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Abstract: The present study was conducted to investigate the effect of potassium channel openers and blockers on morphine with-
drawal syndrome. Mice were rendered dependent on morphine by subcutaneous injection of morphine; four hours later, withdrawal 
was induced by using an opioid antagonist, naloxone. Mice were observed for 30 minutes for the withdrawal signs ie, the characteristic 
jumping, hyperactivity, urination and diarrhea. ATP-dependent potassium (K+

ATP) channel modulators were injected intraperitoneally 
(i.p.) 30 minutes before the naloxone. It was found that a K+

ATP channel opener, minoxidil (12.5–50 mg/kg i.p.), suppressed the morphine 
withdrawal significantly. On the other hand, the K+

ATP channel blocker glibenclamide (12.5–50 mg/kg i.p.) caused a significant facilita-
tion of the withdrawal. Glibenclamide was also found to abolish the minoxidil’s inhibitory effect on morphine withdrawal. The study 
concludes that K+

ATP channels play an important role in the genesis of morphine withdrawal and K+
ATP channel openers could be useful 

in the management of opioid withdrawal. As morphine opens K+
ATP channels in neurons, the channel openers possibly act by mimicking 

the effects of morphine on neuronal K+ currents.
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Introduction
The problem of dependence and tolerance is the 
major limiting factor in medical opioid usage.1 If 
this problem can be dissociated or tackled some-
how, opioid use can again become popular as they 
are the most effective drugs for the management of 
pain.2 Extensive research is going on for the devel-
opment of non-addicting opioids and/or agents that 
can prevent or reverse the addiction processes. New 
therapeutic agents are also explored for their ability 
to inhibit opioid-induced abstinence syndrome and 
self-administrative behavior.3 Some of the drugs used 
are based on specified mechanisms, and others have 
no rationale, indicating that the addiction processes 
may possibly involve multiple molecular mechanisms 
operating at different sites in the body.4 

While several mechanisms have been implicated 
for the development of opioid dependence and mani-
festation of the withdrawal syndrome, the manage-
ment of the established withdrawal syndrome has 
remained largely restricted to the substitution of the 
causative agent by a less addictive or weaker opi-
oid agonist, which has obvious limitations.5,6 In this 
regard, the use of clonidine, an alpha-2 agonist for the 
suppression of withdrawal effects, has met with lim-
ited success but has provided an important lead for 
future research to explore possible mechanisms that 
are distal to the opioid receptor and are affected during 
opioid dependence. Pharmacological manipulations 
of these mechanisms can yield therapeutic strate-
gies that employ non-opioid agents for the control of 
opioid dependence and withdrawal.7 To evolve such 
alternative therapeutic modalities, it is imperative that 
a clear understanding of the role of neurotransmitters/
second messengers and ionic fluxes across the mem-
brane during the development of dependence and in 
the control of withdrawal symptoms is essential.8,9

Extensive research work has been done to eluci-
date the role of various neurotransmitter systems (viz. 
opioidergic, catecholaminergic, cholinergic, seroton-
ergic, GABAergic and glutamatergic systems) in the 
development of withdrawal syndrome.10,11 In addition, 
the importance of second messengers like cAMP and 
calcium has also been elucidated to some extent. As 
far as the ionic fluxes are concerned, the role of cal-
cium and potassium has been considered important 
and explored by some researchers.12–16 Particularly, 
the T-type and L-type calcium channels have been 

implicated in the process of opioid dependence and 
withdrawal.17,18

ATP-dependent potassium (K+
ATP) channels have 

been reported to be involved in several actions of 
morphine following mu-receptor stimulation.19 K+

ATP 
channel blockers have also been found to antagonize 
morphine analgesia.20 But the precise role of K+

ATP 
channels in the genesis of opioid dependence and 
withdrawal syndrome remains to be clarified. There-
fore, it was thought worthwhile to investigate the 
role of K+

ATP channels using the channel modulators, 
namely an opener (minoxidil) and a blocker (gliben-
clamide), as pharmacological tools in morphine with-
drawal syndrome.

Material and Methods
Animals
Male albino Swiss mice weighing 20–25  g were 
housed five per cage at room temperature under a 
standard light/dark cycle with free access to food 
and water. All the animals were acclimatized to the 
laboratory conditions for at least two days prior to the 
initiation of any experiment. Each animal was used 
for only one experiment. The experiments were per-
formed between 9:00 a.m. and 5:00 p.m.

Drugs
Morphine sulphate was procured through the official 
agencies of Government of India. Naloxone hydro-
chloride, glibenclamide and minoxidil were supplied 
by Sigma-Aldrich Corporation. All drugs were dis-
solved in normal saline (0.9%).

Experimental procedure
Mice were rendered dependent on morphine by sub-
cutaneous (s.c.) injection of morphine sulphate; with-
drawal was induced four hours later by naloxone 
(s.c.), as per the method described elsewhere.21,22 The 
magnitude of withdrawal was evaluated by scoring 
different withdrawal signs within the next 30  min-
utes after naloxone challenge. A positive jumping 
response (where a mouse jumps more than four times 
during the observation period)21 was assigned a score 
of 4, hyperactivity response was a score of 3, diarrhea 
a score of 2 and urination a score of 1.

In the first series of experiments, morphine in 
a dose of 125  mg/kg followed 4  hours later by 
10 mg/kg naloxone, produced a full-fledged withdrawal  
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(positive jumping) in 80%–100% of the animals. 
Thirty minutes before naloxone, normal saline 
(control group) or minoxidil in different doses was 
administered intraperitoneally (i.p.) to observe their 
influence on withdrawal.

In the second series of experiments, morphine at 
a dose of 100 mg/kg followed by 2 mg/kg naloxone 
induced full-fledged withdrawal in 20% of the ani-
mals. Thirty minutes before naloxone, saline (control 
group) or glibenclamide in different doses was admin-
istered (i.p.) to observe their effect on withdrawal.

In addition, we also tested the interaction between 
glibenclamide and minoxidil, and their effects on with-
drawal. For this purpose, we administered minoxidil 
50 mg/kg i.p. 30 minutes prior to naloxone (10 mg/kg) 
challenge to the morphine-treated (125 mg/kg) mice. 
Glibenclamide (25 mg/kg i.p.) was given 15 minutes 
prior to minoxidil.

Statistical analysis
Median scores of withdrawal were calculated for each 
group of five mice in the study. The significance of 
the difference between the withdrawal scores of two 
groups was calculated by nonparametric statistical 
analysis by employing the Mann-Whitney U-test.23 
The difference between values were considered sig-
nificant at P , 0.05.

Results
In this study, we investigated the role of drugs modi-
fying the K+

ATP channels in naloxone-precipitated 
morphine withdrawal syndrome. We used minoxidil, 
a K+ ATP channel opener, and glibenclamide, a K+ 
ATP channel blocker.

Effect of minoxidil pre-treatment  
on naloxone-induced withdrawal
Minoxidil at a dose of 12.5  mg/kg inhibited the 
naloxone-induced withdrawal signs so that stereo-
typed jumping was observed in 50%, hyperactivity 
in 80%, and diarrhea and urination in 90% of the 
animals; 10% of the animals did not show any with-
drawal sign. The median score was found to be 8 
(P . 0.05) compared to the control group, where the 
median score was 10.

Minoxidil pre-treatment at a dose of 25  mg/kg 
further inhibited withdrawal. The signs comprised 
of stereotyped jumping in 10%, hyperactivity in 

60%, diarrhea in 40% and urination in 50% of the 
animals; 40% of the animals did not show any sign 
of withdrawal. The median score in this group was 6 
(P , 0.01). A 50 mg/kg dose of minoxidil inhibited 
withdrawal so much that 50% of the animals showed 
no sign of withdrawal. Hyperactivity was observed 
in 12.5% and diarrhea and urination in 50% of the 
animals. The median score in this group was 1.5 
(P , 0.01).

Therefore, minoxidil produced a dose-dependent 
inhibition of the withdrawal syndrome (Fig. 1).

Effect of glibenclamide pre-treatment  
on naloxone-induced withdrawal
Glibenclamide at a dose of 12.5 mg/kg facilitated the 
naloxone-induced withdrawal signs so that stereo-
typed jumping was observed in 40%, hyperactivity in 
70%, and diarrhea and urination in all of the animals. 
The median score was found to be 6 (P . 0.05) com-
pared to control group where median score was 3.

Glibenclamide pre-treatment at a dose of 25 mg/
kg further facilitated withdrawal. The signs com-
prised of jumping in 60%, hyperactivity in 80%, diar-
rhea in 90% and urination in 100% of the animals. 
The median score in this group was 9 (P , 0.05). At 
a dose of 50 mg/kg, glibenclamide facilitated with-
drawal so much that 60% of the animals showed the 
stereotyped jumping. Hyperactivity was observed in 
90%, and diarrhea and urination in 100% of the ani-
mals. Median score in this group was 10 (P , 0.05).

Therefore, glibenclamide produced a dose-related 
facilitation of morphine withdrawal syndrome (Fig. 2).
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Figure 1. Effect of minoxidil pre-treatment on naloxone (10  mg/kg) 
precipitated withdrawal. 
Note: **P , 0.01 as compared to control.
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Effect of glibenclamide on minoxidil-
induced inhibition of morphine 
withdrawal
Glibenclamide abolished the inhibitory effects of 
minoxidil, as stereotyped jumping was observed in 
60% of the animals. Hyperactivity was seen in 80%, 
and diarrhea and urination in 90% of the animals. No 
withdrawal sign was seen in 10% of the animals.

Therefore it was interesting to note that gliben-
clamide could also block the inhibitory effect of 

minoxidil on the development of morphine with-
drawal syndrome (Fig. 3).

Discussion
The opening of potassium channels shifts the mem-
brane potential to the hyperpolarized state and the 
excitability of the cell is reduced.24 This mechanism 
forms the basis of the inhibitory effects of several 
transmitter substances, such as that of acetylcholine 
on the heart25 and enkephalins on central neurons,26 
and is shared by the group of synthetic agents known 
as the potassium channel openers. It is now known 
that cromakalin, aprikalim, pinacidil, minoxidil, diaz-
oxide and nicorandil exhibit potassium channel open-
ing properties.27 These agents act specifically on K+

ATP 
channels. While other types of potassium channels, 
like those blocked by tetraethyammonium and qui-
nine, are not affected.28 One would expect that K+

ATP 
channel openers would hyperpolarize the membranes 
in the central nervous system and make the neurons 
less excitable. One of their pharmacological effects is 
their anticonvulsant activity.29–31

Our results show that minoxidil causes a significant 
dose-dependent inhibition of all the observed with-
drawal signs like jumping, hyperactivity, diarrhea and 
urination. In an earlier study, cromakalin and diazoxide 
were also found to inhibit several signs of morphine 
withdrawal (number of jumps, episodes of fore-paw 
tremors and body weight loss).32 The exact mechanism 
by which these K+

ATP channel openers inhibit morphine 
withdrawal is difficult to specify. However, as morphine 
opens K+

ATP channels in the neuronal cells,19 possibly 
K+

ATP channel openers mimic the effects of morphine 
on neuronal K+ currents and therefore may act as sub-
stitutes for this drug during morphine withdrawal.

As stated earlier, morphine withdrawal is inhib-
ited by several non-opioid drugs such as clonidine, 
which acts on alpha-2 adrenoceptors; (-)-N6-(R-
phenylisopropyl)-adenosine (R-PIA), which acts 
on adenosine A1 receptors; and 8-hydroxy-2-(di-n-
propylamino) tetralin (8-OH-DPAT), which acts on 
5-HTIA receptors.10,33,34 Stimulation of all these recep-
tors also promotes the opening of the K+

ATP channels in 
neurons26 and possibly inhibits morphine withdrawal 
as a consequence.32

In our study, glibenclamide showed a dose-
dependent facilitation of withdrawal. This was also 
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Figure 2. Effect of glibenclamide pre-treatment on naloxone (2 mg/kg) 
precipitated withdrawal. 
Note: *P , 0.05 as compared to control.
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Figure 3. Effect of glibenclamide on minoxidil induced inhibition of nalox-
one (10 mg/kg) precipitated withdrawal.
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statistically significant. Similarly, other studies showed 
that glibenclamide antagonizes nicotine-induced facil-
itation of morphine withdrawal.35 Glibenclamide has 
also been shown to antagonize morphine analgesia,20 
as it specifically blocks the K+

ATP channels in the cen-
tral nervous system through which morphine acts.19

Next, the interaction of glibenclamide with minox-
idil was tested. It was found that glibenclamide could 
also abolish minoxidil’s effect on morphine with-
drawal. A previous study conducted on memory recall 
processes also observed a similar interaction, where 
diazoxide blocked the effect of glibenclamide.36

The study clearly indicated that K+
ATP channels play 

an important role in the genesis of morphine with-
drawal, and their pharmacological modulation could 
be valuable in the management of opioid withdrawal.

Conclusion
The K+

ATP channel opener minoxidil was found to 
suppress morphine withdrawal dose-dependently, while 
the K+

ATP channel blocker glibenclamide caused a dose-
dependent facilitation of morphine withdrawal. The 
results are statistically significant and give convincing 
evidence that the K+

ATP channels play an important role 
in the genesis of opioid withdrawal. As the study sug-
gests that potassium channel openers could be useful in 
the management of opioid withdrawal, clinical trials are 
needed to confirm their efficacy for this purpose.
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