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Abstract: The thienopyridine antiplatelet agent clopidogrel is an effective drug for the prevention of vascular events. However, data 
has accumulated over time to suggest it is prone to significant interpatient variability. While there are several factors that contribute to 
this, one of the most important is variability in forming the active metabolite necessary for clopidogrel function. Several enzymes are 
involved in formation of this metabolite, and two, CYP2C19 and P-glycoprotein, appear to have alleles that both occur frequently in the 
population and have a clinically significant impact. Patients carrying these alleles can be identified, but it remains to be determined if 
this information is necessary or sufficient for risk stratification. Furthermore, if patients with high-risk alleles are identified, it is unclear 
how treatment should be adjusted.
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Introduction
Clopidogrel has become one of the cornerstone drugs 
in the treatment of atherosclerotic disease. Use of this 
antiplatelet agent, as monotherapy, is recommended 
for prevention of myocardial infarction in high risk 
patients (eg, patients with a history of myocardial 
infarction (MI), stroke, or peripheral artery disease), 
as well as for secondary prevention of strokes.1–3 Its 
use, in conjunction with aspirin, is recommended to 
prevent acute coronary events in patients with recent 
stent placement or recent acute coronary syndrome.4,5 
It is one of the most prescribed drugs in the world. Yet 
it does not work for everyone.

Some patients who receive clopidogrel  nonetheless 
experience acute thrombotic events. In randomized 
controlled trials, patients undergoing PCI who receive 
both clopidogrel and aspirin still have an incidence of 
cardiovascular death, MI, or stroke in the next year 
of approximately 9%.6 It is, of course, unreasonable 
to expect a drug to work perfectly. However, the 
potentially fatal consequences of clopidogrel failure 
have lead researchers to investigate the reasons why 
the drug might fail. This has resulted in the concept of 
clopidogrel resistance.7,8

Unfortunately, there is no single, standard definition 
of clopidogrel resistance. Some limit their discussion 
to the aforementioned treatment failures, clinically 
 significant endpoints that occur in patients taking 
 clopidogrel. Others use the term to refer to ex vivo 
 studies demonstrating that clopidogrel  suboptimally 
inhibits platelet aggregation in certain patients, as mea-
sured in a variety of assays.  Regardless of the approach, 
investigators have proposed numerous risk factors for 
poor outcomes in patients prescribed clopidogrel.

One of the factors identified as increasing risk for 
therapeutic failure is genotypic variation.  Several 
 different genes are involved in the processing of 
clopidogrel, and genotypic variation of these is thus 
a potential source of phenotypic variation. This 
 article will review what is known about the effects of 
 genotypic variation on clopidogrel activity, and what 
options are available when genotypic variations are 
found in a patient.

Metabolism and Mechanism  
of clopidogrel
Clopidogrel is a thienopyridine pro-drug that requires 
bioactivation before it can achieve its antiplatelet 

effects9 (Fig. 1). Absorption of clopidogrel in the gut is 
opposed by the efflux pump P-glycoprotein, encoded 
by the ABCB1 gene. Once absorbed,  approximately 
85% of the drug is converted to an inactive metabolite 
by the action of esterases. The remaining 15% must 
undergo a two-step transformation process to become 
active. The first step produces 2-oxo- clopidogrel, 
and is catalyzed in varying proportions by the 
 cytochromes CYP2C19, CYP1A2, and CYP2B6. The 
second step, which produces the reactive metabolite, 
can be catalyzed by CYP3A4/5, CYP2B6, CYP2C19, 
or CYP2C9.

The reactive metabolite irreversibly binds to the 
P2Y12 receptor on the surface of platelets,  inhibiting 
its activation for the life of the platelet. The P2Y12 
 receptor normally binds adenosine diphosphate 
(ADP), and this interaction is one of the central events 
in  platelet activation.10 ADP binds both the P2Y1 and 
P2Y12 receptors. Stimulation of the  former initiates 
platelet aggregation by activating the  glycoprotein 
(GP) IIb/IIIa complex, but only weakly and  transiently. 
Stimulation of P2Y12 by ADP  amplifies the response, 
by not only potentiating the GP IIb/IIIa activation but 
also stimulating release of dense granules from the 
platelets. These granules contain more ADP, as well as 
other moieties that further activate GP IIb/IIIa. When 
GP IIb/IIIa is activated, it binds  soluble  fibrinogen and 
von Willebrand factor,  triggering aggregation. The net 
effect is that, while P2Y12 activation is not obligately 
required for  platelet activation, blocking ADP  binding 
of P2Y12 with clopidogrel does markedly reduce acti-
vation and subsequent platelet aggregation.

Genomic Variants and clopidogrel
With the multiple enzymes involved in  absorption and 
activation of clopidogrel, it is perhaps  unsurprising 
that there is significant population variation in the 
response to clopidogrel. Multiple enzymes  provide 
multiple opportunities for genomic  variation.  However, 
 variants in most potential metabolic enzymes, such 
as CYP3A4, CYP3A5, CYP1A2, CYP2B6, as well as 
genes for target proteins, such as P2RY12 (the gene 
for P2Y12) and ITGB3 (the gene for GP IIb/IIIa) have 
yielded little effect on either cardiovascular events 
or on platelet responsiveness when studied.11–13 Still, 
variants in two other enzymes, CYP2C19 and ABCB1, 
have suggested a potentially significant impact on 
clopidogrel efficacy.
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Americans or Caucasians. As a consequence, Asians 
are much more likely to be poor metabolizers of 
clopidogrel.

The presence of variability in response to 
 clopidogrel as measured by platelet aggregation in 
response to ADP was first demonstrated by  Gurbel, 
et al.7 In this study, 15%–31% of patients could be 
described as clopidogrel resistant, depending on 
the duration of therapy. They did not attempt to 
 ascertain why the patients had a suboptimal response. 
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Figure 1. Activation and mechanism of action of clopidogrel. Orally administered clopidogrel is absorbed in the intestine. The efflux pump P-glycoprotein 
(P-gp) can return some of the clopidogrel to the intestinal lumen. Once absorbed, much of clopidogrel is inactivated through the action of esterases in the 
liver. The remaining clopidogrel is activated via a two step process, catalyzed by several different cytochrome P450 (CYP) enzymes. The active metabolite 
will irreversibly bind the P2Y12 receptor on the surface of platelets, inhibiting platelet aggregation for the life span of the platelet.

CYP2C19
Over 20 allelic variants of CYP2C19 have been 
identified.14 The wild-type allele, following  typical 
nomenclature, has been classified CYP2C19*1. 
The most common nonfunctional alleles include 
CYP2C19*2, and CYP2C19*3. Most of the other 
alleles reported are very rare and minimally func-
tional at best. However, another common allele, 
CYP2C19*17, has been recently described. It is a 
gain-of-function allele, meaning it is associated with 
increased enzymatic activity. Specifically, this  latter 
allelic variant is located upstream of the  coding 
region, and is thought to increase the efficiency of the 
gene’s transcription. All of these alleles display con-
siderable inter-ethnic variation15–18 (Table 1). Taken as 
a whole, Asians have a higher probability of  carrying 
a  loss-of-function allele and a lower  probability of 
carrying a gain-of-function allele than either African 

Table 1. Allelic frequency of common CYP2C19 variants 
by race.

Race *1 *2 *3 *17
African 60%–64% 17%–20% ,1% 18%
Asian 58%–61% 30%–35% 5%–10% 2%–4%
Caucasian 63%–69% 13%–18% ,1% 18%–20%
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 Subsequently, many groups did attempt to address 
that question. CYP2C19 loss-of-function alleles 
were first associated with poor clopidogrel respon-
siveness in 2006.19 Hulot, et al. treated 28 healthy 
patients with clopidogrel 75 mg daily for one week. 
The ability of each patient’s platelets to aggregate 
in the  presence of 10 µM ADP was measured daily. 
Twenty of these patients had the wild-type allele, 
while 8 were heterozygous for the CYP2C19*2 
allele. The 8  carriers of the nonfunctional allele on 
average did not achieve reduced platelet aggrega-
tion during the week of treatment with clopidogrel, 
whereas the wild-type homozygotes did. These 
results have since been replicated in a wide variety of 
patient populations, with differing acuity, and using 
several different assays.

One study of note was that of Kim, et al.20 The 
authors measured circulating clopidogrel levels in 
three different groups of eight Korean patients. Spe-
cifically, they compared wild-type CYP2C19 homozy-
gotes (*1/*1) with heterozygotes (*1/*2 or *3) and 
with patients homozygous for nonfunctional alleles 
(*2/*2 or *3). The authors noted a gene dose effect 
in the ability to metabolize a loading dose of clopi-
dogrel, with the nonfunctional homozygotes having 
2.9 fold higher area under the curve (AUC) of the par-
ent  compound than those carrying the wild-type allele, 
and 1.9 fold higher AUC than those  heterozygous 
for the allele. This then translated into a differential 
 efficacy, with nonfunctional  homozygotes having 30% 
and 37% less platelet inhibition after a week of main-
tenance clopidogrel treatment than the heterozygotes 
and wild-type homozygotes,  respectively. Shuldiner, 
et al. corroborated these findings in an Amish 
 population.21 In this study, CYP2C19*2 homozygotes 
(n = 9) had 35% and 42% less platelet inhibition than 
heterozygotes (n = 132) and wild-type homozygotes 
(n = 288), respectively, in response to a week of 
maintenance therapy with clopidogrel.  Furthermore, 
through multivariate  analysis, the authors concluded 
that the CYP2C19*2 allele accounted for 12% of the 
clopidogrel variation observed in that population.

In contrast to their findings with the CYP2C19*2 
allele, Shuldiner’s group noted that carriage of the 
CYP2C19*17 allele did not have an effect on  platelet 
inhibition when compared with the  wild-type. 
 However, Sibbing, et al. did find a gene-dose depen-
dent effect of the *17 allele.22 They genotyped 

1524 patients who were to receive elective coronary 
stent placement as treatment for their coronary artery 
disease. Blood was sampled after a 600 mg loading 
dose of clopidogrel. Patients homozygous for the *17 
allele (n = 76) inhibited platelet aggregation more 
than those heterozygous for the allele (n = 546), who 
in turn had greater inhibition than wild type (n = 902). 
Possible reasons for the discordant results include the 
use of different assays to measure platelet inhibition, 
the use of different dosing regimens or differing dis-
ease state severity in the populations.

While effects on platelet aggregation assays 
are informative, these do not necessarily equate to 
 clinical events. As a result, this has been a topic of 
considerable investigation. Two recent  meta-analyses 
have looked at the aggregate data concerning the 
CYP2C19*2 allele.23,24 They both concluded that 
 carriage of the nonfunctional allele was associated 
with an increased risk of a major adverse cardiovas-
cular event (MACE), with an odds ratio (OR) ranging 
from 1.29 to 1.96. Both meta-analyses also addressed 
stent thrombosis, with ORs for this event ranging 
from 3.45 to 3.82. One of the meta-analyses also 
suggested a gene-dose dependence on the adverse 
events. Specifically, heterozygotes for the *2 allele 
had ORs of 1.59 (95% CI; 0.88–2.88) for MACE and 
3.34 (95% CI; 1.84–5.93) for stent thrombosis when 
compared to patients with homozygous *1 alleles. 
Homozygotes of *2 had ORs of 2.05 (95% CI; 1.15–
3.63) for MACE and 4.68 (95% CI; 1.55–14.11) for 
stent thrombosis.

Since the publication of these meta-analyses, 
two further substudies from large randomized tri-
als have been published. In a substudy of the 
PLATO trial,25 patients with any loss-of-function 
allele who received clopidogrel had a higher risk 
of cardiovascular death, myocardial infarction, or 
stroke than those  without a loss-of-function allele 
(11.2% vs. 10%). This  difference was not statistically 
significant, though (P = 0.25). If limited to only the 
first 30 days, the difference was significant (OR 1.37, 
95% CI; 1.04–1.82). The second study26 genotyped 
patients from two large trials, one targeting patients 
with acute coronary syndromes27 and the other 
patients with atrial fibrillation.28 In neither instance 
did the  presence of loss-of-function alleles result in 
worsened outcomes while receiving clopidogrel when 
compared to those without loss of function alleles. 
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Even patients homozygous for  loss-of-function alleles 
did not seem to be at increased risk of clopidogrel 
 failure. The reasons why the second study would 
have such starkly different outcomes when compared 
to the other trials are not  immediately obvious. The 
authors did state that the rates of PCI were very low 
in these trials, relative to the other trials. Also, much 
of the data in the meta-analyses come from cohort 
studies. The lack of a placebo arm in those studies 
could yield some confounding. Still, when taken as 
a whole, it is not unreasonable to  conclude that the 
presence of  loss-of-function alleles, especially when 
homozygous, does impart some increased chance of 
adverse clinical events in high-risk patients taking 
clopidogrel.

There are fewer studies that address gain-
of-function polymorphisms at the clinical level. Just 
as Sibbing, et al. found an increased effect of the *17 
allele on platelet inhibition, as described above, they 
also found an increased risk of bleeding.22  However, 
they did not see any effect on clinical events. 
Similarly, Wallentin, et al. found an increased risk of 
bleeding in acute coronary syndrome patients with 
the presence of a gain-of-function allele without any 
change in subsequent clinical event rate.25 In contrast, 
Pare, et al. reported an improvement in clinical event 
rates in patients carrying the *17 allele, without any 
increase in bleeding rate.26 Tiroch et al. also suggested 
reduced target lesion revascularization and MACE 
incidence in acute MI patients who were carriers of 
the *17 allele, though they did not attempt to address 
bleeding risk.29 Thus, once again, we cannot draw 
hard conclusions as to whether the allele is beneficial 
or detrimental, but some caution seems advisable.

ABCB1
The ABCB1 (ATP-binding cassette B1) gene encodes 
the efflux pump, P-glycoprotein, also known as MDR1 
(multi-drug resistance 1 protein). It is expressed in 
several tissues throughout the human body, and is a 
member of a large family of transporter genes, who 
all have broad substrate specificity. Together, they are 
thought to help protect the body from a wide variety 
of xenobiotics. Pathophysiologically, this gene can 
be overexpressed in many cancer cells, resulting in 
resistance to many chemotherapeutic agents.

Over 50 different polymorphic sequences have 
been identified in the ABCB1 gene.30 However, none of 

these are nonsense mutations. Thus all yield full length 
proteins. The best studied mutation is a shift from C to 
T at position 3435. This particular polymorphism, 
like CYP2C19, displays considerable inter-ethnic 
variation31,32 (Table 2). This is a synonymous mutation, 
meaning that the protein sequence is unaffected by the 
change in mRNA sequence. Studies to date have been 
conflicting, but overall suggest no significant differ-
ences in the amount of protein synthesized when either 
allele is translated.33 Similarly, there are conflicting 
data regarding mRNA expression and/or stability, 
but the overall evidence suggests these are unlikely 
to result in clinically different effects for the two 
alleles.33 Thus, it is quite unclear why there should be 
any clinical difference based on this polymorphism. 
Still differences have been observed.

Taubert, et al. investigated the effect of the variant 
alleles on the circulating levels of clopidogrel and 
its active metabolite.34 Sixty patients undergo-
ing PCI were randomized to receive 300, 600, or 
900 mg loading doses of clopidogrel. Those patients 
who were homozygous for the 3435T allele had 
lower concentrations of both the parent and active 
metabolite of clopidogrel than carriers of the 3435C 
allele, unless a 900 mg loading dose was used. Thus, 
one would expect impaired platelet reactivity and 
worse clinical outcomes as a consequence. Spiewak, 
et al. did demonstrate an increased likelihood of an 
impaired platelet response to clopidogrel among 
those acute coronary syndrome patients who were 
3435T homozygotes when compared to carriers of 
3435C, but did not observe any difference in clini-
cal outcomes.35 However, a substudy of the TRITON-
TIMI 38 trial, which also enrolled patients with acute 
coronary syndrome undergoing PCI, did report an 
increased risk of cardiovascular death, MI or stroke 
in 3435T homozygotes when compared to 3435C 
 carriers (OR 1.72, 95% CI; 1.38–2.82).36 Interest-
ingly, the FAST-MI investigators also reported an 
increased risk of cardiovascular death, MI, or stroke 

Table 2. Allelic frequency of common ABCB1 variants by 
race.

Race 3435c 3435T
African 79% 21%
Asian 58% 42%
Caucasian 45% 55%
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among 3435T homozygotes when compared to 3435C 
homozygotes.12 However, they reported that 3435CT 
heterozygotes also had increased risk relative to 
3435C homozygotes. This is the  opposite  conclusion 
that the TRITON-TIMI 38 substudy observed. If 
this weren’t confusing enough, both Wallentin, et al. 
and Tiroch, et al. reported there was no effect of 
carrying the 3435T allele, either homozygously or 
 heterozygously, on clinical endpoints.25,29 There are 
no immediately obvious reasons for the discrepant 
results. However, they are in keeping with the often 
contradictory results obtained in laboratory investiga-
tions of this polymorphism.

non-Allelic Variation of enzymes
Even if a patient has wild-type genes, activity of these 
genes can be modulated in multiple ways. Gremmel, 
et al. demonstrated that patients age 75 and older 
had higher incidences of residual platelet activity on 
clopidogrel than younger patients.37 They postulated 
that this could be secondary to generally reduced 
cytochrome oxidase activity, yielding a lower amount 
of the active metabolite. Likewise, end stage liver 
disease would be expected to reduce cytochrome oxi-
dase levels and thus also significantly diminish the 
patient’s capacity to metabolize clopidogrel.

We can also modulate metabolic enzyme  activity 
through use of concomitant medications. In fact, 
drug-drug interactions could unmask subtle effects 
of allelic polymorphisms. An example of such has 
been reported with CYP3A5. Suh, et al. reported 
that homozygotes for a poorly functional allele, 
CYP3A5*3, did not display any difference from 
noncarriers in platelet response to clopidogrel under 
baseline conditions. However, when these patients 
were given itraconazole, a potent CYP3A4  inhibitor, 
clopidogrel’s platelet inhibition was markedly 
reduced in the homozygotes, but unchanged in the 
noncarriers.38

The drug interaction that has far and away gener-
ated the most discussion and investigation is the inhi-
bition of CYP2C19 by proton pump inhibitors (PPIs). 
In 2008, the American College of  Gastroenterology, 
American College of Cardiology, and  American 
Heart Association issued a consensus document 
that recommended the use of PPIs if patients were 
using dual antiplatelet therapy in order to reduce 
GI bleeding complications.39 That same year, the 

OCLA (Omeprazole CLopidogrel Aspirin) study 
was  published,  describing how concurrent use of 
omeprazole significantly diminished clopidogrel’s 
platelet inhibition.40 Since then, there has been a 
nearly constant barrage of studies on the topic, much 
of it contradictory.41 Reflecting the changing nature 
of the data, there have been four label changes to the 
Plavix® package insert in that time span. The most 
recent, and probably most applicable, data come from 
the COGENT trial.42 In this trial, 3761 patients were 
all treated with dual antiplatelet therapy, and then 
randomized to receive omeprazole or placebo. Use 
of omeprazole significantly reduced GI endpoints 
(OR 0.34, 95% CI; 0.18–0.63), without any apparent 
increase in cardiovascular events (OR 0.99, 95% CI; 
0.68–1.44). The trial was stopped early due to fund-
ing issues, and did not utilize cardiovascular end-
points for their primary goals, but it does represent 
the largest trial to address the issue in a randomized 
fashion. Regardless, this topic will remain controver-
sial for some time.

One issue yet to be investigated well is the effect 
of PPI therapy on clopidogrel action in patients with 
genomic polymorphisms. While some may assume 
inhibitory effects would be additive, the converse is 
more likely. If a patient expresses a nonfunctional 
protein, it cannot be further inhibited. Thus, it will be 
interesting to see if heterozygotes, wild-type patients, 
or gain-of-function carriers might have differential 
inhibitory effects in the presence of PPIs.

coping with Genomic Variation
It is clear that patients with nonfunctional alleles 
have increased risk of residual platelet activity and 
of  cardiovascular events, especially stent thrombosis. 
Patients with gain-of-function alleles may have reduced 
clinical events, but seem to have an increased risk of 
bleeding. What is less clear is whether obtaining the 
genotype of all potential patients, or even a  significant 
subset, offers enough  information to  justify the costs 
involved. Genomic tests are  expensive, ranging 
from $300–$500 per test, and typically not covered 
by insurance.  Furthermore, they are not amenable 
to  simple point-of-care  analysis. The fastest of the 
current assays require at least a few hours to deliver 
results. Thus, any patient who requires clopidogrel 
acutely, such as during an emergent PCI, will not be 
able to obtain the results before initiating therapy.
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Even for patients for whom time is not an issue, the 
relative importance of the information can be debated. 
As stated above, the CYP2C19*2 allele could only 
explain 12% of the variation in platelet  reactivity.21 
While several commercial assays do check for other 
loss-of-function alleles, few of the current assays 
detect the CYP2C19*17 allele and none detect the 
ABCB1 variants. Genotyping also has generally weak 
predictive ability. Hochholzer et al. reported that 
CYP2C19*2 carrier status was only 45% sensitive, 
and 75% specific for detecting high residual  platelet 
activity. In fact, 53.3% of CYP2C19*2 homozy-
gotes had normal platelet reactivity, and 22.4% of 
CYP2C19*1 homozygotes had impaired platelet 
 reactivity.43 Thus, empiric strategies based solely on 
genotype could potentially alter therapy unnecessarily 
or fail to appropriately alter therapy, increasing risk 
of bleeding or clinical events.

It is clear that factors independent of the amount 
of active clopidogrel also have a large impact on 
the  phenotypic endpoint of platelet aggregation. For 
 example, type 2 diabetic patients are much more prone 
to having impaired platelet response to  clopidogrel 
when compared to nondiabetic patients.43,44 The 
underlying reasons are probably multifactorial. Insu-
lin resistance is associated with increased platelet 
reactivity. Likewise, obesity is highly prevalent in 
diabetics and has been shown independently to impair 
response to antiplatelet agents. Finally, elevated 
 levels of pro-inflammatory mediators are common in 
diabetics, and are associated with increased platelet 
activation.

One other nongenotypic factor in determining 
 clopidogrel effect worth mentioning is noncompliance. 
In a post-hoc analysis, Serebruany, et al. measured the 
levels of the main inactive metabolite of clopidogrel 
in over 600 patients ostensibly taking clopidogrel in 
the course of various clinical trials.45 Based on low 
levels of the detected metabolite, 22% of patients 
were classified as noncompliant. Obviously this 
does not explain away all clopidogrel resistance, as 
many studies have been done with directly observed 
loading doses. However, given the magnitude of the 
impact of premature discontinuation of clopidogrel 
on stent thrombosis (OR up to 57) and mortality (OR 
up to 9.0), noncompliance may dwarf any impact of 
genomic variation.46,47 If nothing else, any alternative 
strategy to normal clopidogrel dosing in order to deal 

with genomic variation requires patient compliance. 
Thus, the importance of compliance must be clearly 
stated to patients and reinforced at intervals.

Taking all of this information together, the use 
of genotyping as the sole factor in determining a 
patient’s risk for subsequent cardiovascular events 
does not seem justified. There are those who would 
argue that relying on the phenotypic endpoint of 
platelet inhibition would be a preferable strategy. 
These ex vivo assays are much cheaper and faster 
than genotyping, and theoretically should take into 
account both genotypic and clinical influences on 
platelet aggregation. However, there are several dif-
ferent assays available, some performed under a 
variety of conditions. Each assay measures, and is 
sensitive to, different aspects of the cascade of events 
associated with platelet activation. Historically their 
results have been presented in a wide variety of man-
ners, eg, absolute percent reduction in platelet inhi-
bition by clopidogrel when compared to baseline, 
relative percent reduction by clopidogrel, or residual 
platelet function after clopidogrel treatment. Only 
recently has the latter example, on-treatment platelet 
reactivity, come to be seen as the preferred measure 
for clinical purposes. A meta-analysis by Aradi, et al. 
reported that high on-treatment platelet reactivity was 
associated with a 3-fold increase in MI and a 4-fold 
increase in stent thrombosis.48 In part because of the 
lack of consensus, there have been few direct com-
parisons to see if any of the methods is superior to 
the others. To date, the best comparative evidence 
comes from the POPULAR study.49 In this study, high 
on-treatment platelet reactivity as measured by light 
transmittance aggregometry assays, the VerifyNow 
assay, and the Plateletworks assays all were able to 
predict the likelihood of a patient suffering death, MI, 
stent thrombosis, or stroke. The predictive accuracy 
was similar between the assays and modest, and none 
could predict the likelihood of bleeding. In contrast, 
Sibbing et al. did suggest that the Multiplate analyzer 
test could predict both stent thrombosis and  bleeding.50 
The authors did not compare this assay against oth-
ers simultaneously to determine relative predictive 
 ability. However, based on these results and those of 
several others using different assays, a working group 
has proposed a series of standardized cut-off values 
for most of the commonly used assays.51 Thus, we 
are only now arriving at a point where we can rely on 

http://www.la-press.com


Terpening

124 Clinical Medicine Insights: Cardiology 2010:4

the risk assessment by the platelet assays. That said, 
the positive predictive power of these assays are uni-
formly low. It has been suggested that combining the 
predictive power of genotyping and phenotyping may 
improve overall risk assessment.52 This seems the most 
probable way for genotyping to be routinely used.

The major drawback to both genotyping and plate-
let assays is that we don’t know how to alter treatment 
to account for the results. Several options have been 
proposed over time. In broad categories, they include 
1) altering clopidogrel dose, 2) adding another agent 
(triple therapy), or 3) switching to a different drug 
(Fig. 2). Most of these strategies have not been assessed 
in terms of clinical outcomes, focusing instead on sur-
rogate markers of platelet aggregation. A fourth strat-
egy is sometimes overlooked, not using clopidogrel 
at all. Clopidogrel is sometimes inappropriately used 
for primary prevention or long-term secondary pre-
vention of cardiac events. With the exception of use in 
the aspirin allergic patient, neither indication is sup-
ported by clinical evidence or guideline.

Several studies have investigated alterations of 
clopidogrel dosing. A randomized short-term doubling 
of the clopidogrel dose in all patients was tested in 
the CURRENT-OASIS 7 trial, alongside doubling the 
aspirin dose. In the population as a whole, there was 
no benefit to doubling either clopidogrel or aspirin, 
though there was an increase in bleeding rates with 
high dose clopidogrel.53 If one looked only at those 

undergoing PCI, there did appear to be a small benefit 
from a 600 mg loading dose, followed by six days 
of 150 mg clopidogrel.54 However, this too came at 
the cost of increased bleeding. The findings of  benefit 
from a doubled loading dose are in  keeping with a 
prior meta-analysis.55 However, they still suggest 
that a “one size fits all” strategy comes with trade-
offs, increased benefit with increased risk. Some 
investigators have tried to determine if an altered 
loading dose of clopidogrel can help those patients 
carrying loss-of-function genotypes. In a substudy 
of the PRINC trial, a higher loading dose of clopi-
dogrel improved platelet inhibition as measured by 
the VerifyNow analyzer in carriers of loss-of-function 
alleles.56 Likewise, a higher maintenance dose for 
one week helped maintain platelet inhibition in these 
 carriers. Bonello, et al. also reported that repeated 
loading doses of clopidogrel could help most patients 
carrying the CYP2C19*2 allele to overcome high on-
treatment platelet reactivity, as measured by the VASP 
assay.57 However, neither study investigated long-
term clinical outcomes. While there are several trials 
underway to repeat the above findings on platelet inhi-
bition in a variety of populations and with a variety 
of assays, and a few clinical outcomes trials testing 
dosing strategies based on high on-treatment platelet 
reactivity (see Holmes, et al,58 for a discussion), there 
are only two current trials testing the effect of alter-
nate dosing guided by genotype on clinical outcomes, 

Altered Clopidogrel Dose
Repeat loading dose until satisfactory platelet reactivity
Empirically increase loading dose
Empirically increase maintenance dose (loss-of-function carriers/homozygotes)
Empirically reduce maintenance dose (gain-of-function carriers/homozygotes)

Triple therapy
Use of GP IIb/IIIa inhibitors during PCI
Add omega-3 fatty acids
Add cilostazol

Switch to different agent
Switch to prasugrel
Switch to ticagrelor

Figure 2. Treatment options for patients with genomic variant alleles.
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Genotyping Infarct patients to Adjust and Normalize 
Thienopyridine treatment [GIANT;  Clinicaltrials.gov 
identifier NCT01134380] and Thrombocyte Activity 
Reassessment and Genotyping for PCI [TARGET-
PCI; NCT001177592].

Some have advocated triple therapy as the norm, 
irrespective of genomic status. A meta-analysis of 
triple therapy found that use of GP IIb/IIIa inhibitors 
on top of dual antiplatelet therapy offered benefits in 
patients with acute coronary syndromes.59 However 
these offer no benefits in unselected patients over the 
long term, and oral versions caused an increase in 
mortality. Thus, it is unlikely there will future studies 
based on genotype. Another add-on that has been stud-
ied is omega-3 fatty acids. In the OMEGA-PCI trial, 
their addition to dual antiplatelet therapy did improve 
platelet reactivity and light transmission aggregometry 
compared to placebo in patients undergoing elective 
PCI.60 While they did genotype their patients, they did 
not report the results based on genotype. The number 
of patients was also too small to determine clinical 
outcomes. Thus, the overall benefits in patients with 
loss-of-function alleles remain mostly speculative. 
Finally, cilostazol has been well studied as an add-on 
agent to dual antiplatelet therapy. It has been shown 
to reduce restenosis when added to clopidogrel and 
aspirin in both bare metal and  drug-eluting stents.61 
However, it does remain a question whether or not it 
affects MACE. There is some registry data to support 
a positive effect,62 but not any prospective randomized 
trials to date. It is also an open question as to whether 
patients with different genotypic variants might 
have a greater benefit from cilostazol. CYP2C19 is 
involved in metabolizing cilostazol.63 Thus, carriers 
of loss-of-function alleles who might not benefit as 
much from clopidogrel, might have higher levels and 
larger effects from cilostazol. As with other options, 
there are no clinical data with dosing determined by 
genotype. However, there is at least one study com-
paring adding cilostazol to dual antiplatelet therapy 
against doubling the dose of clopidogrel in patients 
with and without CYP2C19 variants.64 In patients 
without loss-of-function alleles, there was no statis-
tical difference between the two strategies in terms 
of extent of platelet inhibition. In patients carrying 
at least one loss-of-function allele, cilostazol yielded 
greater platelet inhibition and lower rates of high 

on-treatment platelet reactivity than high-dose clopi-
dogrel. It is worth noting that much of the research 
involving cilostazol was conducted in Asian nations, 
in populations that have much higher incidences of 
the different CYP2C19 loss-of-function alleles. Thus, 
extrapolating the benefits to other populations may 
not be straightforward.

Recently, newer antiplatelet agents have been 
compared against clopidogrel. The only one  currently 
approved is prasugrel, also a thienopyridine. In the 
TRITON-TIMI 38 trial, prasugrel demonstrated 
superior reduction in ischemic events among acute 
coronary syndrome patients when compared to 
 clopidogrel.65  However, this came at the cost of increased 
bleeding, including major bleeding. The bleeding was 
most prominent in those over the age of 75, under 
60 kg, or with a history of stroke. As noted above, car-
riers of loss-of-function alleles of CYP2C19 or of the 
ABCB1 3435T allele had increased risk when treated 
with clopidogrel compared to noncarriers.11,36 No 
increased risk was documented when those same pop-
ulations received prasugrel.36,66 Sorich et al. took that 
published data and integrated it to yield a more direct 
comparison. They suggested that prasugrel offered 
a reduced incidence of cardiovascular death, MI, or 
stroke when compared to clopidogrel in carriers of 
CYP2C19 loss-of-function alleles (OR 0.57, 95% CI; 
0.39–0.83). In contrast, those without loss-of-function 
alleles had very similar results when compared to 
clopidogrel (OR 0.98, 95% CI; 0.80–1.20).67 They did 
not compare those with gain-of-function alleles.

A second drug under consideration by the various 
regulatory agencies around the world is ticagrelor. It is 
a direct, reversible P2Y12 receptor inhibitor. It too had 
reduced cardiovascular death, MI, or stroke when com-
pared to clopidogrel, but with overall similar bleeding 
rates.68 Ticagrelor was numerically better than clopi-
dogrel in both carriers and noncarriers of loss-of-function 
alleles, though the latter just missed statistical signifi-
cance.25 Thus, ticagrelor appears to be a very promis-
ing alternative. However, ticagrelor has additional side 
effects than we expect from antiplatelet agents. Its use 
resulted in significantly higher rates of dyspnea and bra-
dycardia, and elevations in uric acid. These may limit its 
use in populations such as those with chronic obstructive 
pulmonary disease or gout. Also, compliance may even 
be more of an issue with ticagrelor than with clopidogrel. 
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With its reversible receptor inhibition and twice daily 
 dosing, the risk of acute events may be higher with 
noncompliance.

Finally, with both new agents there are potential 
cost considerations. Prasugrel is more expensive 
than brand clopidogrel, and it is reasonable to expect 
that ticagrelor will be as well if approved. A modest 
cost differential may be worth it if one can achieve 
improved clinical outcomes. However, clopidogrel 
will become generic in the near future. Once it does, 
there may be a strong economic incentive to identify 
those patients who need the newer agents, and those 
who will do similarly on the older generic drug.

conclusion
There is strong evidence of genotypic variation in the 
metabolism of clopidogrel, and that this variation has an 
impact on the phenotypic result of platelet inhibition. The 
evidence also supports an association between genotypic 
variants and clinical efficacy of clopidogrel. However, 
many factors beside  genotype also influence clinical 
response. Consequently,  genotyping cannot be used in 
isolation for risk stratification purposes, especially as 
the relative impact of heterozygous versus homozygous 
carrier status remains quite unclear. Since genotyping 
is time and labor intensive, it is therefore also costly. 
Thus, there is debate as to whether the incremental 
improvement in risk stratification is economically via-
ble. The debate is complicated by the fact that we do 
not know how to alter treatment to account for genomic 
 variations. New treatment options, such as prasugrel 
or ticagrelor, may render the question moot. However, 
current  trials do not support unequivocal superiority of 
these agents, and a widening gap in acquisition costs 
may drive further efforts to define an optimal popula-
tion to receive clopidogrel. Obtaining this evidence may 
ultimately provide a rationale to perform genotyping on 
a more frequent, if still selective, basis.
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