variable expression in the treatment groups when com-
pared to the co-infection group. Serine (or cysteine) pep-
tidase inhibitor, clade G had expression values for the 
co- infection group over 2-fold higher than that of the 
 control-uninfected group but had co-infection expression 
values at least 2-fold lower than that of those in either 
of the single infection groups. Two genes, stefin A1 and 
stefin A2, showed expression values for the co-infection 
to be at least 2-fold greater than the single infection with 
S. aureus and the control-uninfected groups, but was at 
least 2-fold less than the expression for the single infec-
tion with the influenza virus PR8/34 (H1N1). While there 
were a number of differentially expressed genes identi-
fied through the microarray, none of these genes showed 
a statistically significant difference by a student’s t-test 
comparing the co-infection group to each of the other 
treatment groups. This is somewhat anticipated due to 
the level of pooling and low number of replicates.

Discussion
In this preliminary study, we have identified a number 
of candidate blood and urine biomarkers for the iden-
tification of a co-infection of influenza and S. aureus. 
Due to the restraints of a pilot study, we were unable to 
include adequate numbers of mice for sufficient statisti-
cal power. However, these results are still valuable in 
guiding our future work of validating the candidate bio-
markers in a larger study. A serine (or cysteine) peptidase 
inhibitor was identified in both the proteomic and gene 
analysis portions of our study and may be of particular 
interest to look for in the future. Several of the proteins 
 identified from urine samples showing differential reg-
ulation have demonstrated functions in viral  infections/
immunity. EGF protein, serine peptidase inhibitor, 
complement factor D, Ly-6C, and the S100 calcium 
binding protein A9 are all thought or have been shown 
to play a role in immune functions during infection.10–15 
Ly-6C, for example, is a family of murine glycoproteins 
that are mainly expressed by cells of  hematopoietic 
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 lineage including mature CD8+ T cells.12 The calcium 
binding protein A9 has been shown in previous stud-
ies to be elevated systemically in patients with viral 
infections and is thought to possibly contribute to viral 
persistence for some RNA viruses.13 Several genes 
including albumin and cytochrome P450 were found to 
have quite high fold changes in expression in the co- 
infection group compared to the other treatment groups.
Following further studies, these or other genes identi-
fied in Table 2 may prove to be useful targets for a bio-
marker. The candidate biomarkers from this study after 
validation in a larger study would be potentially useful 
in a clinical setting to determine individuals co-infected 
with influenza virus and S. aureus. As co-infections 
arise more frequently, the identification of a biomarker 
would be invaluable for early detection of the respira-
tory disease and prompt treatment of co-infected indi-
viduals, and would hopefully save time, resources, and 
lives due to complications of an influenza and S. aureus 
co-infection. In future, it will be necessary to show sta-
tistically which if any of these possible markers may be 
of use as a biomarker of infection and at which stage of 
infection such a biomarker would be helpful in deter-
mining if a co-infection is occurring within a patient. 
Identification of biomarkers for MRSA co-infections 
would also be a useful avenue of future work that might 
have a beneficial purpose in a clinical setting.
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