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Abstract: Time series of gene expression often exhibit periodic behavior under the influence of multiple signal pathways, and are 
represented by a model that incorporates multiple harmonics and noise. Most of these data, which are observed using DNA microarrays, 
consist of few sampling points in time, but most periodicity detection methods require a relatively large number of sampling points.
We have previously developed a detection algorithm based on the discrete Fourier transform and Akaike’s information criterion. Here 
we demonstrate the performance of the algorithm for small-sample time series data through a comparison with conventional and newly 
proposed periodicity detection methods based on a statistical analysis of the power of harmonics.
We show that this method has higher sensitivity for data consisting of multiple harmonics, and is more robust against noise than other meth-
ods. Although “combinatorial explosion” occurs for large datasets, the computational time is not a problem for small-sample datasets.
The MATLAB/GNU Octave script of the algorithm is available on the author’s web site: http://www.cbrc.jp/%7Etominaga/piccolo/.

Keywords: periodicity detection, gene expression time series, information criterion, discrete Fourier transform, circadian rhythm

http://dx.doi.org/10.4137/BBI.S5983
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/bioinformatics-and-biology-insights-journal-j39
http://www.la-press.com
mailto:tominaga@cbrc.jp
http://www.cbrc.jp/%7Etominaga/piccolo/


Tominaga

128	 Bioinformatics and Biology Insights 2010:4

Introduction
Life phenomena are observed as changes in time, and 
many of these phenomena, such as circadian rhythm 
and the cell cycle, exhibit periodic behavior. These 
phenomena are common to many species and are 
thought to be expression of essential mechanisms of 
life. In addition, irregular periodicity is caused by 
abnormal stimuli or disorder of these mechanisms. 
Thus, a periodicity detection technique for time series 
observation data is important in many areas of biology 
and medicine.

Generally, the observation of life phenomena 
incurs certain costs and thus the number of sampling 
points in time is often small, as in the case of DNA 
microarray data.1 For this reason, a reliable method of 
periodicity detection is needed for small datasets.

Time series data on life phenomena can be rep-
resented by a mathematical model consisting of 
noise and various simple formulae, such as polyno-
mial functions or harmonics (sinusoidal functions).2 
A model of time series data of periodic phenomena 
should contain harmonics. If these harmonics are 
judged significantly large by a statistical test, the phe-
nomena can be considered periodic.

Generally, life phenomena are the result of complex 
interactions of biological networks (gene regulatory 
networks, metabolic pathways, signal transduction 
networks, etc.); thus, time series data on constituents 
of these networks can contain multiple harmonics 
with different periods.

Periodicity detection techniques which are widely 
used can be classified into two categories: 1) model 
fitting in the time domain, and 2) statistical signifi-
cance tests on power spectra.

The first category includes methods based on 
direct curve fitting to the observed data. When the 
data can be modeled by n harmonics, the number of 
parameters that are optimized by the fitting method 
is 3n +  1,3 which is too many parameters for small 
datasets.4

Methods in the second category are widely used in 
many area of science. The basic method is to calculate 
the power spectra by using the discrete Fourier trans-
form (DFT) or the autocovariance matrix, and then to 
test the significance of each spectrum of a harmonic 
by outlier detection methods.3 A simple method uses 
quantiles of spectra to detect outliers. Both parametric 

tests (such as Dixon’s Q test or Fisher’s G test) and 
non-parametric tests (eg, the quantile/box-plot) are 
used to detect outliers. These methods frequently 
do not detect the periodicity of interest if the signifi-
cance of the period is close to that of other periods, 
even if the significance is high. Thus, these methods 
are inadequate for data with multiple periodicities. 
In addition, a certain number of spectrum elements 
are needed to make the outlier tests meaningful and 
robust to noise. Thus, these methods are not optimal 
for small sampled time series data.

Other advanced algorithms, such as wavelet-
based methods5,6 and model fitting using directional 
statistics7 have been proposed, however, few applica-
tions of these methods have been reported to date; 
therefore, their utility for the analysis of small sam-
pled biological datasets remains an open question.

An clustering method1 and an AR (autoregression) 
model based periodicity detection method8 are devel-
oped to be special for small sampled data. The first 
one classifies genes by expression time series but do 
not detect period or periodicity. The second one can 
find a period and its P-value for each time series data, 
but do not detect multiple harmonics, ie, do not find 
‘the second significant period’.

Our previously proposed method, called the 
‘piccolo’,9 consists of the DFT and Bayesian Infor-
mation Criterion (BIC),2 and is not based on an out-
lier detection. The algorithm is a exhaustive search to 
find the best combination of Fourier coefficients in 
terms of the information criterion.4 The combinatorial 
search does not require a long computational time for 
most DNA microarray time series datasets found on 
the web, such as the datasets in the Gene Expression 
Omnibus10 and ArrayExpress.11 

We improve the peridicity detection performance of 
the piccolo method by introducing Akaike’s Informa-
tion Criterion (AIC)4 instead of BIC, and demonstrate 
its performance through a comparison with two con-
ventional methods, one newly developed method and 
the old version of our method (BIC version of the pic-
colo) on two simulation datasets and twelve microar-
ray datasets. The piccolo algorithm (new AIC version) 
is shown to be highly sensitive and robust against noise 
on simulated short time series data which consist of 
multiple (two) harmonic signals and noise. In addition, 
the present method can achieve high detection rates of 
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a period of interest for DNA microarray datasets, thus 
satisfying the expectations for biological data.

Methods
We choose two widely used conventional methods, 
one recently proposed methods and the older ver-
sion of the piccolo method for comparison with the 
improved new piccolo method. The methods selected 
for the comparison except the old version of the 
piccolo are based on statistical tests on the logarithms 
of power spectra.

The two conventional methods are the quantile 
method and Dixon’s Q test. The other method is a non-
parametric test for significance of the logarithms of 
power spectra, recently proposed by Ahdesmäki et al.12 

Dixon’s Q test requires the assumption that the 
distribution of samples is normal. The other four 
methods, namely, the quantile method, Ahdesmäki’s 
method, and the old and new piccolo method, do not 
require this assumption. In the piccolo method (both 
old and new), the error distribution at each data point 
(sampling points at various times in the time series 
data) is assumed to be normal and its variance is 
assumed to be the same as that of the data.4

 According to results of statistical tests for normal-
ity of powers and logarithms of powers of each time 
series in all datasets (Tables 1 and 2), no conclusion 
can be reached regarding the distribution of powers 
and logarithms of powers. Note that the power of a 
harmonic is calculated as the product of its Fourier 
coefficient, which is calculated by DFT, and the com-
plex conjugate of the coefficient; therefore, the power 
of a harmonic is a real value. Logarithms of powers 
are perhaps more suitable than the values of powers 
themselves for the quantile method and Dixon’s Q 
test, considering histograms of logarithms of powers 
for each dataset (Fig.  1). Accordingly, the quantile 

method and Dixon’s Q test method are applied to 
logarithms of powers.

Quantile method
Outlier detection using an inter quantile range (IQR) 
is a basic and widely used technique in many scien-
tific fields because it has been found empirically to 
be useful for outlier elimination.13,14 

In the quantile method, the DFT is applied to the 
data, and the power of each harmonic is calculated as 
the product of its Fourier coefficient and its complex 
conjugate. Then, quantile points of the logarithm of 
the powers and IQR are calculated. All logarithms of 
powers are compared with the outlier bound, which is 
the sum of the third quartile point (75 percentile point) 
and the IQR multiplied by 1.5 (for normally distributed 
samples, this is same as that critical value is 0.9541 
one-sided). If a logarithm of a power is larger than the 
outlier bound, the harmonic corresponding to the power 
is significant, and thus the given time series data is con-
sidered periodic. The periodicity of the time series is 
the same as the significant harmonics.

The quantile method requires a sample size (data 
length) of 8 or more for power spectra. Power spec-
tra (real numbers) are calculated from Fourier coef-
ficients (complex numbers), which have symmetry; 
thus, the number of unique samples of the spectra 
is half the data length. The unique samples size is 
(n-1)/2 for an odd data length n. If the number of 
samples is less than 4, the quantile method cannot 
detect any outliers because the bound is larger than 
the largest sample. Thus, this method cannot be used 
for time series data with data length of 7 or less.

Dixon’s Q test
Dixon’s Q test15,16 is a widely used outlier detection 
algorithm, in which the sample distribution is assumed 

Table 1. P-values and standard deviations (sd) of the normality test for the distribution of powers and logarithms of powers 
of time series data in simulation datasets for the one-harmonic and two-harmonic conditions.

N T Int. Power Log of power
One harmonics 500 12 4 0.755 (sd: 0.204) 0.862 (sd: 0.175)
Two harmonics 500 12 4 0.771 (sd: 0.218) 0.855 (sd: 0.165)

Notes: Signal to noise ratio (RSN) is 0.1. P-values are calculated using the Kolmogorov-Smirnov test. 
Abbreviations: N, number of time series data in each dataset; T, length of each time series in the dataset; Int., interval between each two samplings (h) 
in each time series. 
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Table 2. P-values and their standard deviations (sd) for the normality test of the distribution of powers and logarithms of 
powers of time series data in datasets taken from the Gene Expression Omnibus database.

N T Int. Power Log of power
GDS1629 6346 8 6 0.898 (sd: 0.127) 0.911 (sd: 0.112)
GDS2110 14904 6 4 0.936 (sd: 0.0712) 0.936 (sd: 0.0712)
GDS2232 29109 12 4 0.845 (sd: 0.172) 0.828 (sd: 0.182)
GSE3424 22759 6 4 0.922 (sd: 0.0751) 0.936 (sd: 0.0719)
GDS404 6484 12 4 0.871 (sd: 0.153) 0.865 (sd: 0.159)
GSE6542-1 11699 6 4 0.936 (sd: 0.0712) 0.936 (sd: 0.0712)
GSE6542-2 11699 6 4 0.936 (sd: 0.0720) 0.936 (sd: 0.0718)
GSE6542-3 11699 6 4 0.945 (sd: 0.0682) 0.944 (sd: 0.0681)
GSE6542-4 11699 6 4 0.931 (sd: 0.0735) 0.932 (sd: 0.0735)
GSE6542-5 11699 12 4 0.877 (sd: 0.145) 0.875 (sd: 0.147)
GSE6542-6 11699 6 4 0.937 (sd: 0.0714) 0.936 (sd: 0.0715)

Note: P-values are calculated using the Kolmogorov-Smirnov test.
Abbreviations: N, number of time series data in each dataset; T, length of each time series in the dataset; Int., interval between each two samplings (h) 
in each time series.
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Figure 1. Histograms of logarithms of powers for all twelve DNA microarray datasets for the performance comparison in the result section. The x axes are 
bins of histograms. Each bin is a range of natural logarithms of powers of each time series in each dataset. The y axes are frequencies of logarithms of 
powers in each range. The sum of all frequencies are same as the number of probes in each dataset.
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to be normal. This test, which ignores redundant 
information from half of a two-sided power spectrum, 
is used to detect outliers from a set of logarithms of 
power spectra. The criterion of the test is a critical 
value of 0.95, one-sided.17

Ahdesmäki’s method
The Ahdesmäki’s method12 uses the kernel density 
estimation18 of the distribution of the square root of the 
targeted harmonic’s power (proportional to the loga-
rithm of power). The distribution is approximated by 
shuffling the order of samples in the time series data 
and calculating the power of the targeted harmonic 
by least-square fitting. We use Yi Cao’s ‘gkde’ kernel 
density estimation method*1 to calculate the approxi-
mate probability density function (PDF) of powers of 
the harmonics, and we use the built-in function ‘ols’ 
in GNU octave version 3.2.3*2 to calculate the power 
of the harmonic.

The criterion of the test is a critical value of 0.95, 
one-sided.

The piccolo method
The ‘piccolo’ algorithm9 is an exhaustive search for 
the optimal combination of Fourier coefficients cal-
culated by DFT from a given time series data. The 
algorithm searches for all possible subsets of conju-
gate pairs of Fourier coefficient, but the search range 
for a size of subsets is limited to keep the information 
criterion value (AIC, BIC, etc.) reliable.4

Our previously presented version of the method 
incorporates BIC (Bayesian Information Criterion) 
as the information criterion. Here we introduce AIC 
(Akaike’s Information Criteriron) instead of BIC to 
improve detection performance. The previous ver-
sion is called ‘piccolo/B’ in this paper. The ‘piccolo’ 
implies new AIC version.

The optimal subset is defined such that the AIC 
value calculated from the subset and given data is mini-
mal. AIC is used as the information criterion under the 
assumptions that the error distribution of the datum at 
each time point is normal and that its variance is the 
same as the variance among the time series data.4 

The model is a subset of the set of the Fourier 
coefficients obtained by DFT from given time series 
data. The number of Fourier coefficients is n when n 
is the number of samples in the time series; however, 
half of these coefficients are complex conjugates of 
the other half. A Fourier coefficient must always be 
selected with its conjugate. This allows the inverse 
DFT of the model to be real numbers, which is 
necessary to calculate the AIC. Thus, the number of 
model parameters is the number of the coefficient 
pairs. When the data length is even, a coefficient cor-
responds to the Nyquist frequency is a pure real num-
ber and its complex conjugate do not appear in the set 
of Fourier coefficients in the model. This coefficient 
does not form a pair when it is chosen.

The AIC value is calculated using the following 
equation:4

	 AIC = n log(2π) + n log(σ2) + n + 2p,	 (1)

where n is the number of samples (data length of the 
time series), σ is the variance of errors between the given 
time series data and the time series calculated from the 
model by inverse DFT, and p is the number of param-
eters (pairs of Fourier coefficients) in the model.

In the piccolo method, the Fourier coefficients in 
the subset that minimize the AIC value are taken to 
be significant constituents to represent the given data. 
Accordingly, periods corresponding to these Fourier 
coefficients are considered significant, and the given 
time series data judged to be periodic with periods 
corresponding to these Fourier coefficients. Thus, 
multiple periods can be found simultaneously even if 
their powers are close each other.

Result
Fourteen datasets are used to compare the five meth-
ods for periodicity detection, comprising two simu-
lated datasets and twelve DNA microarray datasets 
taken from an online database.

Robustness against noise
Data
We tested the robustness against noise of the five 
periodicity detection methods, namely the quantile 
method, Dixon’s Q test, Ahdesmäki’s method, the 
piccolo/B and the piccolo method, using simulation 

*1http://www.mathworks.com/matlabcentral/fileexchange/19160
*2http://www.gnu.org/software/octave/doc/interpreter/Linear-Least-Squares.
html
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data consisting of one or two harmonic signals and 
log-normal noise.

Considering that the distribution of DNA  microarray 
data is log-normal,19 each datum is created as a sum 
of a log-normally distributed random number and the 
value of one harmonic (the one-harmonic condition), 
or two harmonics (the two-harmonic condition). 
For both conditions, 15 datasets are generated by 
changing the signal-to-noise ratio as follows:

log ( , ) cos cosN 0 1 2
24

2
16

+ +



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+ +



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A t C B t Di i i i
π π

where logN(0,1) is log-normaly distributed ran-
dom noise whose mean is 0 and variance is 1, i 
(i  =  1, …, 500) is the suffix for time series, Ai and 
Bi are amplitude of harmonic signals whose period 
are 24-hour and 16-hour respectively (Bi = 0 for the 
one-harmonic condition), and Ci and Di are phase 
of each signal. Values of Ai and Bi are detemined by 
log-normal random numbers according to the signal-
noise ratio (described later). Values of Ci and Di are 
detemined by uniformly distributed random numbers 
within the range of [0,48]. t is the time. Values of time 
are discrete and its intervals are fixed to 4 hours. The 
number of time points is 12. Each dataset consists of 
500 time series data (each time series data consists of 
twelve sampling points).

The signal-to-noise ratio (RSN), which is defined as 
a ratio of the variance of signal and noise, is set at 
various values of RSN = (0.001, 0.002, 0.005, …, 50.0) 
under each condition. Thus, all generated time series 
data in all datasets contain a circadian rhythm.

To consider whether or not Dixon’s Q test is appro-
priate, the normality of distribution of the spectra and 
the logarithms of spectra is tested. The P-values cal-
culated by the Kolmogorov-Smirnov test for data-
sets of RSN = 0.1 under both conditions are shown in 
Table 1. For both spectra and logarithms of spectra, 
the null hypothesis (the distribution is normal) cannot 
be rejected at the 90% confidence level. Thus, Dix-
on’s Q test cannot be considered inappropriate.

Detection performance
The numbers of detected time series from the datasets 
are compared to evaluate the robustness of the meth-
ods against noise.

In the two-harmonic condition, simulation data 
consist of two signals (16 and 24  hour harmonics) 
and noise, however, the three detection method except 
piccolo and piccolo/B can hardly detect plural signals 
simultaneously in principle. Therefore we tested the 
five methods on detection of a 24-hour siginal.

Plots of the number of detected time series data on 
each dataset are shown in Figure 2. For both the one-
harmonic and two-harmonic conditions, the piccolo 
method achieved a high detection rate, especially for 
noisy (low RSN) data.

The detection performance was relatively lower at 
RSN  =  1.0  in the one-harmonic condition except for 
the piccolo method. In this dataset, the variance of 
the signal and noise is the same; thus, the signal and 
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Figure 2. Log/log plots of the signal-to-noise ratio versus the number 
of detected time series data out of 500. The time series data consist 
of log-normal random noise and a harmonic (above), and log-normal 
random noise and two harmonics (below). Since all simulated data 
contains periodic signal to be detected, the possible maximum number 
of the detection is 500. The RSN is defined as a division of the vari-
ance of the signal by the variance of the noise. Therefore smaller RSN 
value of the simulated time series means that it is noisy data.
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noise are difficult to distinguish, especially for small 
sampled time series data.

The number of detected time series in the two-
harmonics condition is lower than that in the one-
harmonic condition for RSN  .  0.01. The difference 
between the one-harmonic condition and two- 
harmonic condition is smaller for the piccolo method 
than for the other methods.

Detection of circadian rhythm
Data
The five detection methods are applied to experimen-
tally observed DNA microarray data taken from the 
Gene Expression Omnibus online database by NCBI, 
NIH,10 to detect genes (probes) which have 24-hour 
periodicity, or ‘circadian rhythm’.

The P-values obtained by the Kolmogorov-
Smirnov test for the normality of the distribution 
of powers and logarithms of powers are shown in 
Table 2. P-values are calculated for time series data 
in datasets, and means and standard deviations of the 
P-values are calculated and listed in the table. For both 
powers and logarithms of powers, the null hypothesis 
(the distribution is normal) cannot be rejected at the 
95% confidence level. Although the samples sizes are 
small (6 to 12), it can be said that Dixon’s Q test can-
not be considered inappropriate.

It is not defined whether or not the time series in 
the datasets are circadian; however, some of them are 
labeled with the GO term20 ‘circadian rhythm’. Here, 
detection performance is evaluated in terms of the total 
number of detected probes and the number of detected 
probes labeled ‘circadian rhythm’ for each dataset. The 
quantile method cannot be used on datasets in which 
the data length of each time series is 7 or less.

Biological description of datasets
All twelve DNA microarray datasets are time 
series observations intending to analyze circadian 
rhythm. GDS1629 is a set of fourty five samples of 
a immortalized suprachiasmatic nucleus cell line of 
normal rat for 42 hours, every 6 hours (eight time 
points). The dataset contains five or six samples for 
each time point. We only use one of them, whose 
sample ID is the largest. GDS2110 is a set of six 
samples of normal Macaca mulatta adult females 
adrenal glands for 20 hours, every 4 hours (six time 

points). GDS2232 is a set of twenty four samples 
of normal mouse adrenal glands for 44 hours, every 
4 hours (twelve time points). The dataset contains 
two samples for each time point. We only use one 
of them, which appears earlier in the published data 
file. GDS404 is a set of thirteen samples of normal 
mouse aortae for 44 hours, every 4 hours (twelve 
time points). The dataset contains two samples 
for the first time point. We only use one of them, 
which appears earlier in the published data file. 
GSE3424 is a set of eight samples of normal Ara-
bidopsis thaliana for 20 hours, every 4 hours (six 
time points). The dataset contains two samples for 
two time points (0-hour and 12-hour). We only use 
one of them, which appears earlier in the published 
data file. GSE6542 is a set of fourty eight samples 
of three mutants of Drosophila melanogaster in two 
experimental conditions (seven conditions in total). 
We divide it into seven sub-datasets here. Six sub-
datasets consist of six time points and one consists 
of twelve points. All these datasets are normalized 
by publishers for further analysis.

Data of duplicate probes for same gene and data of 
probes which contain a numerically invalid value are 
ignored for this performance comparison.

Detection performance
The detection results are shown in Table 3. For both 
the total number of detected probes and the num-
ber of detected probes labeled circadian, the piccolo 
method is superior to the other four methods, includ-
ing previous version of the piccolo (piccolo/B), for 
all datasets. Ratios of S in Table  3, which is the 
number of probes detected by the piccolo method 
but not by other four methods, to the number of 
total probes in each dataset are 0.333 (GDS1629) 
to 0.776 (GSE6542_3). This means that using the 
piccolo method we find that 77.6% of all probes in 
GSE6542_3 are under the influence of circadian 
oscillation mechanisms but other four methods can-
not detect these probes.

On the other hand, ratios of the numbers of probes 
detected by one or more of the other four methods 
but not detected by the piccolo method to the number 
of total probes in each dataset are in the range of 0.0 
(GSE6542_2, GSE6542_4, GSE6542_6) to 0.0418 
(GDS404), or less than 5% (data not shown).
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Table 3. Results of detection of circadian oscillation on the twelve DNA microarray datasets. Numbers before and after a 
slash are the number of detected probes and detected circadian annotated probes respectively. The annotated probes are 
labeled with the GO term ‘circadian rhythm’ in the chip definition files of the microarrays.

C Quantile Q test Ahdesmäki Piccolo/B Piccolo S
GDS1629 22 146 / 1 60 / 0 121 / 0 163 / 1 2231 / 7 1981
GDS2110 26 – 667 / 0 457 / 2 0 / 0 10658 / 16 9745
GDS2232 37 4005 / 1 3053 / 3 5343 / 4 9118 / 11 23057 / 28 10892
GSE3424 33 – 2853 / 1 1436 / 2 0 / 0 19233 / 29 15837
GDS404 12 714 / 2 497 / 2 655 / 3 752 / 3 4044 / 6 2670
GSE6542-1 28 – 529 / 0 401 / 1 0 / 0 8554 / 23 7829
GSE6542-2 28 – 413 / 0 339 / 2 0 / 0 7706 / 23 7118
GSE6542-3 28 – 720 / 0 340 / 1 0 / 0 9939 / 23 9099
GSE6542-4 28 – 495 / 0 361 / 0 0 / 0 8924 / 23 8235
GSE6542-5 28 799 / 3 623 / 0 656 / 5 1046 / 4 6038 / 19 4335
GSE6542-6 28 – 534 / 0 378 / 1 0 / 0 8513 / 20 7800
GSE6542-7 28 – 501 / 0 403 / 0 0 / 0 8236 /19 7517
Notes: C is the number of circadian probes in the chip used for each dataset (duplicate probes for each gene and probes containing invalid numerical data 
are omitted). S is the number of probes detected only by the piccolo method but not by other four methods.
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Figure 3. Plots of time series data which are detected only by the piccolo method and not by the other four methods. For each dataset, the time series 
data of the probes with the largest ratio between the maximum power and the second largest power is plotted. Ranges of sampling time points are 
different by datasets. Datasets and its time ranges are: Top (left to right)—GDS1629 (44 h), GDS2110 (20 h), GDS2232 (44 h), Second (left to right)—
GDS404 (44 h), GSE3424 (20 h), GSE6542_1 (20 h), Third (left to right)—GSE6542_2 (20 h), GSE6542_3 (20 h), GSE6542_4 (20 h), Bottom (left to 
right)—GSE6542_5 (44 h), GSE6542_6 (20 h), GSE6542_7 (20 h).
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The time series of a probe detected by only the pic-
colo method is plotted in each panel in Figure 3 (one 
probe is chosen for each dataset).

Computational cost
We measured the increase in computational time 
required to perform detection on 500 time series when 
the data length of each time series is increased from 
6 to 40. The dataset consist of normally distributed 
random numbers with a mean of 0 and variance of 1. 
The results are shown in Figure 4. In the performance 
evaluation, all detection programs are run on GNU 
octave version 3.2.3*3 on Mac OS X 10.6.3, and the 
computer is equipped with two 3 GHz Dual-Core Intel 
Xeon and 8 GB of 667-MHz DDR2 core memory.

The computational time of the quantile method, 
Dixon’s Q test and Ahdesmäki’s method increase 
linearly with increasing data length. This increase is 
exponential in the case of the piccolo method. The 
CPU time of the piccolo/B is almost same to the 
piccolo and not shown here.

The curves fit to data, ax  +  b for Ahdesmäki’s 
method and exp(ax  +  b) for piccolo method, inter-
sect at x = 18.8 (x is data length). The piccolo method 
is faster than Ahdesmäki’s method for small datasets 
with a data length of less than 19.

Discussion
Five methods for periodicity detection, namely, two 
simple methods (the quantile method and Dixon’s Q 
test), one recently proposed method (Ahdesmäki’s 
method) and two methods by the authors (piccolo 
and piccolo/B) are compared for small sampled (short 
length) time series of two simulated datasets which 
consist of twelve time points and twelve sets of experi-
mentally observed DNA microarray data, which consist 
of 6, 8, 12 time points for observation of the circadian 
rhythm.

Dixon’s Q test requires the assumption that the 
distribution of samples is normal. P-values of the 
normality of the distribution of the spectra and loga-
rithm of spectra of each time series in the given data-
sets were calculated by the Kolmogorov-Smirnov 
test. The null hypothesis (the distribution is normal) 
was not rejected for the logarithms of spectra of all 
datasets.

The piccolo method selects significant harmonics 
to model the data. Harmonics included in the best 
model that minimizes the AIC are significant. 
A harmonic whose power is not a maximum can be 
detected as significant more frequently by using the 
piccolo method compared with other outlier based 
methods. These smaller power harmonics are selected 
according to the AIC and therefore are considered to 
be significant statistically. The high detection sensi-
tivity of the piccolo method is shown by results of 
analyses using both simulations and experimentally 
observed data. These results satisfies the expectations 
that most genes in a living cell are involved in one 
or more gene regulatory networks and that these net-
works are interconnected. The oscillation of the core 
circadian clock genes are expected to spread over 
whole gene networks.

S in Table  3  shows that many genes exhibiting 
periodicity in the form of circadian rhythm can be 
detected only by the piccolo method and not the other 
four methods. This finding can be attributed to the 
magnitude of circadian periodicity, which is thought to 
depend on the ‘distance’ in the whole interconnected 
gene regulatory networks from central circadian 
clock systems. Many genes further from the central 
clock systems could have lower magnitude circadian 
periodicity and can not be detected by other methods 
than the piccolo.*3http://octave.sourceforge.net/

0.1

1

10

100

1000

10000

5 10 15 20 25 30 35 40

C
om

pu
ta

tin
al

 ti
m

e 
[s

]

Length of data

piccolo
Ahdesmaeki

1.5 IQR
Q test

Figure 4. Plot of computational time which is needed to perform detec-
tion on 500 time series data. The x axis is the length of time series data 
(the number of time points). The y axis is elapse CPU time in second to 
perform detection in a logarithmic scale. 500 time series data are gener-
ated by normally distributed random numbers. The CPU time of piccolo/B 
method (previous version of the piccolo method, not shown here) is very 
similar to the piccolo method which incorporates AIC.
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A comparison of the five methods using simulation 
data shows that the piccolo method is most robust 
against noise. The detection performance of the 
methods, except the piccolo method, was worse for 
the two-harmonic data than for the one-harmonic 
data. The piccolo method exhibited more consistent 
performance between datasets than the other methods. 
This suggests that the piccolo method has high detec-
tion performance for data with multiple periodicity.

The computational cost of the piccolo method 
represents a potential problem for large datasets. In 
future work, we will attempt to reduce the compu-
tational cost by introducing the branch and bound 
method to the exhaustive search for the combination 
of Fourier coefficients.
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