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Abstract
Background: MammaPrint was developed as a diagnostic tool to predict risk of breast cancer metastasis using the expression of 
70 genes. To better understand the tumor biology assessed by MammaPrint, we interpreted the biological functions of the 70-genes and 
showed how the genes reflect the six hallmarks of cancer as defined by Hanahan and Weinberg.
Results: We used a bottom-up system biology approach to elucidate how the cellular processes reflected by the 70-genes work together 
to regulate tumor activities and progression. The biological functions of the genes were analyzed using literature research and several 
bioinformatics tools. Protein-protein interaction network analyses indicated that the 70-genes form highly interconnected networks and 
that their expression levels are regulated by key tumorigenesis related genes such as TP53, RB1, MYC, JUN and CDKN2A. The biologi-
cal functions of the genes could be associated with the essential steps necessary for tumor progression and metastasis, and cover the six 
well-defined hallmarks of cancer, reflecting the acquired malignant characteristics of a cancer cell along with tumor progression and 
metastasis-related biological activities.
Conclusion: Genes in the MammaPrint gene signature comprehensively measure the six hallmarks of cancer-related biology. This 
finding establishes a link between a molecular signature and the underlying molecular mechanisms of tumor cell progression and 
metastasis.
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Background
The MammaPrint assay was developed as a prognostic 
tool to predict the recurrence risk of breast cancer.1–3 
It has been validated in almost 1,600 patients 
(reviewed in4,5). The 70 genes that make up the Mam-
maPrint signature were selected from genome-wide 
expression data using a data-driven approach. This 
means that the genes were selected in an unbiased 
fashion; there were no predefined assumptions as to 
whether certain genes were more likely to be involved 
in the risk of development of distant metastases in 
patients with early stage breast cancer. This resulted 
in a set of 70 genes that was able to predict the risk of 
recurrence with a high sensitivity.

Functional annotation of the human genome has 
been greatly facilitated by the availability of new 
functional genetic approaches to study genes.6 To 
date, most of the 70 genes in the MammaPrint pro-
file have well-described biological functions. For the 
remaining genes, we can identify tentative functions 
and can only speculate about their respective roles 
in tumor progression and metastasis. It is reasonable 
to assume that MammaPrint genes whose function 
is not currently known will, nevertheless, be shown 
to have important roles in breast cancer biology. 
One such example is the gene MTDH, which was 
recently shown to be a key gene in the development 
of metastasis and to contribute to chemotherapy resis-
tance. The function of this gene in breast cancer was 
unknown at the time of MammaPrint development.7 
As such we anticipate that the tumorigenic role of 
additional MammaPrint genes of unknown function 
will be resolved in the coming years. Indeed, we have 
recently found that one such gene of unknown func-
tion in the 70 gene profile, TSPYL5, which is part of a 
small breast cancer specific amplicon,7 is a key nega-
tive regulator of the p53 tumor suppressor protein 
(R.B. unpublished data).

The fact that gene expression of the primary tumor 
can predict whether the tumor may metastasize indi-
cates that the metastatic potential is likely hardwired 
into the tumor cells at a relatively early stage during 
tumorigenesis and is preserved throughout tumor for-
mation and metastasis development.8–10 This process 
can be captured in the six steps that are referred to as 
the “hallmarks of cancer”, which reflect the acquired 
characteristics of a cancer cell. How and in what order 

tumor cells acquire these characteristics can differ, 
but ultimately all cancer cells need these characteris-
tics to successfully metastasize and proliferate.11

To address if the MammaPrint genes indeed cap-
ture these six steps, we examined the biological func-
tions of each of the 70 genes. Traditionally, annotation 
methods focus only on statistically enriched func-
tional categories in gene signatures. Although these 
categories can reveal major biological processes, 
they do not always result in a systematic understand-
ing on how all genes in a molecular signature work 
together. In this study, we used a bottom-up system 
biology approach that aims to reveal cellular pro-
cesses reflected by each single gene in MammaPrint 
and discover how the 70-genes work together to regu-
late tumor activities. With this knowledge, we inves-
tigated the underlying molecular mechanisms linking 
their biological function with the molecular biology 
of breast cancer metastasis.

Results and Discussion
The 70-gene profile covers  
the six hallmarks of cancer
The six hallmarks of cancer describe the acquired 
characteristics of a cancer cell that collectively dic-
tate malignant growth and thus reflect the potential 
of a tumor to metastasize.11 These six capabilities 
are shared by most (and perhaps all) types of human 
 cancer. In breast cancer, the 70 MammaPrint genes 
are predictive of metastasis development, and we set 
out to ask whether the biological properties of these 
genes are correlated with the six hallmarks of cancer 
(as illustrated in Fig. 1):
1. Evading apoptosis
2. Self-sufficiency in growth signals
3. Insensitivity to anti-growth signals
4. Limitless replicative potential
5. Tissue invasion and metastasis
6. Sustained angiogenesis

The hallmark avoiding apoptosis confers resistance 
towards programmed cell death. The major converg-
ing point of diverse apoptotic signals that a tumor 
cell may receive are the mitochondria. Mitochon-
drial death signals are governed by the BCL2 family 
of proteins that release cytochrome C and, in turn, 
activates caspases.12 Tumor cells can resist apoptosis 
amongst others by altering expression level of BCL2 
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or caspases associated proteins. This mechanism is 
represented by two of the MammaPrint genes (BBC3 
and EGLN1; Table 1).

The hallmark self-sufficiency in growth signals, 
refers to tumor cells’ reduced dependence on exog-
enous growth stimulations by generation of their own 
growth signals. This can be achieved by manipulat-
ing the level of growth factors and their receptors or 
by mutation/altered expression of signal transduction 
molecules. This characteristic behavior of tumor cells 
is captured by six growth factor associated genes in 
the MammaPrint profile (ESM1, IGFBP5, FGF18, 
SCUBE2, TGFB3, WISP1; Table 1). They represent 
the capability of tumor cells to manipulate different 
signaling pathways, such as the IGF-1 signaling path-
way, FGF signaling pathway, cell cycle G1/S check-
point regulation and Wnt/β-catenin signaling pathway. 
However, it should be emphasized that when various 
growth factors produced by tumor cells co-exist, the 

effect which results from their interplay within the 
microenvironment13 remains to be elucidated.

Equally important, is the hallmark labeled insen-
sitivity to anti-growth signals. This defines the 
capability of tumor cells to disrupt responses to anti-
proliferative signaling. A well-studied example is the 
disruption of growth inhibiting effect of TGFß during 
tumorigenesis.13 This pathway is represented by the 
TGFB3 gene in the MammaPrint profile.

The three hallmarks, evading apoptosis, self- 
sufficiency in growth signals and insensitivity to 
anti-growth signals, all lead to growth and prolif-
eration of tumor cells, regardless of the types of 
exogenous signals received from the tumor microen-
vironment.11 Although the biological processes by 
which normal cells acquire these three capabilities 
can be quite diverse, the biological features of pro-
liferation and oncogenic transformation are shared 
among malignant tumor cells (see Fig. 1). These 
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Figure 1. Depicted is how the genes in 70-gene tumor expression profile are involved in the six well-defined hallmarks of cancer, in tumor progression and 
metastasis related biological processes, as well as epithelial-mesenchymal transition. Adapted from cell, 100, hanahan D, Weinberg rA., The hallmarks 
of cancer, 57–70, copyright (2000) with permission from elsevier.
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Table 1. Biological function of MammaPrint genes and cancer hallmarks. MammaPrint genes are involved in all tumor 
 progression and metastasis-related biological processes, and cover the six well-defined hallmarks of cancer.

Hallmarks of cancer characteristic behavior  
of tumor cells

Gene name Gene description

evading apoptosis Acquire resistance to  
apoptosis

BBC3
EGLN1

BcL2 binding component 3
egl nine homolog 1

Insensitivity to anti-growth 
signals

Disrupt antigrowth  
signaling

TGFB3 transforming growth factor, 
beta 3

Self-sufficiency in growth 
signals

Altered expression  
of growth factors

ESM1 endothelial cell-specific 
molecule 1

IGFBP5 insulin-like growth factor 
binding protein 5

FGF18 fibroblast growth factor 18
SCUBE2 signal peptide, cUB domain, 

egF-like 2
TGFB3 transforming growth factor, 

beta 3
WISP1 WnT1 inducible signaling 

pathway protein 1, transcript 
variant 1

evading apoptosis Proliferation and  
oncogenic transformation

FLT1 fms-related tyrosine kinase 1
HRASLS hrAS-like suppressor
STK32B serine/threonine kinase 32B

Insensitivity to anti-growth 
signals

RASSF7 ras association (ralgDS/
AF-6) domain family 7

DCK deoxycytidine kinase
MELK maternal embryonic leucine 

zipper kinase
EXT1 exostoses 1

Self-sufficiency in growth 
signals

GNAZ guanine nucleotide binding 
protein, alpha z polypeptide

EBF4 early B-cell factor 4
MTDH metadherin
PITRM1 pitrilysin metallopeptidase 1
QSCN6L1 quiescin Q6-like 1

Limitless replicative potential Uncontrolled cell cycle CCNE2 cyclin e2, transcript variant 1
ECT2 epithelial cell transforming 

sequence 2 oncogene
CENPA centromere protein A, 17 kDa
LIN9 lin-9 homolog
KNTC2 kinetochore associated 2
MCM6 McM6 minichromosome 

maintenance deficient 6
NUSAP1 nucleolar and spindle 

associated protein 1 transcript 
variant 2

ORC6L origin recognition complex, 
subunit 6 like

TSPYL5 TSPY-like 5
RUNDC1 rUn domain containing 1
PRC1 protein regulator of 

cytokinesis 1, transcript 
variant 2

RFC4 replication factor c 4, 37 kDa, 
transcript variant 2

RECQL5 recQ protein-like 5
(Continued)
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Table 1. (Continued)

Hallmarks of cancer characteristic behavior  
of tumor cells

Gene name Gene description

CDCA7 cell division cycle associated 
7, transcript variant 1

DTL denticleless homolog
Tissue invasion  
and metastasis

Altered extracellular matrix 
adhesion and remodelling

COL4A2 collagen, type IV, alpha 2

GPR180 g protein-coupled receptor 
180

MMP9 matrix metallopeptidase 9
GPR126 g protein-coupled receptor 

126, transcript variant b2
RTN4RL1 reticulon 4 receptor-like 1

gain motility or actin 
filament re-organization

DIAPH3 diaphanous homolog 3

CDC42BPA cDc42 binding protein kinase 
alpha, transcript variant B

PALM2 paralemmin 2
Sustained angiogenesis Altered metabolism 

under hypoxia 
microenvironment

ALDH4A1 aldehyde dehydrogenase 4 
family, member A1

AYTL2 acyltransferase like 2
OXCT1 3-oxoacid coA transferase 

1, nuclear gene encoding 
mitochondrial protein

PECI peroxisomal D3,D2-enoyl-
coA isomerase

GMPS guanine monphosphate 
synthetase

GSTM3 glutathione S-transferase M3
SLC2A3 solute carrier family 2, 

member 3
Altered expression of known 
angiogenesis effectors

FLT1 fms-related tyrosine kinase 1

FGF18 fibroblast growth factor 18
COL4A2 collagen, type IV, alpha 2
GPR180 g protein-coupled receptor 

180
EGLN1 egl nine homolog 1
MMP9 matrix metallopeptidase 9

Unknown function Unknown function LOC100288906 hypothetical protein 
LOc100288906

C9orf30 chromosome 9 open reading 
frame 30

ZNF533 zinc finger protein 533
C16orf61 chromosome 16 open reading 

frame 61
SERF1A small eDrK-rich factor 1A
C20orf46 chromosome 20 open reading 

frame 46
LOC730018 similar to hcg1980668
LOC100131053 hypothetical LOc100131053
AA555029_RC No significant similarity found

(Continued)
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shared  characteristic behaviors are captured by 12 
proliferation or oncogenic transformation-related 
genes (FLT1, HRASLS, STK32B, RASSF7, DCK, 
MELK, EXT1, GNAZ, EBF4, MTDH, PITRM1, 
QSCN6L1; Table 1). Because future metastatic dis-
semination of a primary tumor is directly associated 
with the aggressiveness of the primary tumor, it is per-
haps not surprising that genes associated with these 
three hallmarks make up the largest part (21 genes) 
of the MammaPrint profile (BBC3, EGLN1, TGFB3, 
ESM1, IGFBP5, FGF18, SCUBE2, TGFB3, WISP1, 
FLT1, HRASLS, STK32B, RASSF7, DCK, MELK, 
EXT1, GNAZ, EBF4, MTDH, PITRM1, QSCN6L1; 
Table 1).

A fourth hallmark of the tumor cell is its limitless 
replicative potential. Tumor cells bypass two built-in 
checkpoints that limit the replicative potential of normal 
cells, the p53 and RB-dependent M1 senescence 
checkpoint and the telomerase-dependent M2 
checkpoint.14 Fifteen MammaPrint genes are cell cycle 
genes, and can be assigned to this important feature of 
tumor cells (CCNE2, ECT2, CENPA, LIN9, KNTC2, 
MCM6, NUSAP1, ORC6L, TSPYL5, RUNDC1, 
PRC1, RFC4, RECQL5, CDCA7, DTL; Table 1). 
Interestingly, the protein-protein interaction network 
analysis also identified TP53 and RB1 to be in the 
center of this network and confirms that the 70 genes 
are controlled by key tumorigenesis regulators (vide 
infra and Fig. 2).

Table 1. (Continued)

Hallmarks of cancer characteristic behavior  
of tumor cells

Gene name Gene description

Miscellaneous (currently  
no link to hallmarks)

Miscellaneous LGP2 likely ortholog of mouse 
D11lgp2

NMU neuromedin U

UCHL5 ubiquitin carboxyl-terminal 
hydrolase L5

JHDM1D jumonji c domain containing 
histone demethylase 
1 homolog D

AP2B1 adaptor-related protein 
complex 2, beta 1 subunit, 
transcript variant 1

MS4 A7 membrane-spanning 
4-domains, subfamily A, 
member 7, transcript variant 3

RAB6B rAB6B, member rAS 
oncogene family

The hallmark of tissue invasion and metastasis 
is a fifth critical step that involves local invasion of 
the tumor cells into surrounding tissue, escape from 
the primary tumor site, entry of metastatic tumor 
cells into the vasculature (intravasation), transpor-
tation and survival into the circulation, and arrest 
and exit of metastatic tumor cells from the vascula-
ture into distant organs (extravasation).15 During the 
process of local invasion, tumor cells lose adhesion 
proteins, remodel extracellular matrix, gain motility 
by changes in their cytoskeleton and invade adjacent 
tissue.11 Five of the MammaPrint genes encode adhe-
sion molecules, extracellular matrix constituents and 
proteins involved in the breakdown of extracellular 
matrix (COL4A2, GPR180, MMP9, GPR126 and 
RTN4RL1; Table 1). In addition to changes in cell 
adhesion and the extracellular matrix, tumor cells 
also have to acquire enhanced motility to  successfully 
invade the surrounding tissue. A primary mechanism 
that regulates cell motility is the reorganization of 
the actin cytoskeleton.16 Actin-binding proteins regu-
late the dynamic assembly and disassembly of actin 
filaments that generate a protrusive force at the lead-
ing edge of the cell and a contractive force at the 
trailing edge of cell. These actin dynamics drive cel-
lular motility. This specific malignant characteristic, 
enhanced motility, is addressed by three genes of the 
MammaPrint prognostic profile that relate to motility 
or actin filament organization (DIAPH3, CDC42BPA, 
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PALM2; Table 1). In addition, four transformation-
related genes and growth factors are known to be 
critical for inducing local invasion,15 and are also 
represented in the MammaPrint 70 gene expres-
sion profile (TGFB3, IGFBP5, FGF18 and WISP1; 
Table 1).

The last hallmark of cancer is sustained angiogen-
esis.17 The survival and growth of tumor cells depends 
on an adequate supply of oxygen and nutrients through 
blood vessels and by diffusion through the surround-
ing tissue. Existing vasculature and passive diffusion 
are sufficient for oxygen supply to tumors of a limited 
size. However, aggressive solid tumors often grow to a 
size that can no longer be sustained by the existing tis-
sue vasculature. Tumor cells enhance their glycolytic 

capability to ensure an energetically efficient metabo-
lism and proliferation rate under hypoxic conditions. 
These altered metabolic pathways are preserved by 
the tumor even when the oxygen concentration is 
sufficient.18 Seven genes implicated in this altered 
metabolism are represented in the MammaPrint 
profile (ALDH4 A1, AYTL2, OXCT1, PECI, GMPS, 
GSTM3 and SLC2 A3; Table 1). Tumor cells induce 
angiogenesis and vascular remodeling by regulating 
adhesion proteins and extracellular proteins through 
binding of hypoxia-inducible factor (HIF) to hypoxia-
response elements (HRE).17 At least six genes in the 
MammaPrint profile are currently known to be direct 
effectors of angiogenesis and the regulation of vascu-
lar remodeling (FLT1, FGF18, COL4 A2, GPR180, 

Figure 2. Protein-protein interaction network analyses indicate that the 70 genes form highly interconnected networks centered on known  cancer-related tran-
scription regulators such as TP53, RB1, MYC, JUN and CDKN2A (highlighted in orange). This network indicated that the expression levels of 70 genes are 
likely regulated by these key tumorigenesis related transcription regulators. The data was analyzed using Ingenuity Pathways Analysis (www.ingenuity.com).
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EGLN1 and MMP9; Table 1). Together, these genes 
assess the capability of tumor cells to stimulate the 
growth of new blood vessels and are likely to contain 
valuable information about the aggressiveness and 
malignant potential of a  primary tumor.

It should be emphasized that the biological pro-
cesses associated with the six hallmarks such as prolif-
eration, cell-cell adhesion, angiogenesis and invasion 
are intrinsically linked. That is, a gene known to play a 
dominant and critical role in one hallmark might also 
indirectly be involved in other hallmarks. To better 
understand interactions between the 70 MammaPrint 
genes and their transcription regulation, we performed 
protein-protein interaction network analyses. The 
networks showed that the 70 genes are highly inter-
connected and center around known cancer-related 
transcription regulators such as TP53, RB1, MYC, 
JUN and CDKN2 A (Fig. 2). This result indicates that 
the activities of the 70 genes are regulated by these 
key tumorigenesis-related transcription regulators.

To summarize, MammaPrint has been developed 
using a data-driven approach and results in a gene 
profile that has comprehensive coverage of the six 
hallmarks of cancer, as well as tumor progression and 
metastasis related biological processes (Table 1, Fig. 1). 
In addition, protein-protein interaction network anal-
yses presented here, indicate that the 70-genes form 
highly interconnected networks and that their expres-
sion levels are regulated by key tumorigenesis related 
genes such as TP53, RB1, MYC, JUN and CDKN2 A.

The biological model of acquisition 
of metastatic competence through 
epithelial-mesenchymal transition  
and the 70-Gene Profile
In the previous section, we have shown that malig-
nancy and metastatic competence of tumor cells at the 
primary tumor site are measured by the expression 
level of genes in the 70-gene MammaPrint profile. 
However, this has not provided an answer as to how 
tumor cells at the primary tumor site initially acquire 
their metastatic capability. A biological model that is 
increasingly gaining acceptance is that tumor cells at 
the primary site might acquire their metastatic capacity 
through a process similar to epithelelial-mesenchymal 
transition (EMT): a key epigenetic program that 

cells undergo during early embryonic development.8 
During EMT, epithelial cells lose cell adhesion mol-
ecules, reorganize their cytoskeleton, gain increased 
motility and migrate from an epithelial sheet-like 
structure to an irregular structure of mesenchyme.19 
This change in cellular phenotype is similar to the 
process that tumor cells undergo to initiate metas-
tasis. Evidence suggests that tumor cells might ini-
tiate EMT by turning on or off some of the same 
transcription factors that are used in early embryonic 
development.20 These transcription factors regulate 
the expression of genes that allow tumor cells to 
lose adhesion, remodel the surrounding extracellular 
matrix, acquire enhanced motility to enable cellular 
migration, resist apoptotic signals, and adapt to an 
unfamiliar microenvironment at the distant site. The 
biological model based on the assumption that EMT 
processes are involved in breast cancer metastasis is 
consistent with the biological functions of the genes 
in the MammaPrint 70-gene profile identified here 
(Table 1). A substantial number (ie, 14 genes) of the 
70 gene profile encode for proteins that are known 
to play an role in early embryonic development and 
are likely involved in EMT (MMP9, COL4 A2, FLT1, 
TGFB3, IGFBP5, FGF18, WISP1, GPR180, ESM1, 
SCUBE2, PITRM1, EXT1, EBF4, ECT2; Fig. 1). 
Within the EMT-associated MammaPrint genes, one 
gene (EBF4) encodes development-related transcrip-
tion factors and three genes (TGFB3, FGF18, WISP1) 
represent the well characterized EMT-mediating 
TGF-β, FGF and Wnt family proteins.9 It should 
be noted that in addition to the described 14 genes, 
other genes within the 70-gene profile might also be 
involved in early embryonic development. However, 
their role in early embryonic development has not yet 
been studied extensively. As outlined above, these 14 
EMT-associated MammaPrint genes show a signifi-
cant overlap with genes that confer the capability of 
tissue invasion, extracellular matrix remodeling and 
enhanced motility of tumor cells. These are among the 
defining characteristics of the EMT phenomenon.9

conclusions
The MammaPrint 70-gene tumor expression profile 
was developed using an unbiased data-driven 
approach without making assumptions that certain 
genes are more likely to be involved in tumor 
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metastasis. In this study, we have demonstrated how 
this approach results in a tumor expression profile 
that contains many genes actually involved in the six 
well-defined hallmarks of cancer, in tumor progres-
sion and metastasis-related biological processes, as 
well as in epithelial-mesenchymal transition.

It is equally interesting to investigate which genes 
are not among the 70 genes in the prognostic signa-
ture. Most notably, neither ESR1 (encoding estrogen 
receptor alpha) nor HER2, which is often amplified 
in breast cancer, are present in the 70 gene profile, 
whereas both genes are well-established reporters of 
poor prognosis and are part of other prognostic breast 
cancer gene signatures. The absence of HER2 is prob-
ably best explained by the fact that this gene is not 
over-expressed in some 80% of breast tumors, and 
hence is not informative for prognosis in the  majority 
of breast tumors. ESR1 is expressed in the majority of 
breast tumors, but its presence at the mRNA level is not 
necessarily informative for functionality of the recep-
tor. The fact that 12 out of the 70 genes in the Mam-
maPrint profile are also part of a 550 gene classifier 
that reports ER status,2,21 indicates that the 70 genes 
indirectly report ER status by measuring downstream 
targets of ER rather than the levels of ER itself.

This study shows how the 70 genes in the Mam-
maPrint gene signature comprehensively measure the 
six hallmarks of cancer-related biology. This finding 
establishes a link between a molecular signature and 
the underlying molecular mechanism of tumor cell 
progression and metastasis.

Methods
To correlate the probes of the 70 MammaPrint genes2 
with the latest NCBI Human genomic plus transcript 
database (database updated through 18 March 2009), 
a BLAST search was performed using the correspond-
ing probes at the NCBI BLAST website (http://blast.
ncbi.nlm.nih.gov/Blast.cgi22).

After retrieving the genes, they were translated 
into protein sequences. The transcribed proteins 
perform functions through conserved functional 
domains, related small functional site motifs and pre-
served 3D-structural features. These features were 
used to investigate the biological function of each of 
the 70 genes that make up the MammaPrint breast 
cancer gene expression profile:

1. For the annotation of functional domain architec-
ture of individual genes, genes were translated 
into protein sequences, and the workflow for func-
tional annotation of proteins implemented on the 
SMART web server25 was followed:
a.  To identify subcellular localization of a protein, 

the presence of sorting signals and/or cleavage 
sites was predicted by the bioinformatics tool 
SignalP.24

b.  To identify transmembrane regions of a protein, 
the TMHMM25 algorithm was used. Regions of 
the protein separated by transmembrane regions 
were analyzed separately.

c.  To identify conserved functional domains (eg, 
serine/threonine kinase domains, HLH tran-
scription factor domains, epidermal growth 
factor- like domains), the bioinformatics tool 
HMMER26 was run against the Pfam27 and 
SMART23 databases.

d.  To analyze the segments that are not covered by 
highly conserved functional domains and low 
complexity regions, homologies to other pro-
teins were retrieved with BLAST search.28

2. For the interpretation of the biological functions 
of the individual genes within the cellular context 
(signal transduction pathway, metabolism pathway 
and protein-protein interaction), Ingenuity Path-
ways Analysis (Ingenuity® Systems, www.ingenu 
ity.com) was used and a detailed literature review 
was performed.
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