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Abstract: To perform a quantitative analysis with gene-arrays, one must take into account inaccuracies (experimental 
variations, biological variations and other measurement errors) which are seldom known. In this paper we investigated 
amplifi cation and noise propagation related errors by measuring intensity dependent variations. Based on a set of control 
samples, we create confi dence intervals for up and down regulations. We validated our method through a qPCR experiment 
and compared it to standard analysis methods (including loess normalization and fi ltering methods based on genetic vari-
ability). The results reveal that amplifi cation related errors are a major concern.
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1. Introduction
The transcriptome contains all the mRNA transcripts in a specifi c cell(type) under certain conditions. 
Depending on these conditions, the amount of individual mRNA may vary. Microarray studies allow 
the rapid identifi cation of many transcripts in cells under controlled conditions and can be used to 
compare expression patterns of genes between cell systems under different circumstances. For example, 
one can monitor the transcripts in normal versus diseased cells, or control cells versus cells lacking a 
specifi c gene or overexpression of a particular protein or a mutated form of a protein.

Analysis of such differential expression experiments often involves normalization (Smyth and Speed, 
2003; Cleveland, Grosse and Shyu, 1992), data fi ltering (Dudoit, Yang, Callow et al. 2000) and reporting 
measured changes. Subsequently, neural networks (Sawa and Ohno-Machado, 2003), eigenvalue 
decomposition (Sanguinetti, Milo, Rattray et al. 2005; Alter, Brown and Botstein, 2000) and various 
cluster algorithms (Bilu and Linial, 2002; Nakaya et al. 2001) can help to elucidate the results. Annota-
tion of genes with their cellular location, function or gene-category/sequence then provides more insight 
into the effects of the altered gene expression.

In this paper we focus on the measurement processes involved in such experiments. Microarrays 
contain a number of error-sources (Ramdas, Coombes, Baggerly et al. 2001), some of them physical 
(quenching (Kubista, 1994; Randolph andWaggoner, 1997)), some chemical (hybridization), some 
related to the electronics (gating (Schäferling and Nagl, 2006), dynamic range (de la Nava, van Hijum 
and Trelles, 2006), saturation (Lyng, Badiee, Svendsrud et al. 2004)). In most microarray experiments 
the measurement errors remain unknown, but they are widely believed to follow Lorentz distributions 
(Press, Teukolsky, Vetterling et al. 2003; Brody, Williams, Wod et al. 2002).

The general assumption with such experiments is that ’strong signals are better signals’. However, 
given the realization that cell systems might propagate noise throughout genetic pathways, we hypo-
thized that strong signals might be subject to greater measurement errors. Instead of having an absolute 
error one would then fi nd a relative error as well. To study such errors we conducted a number of 
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experiments that all included a control sample. 
That control sample would simultaneously account 
for experimental-, biological- and machine-related 
variations, after which we could assess the error 
distributions on an intensity specifi c basis. Based 
on the error model, our technique reports confi -
dence intervals for up/down regulation.

This study is set in the context of three 
experiments. The fi rst involves the mitogen-
activated protein kinase-activated protein 
kinase-5 (MAPKAPK5 or MK5). This this 
protein kinase belongs to the MAPK signaling 
pathway and at present, knowledge of its role in 
cellular processes remains limited (Gaestel, 
2006). To examine a possible effect of MK5 on 
transcription, we constructed a doxycycline-
inducible PC12 cell line that allowed inducible 
expression of a constitutive active form of MK5 
(MK5L337A). RNA was purifi ed from three inde-
pendent samples of cells grown in the presence 
of doxycycline (no expression of activated MK5) 
and from three independent samples of cells in 
which the expression of MK5 was turned on by 
removal of doxycycline. Each microarray slide 
(KTH Rat 27k Oligo Microarray-Operon ver3.0) 
was loaded with one sample uninduced (Cy5) 
and one sample induced (Cy3) (for a reference 
on Cy5/Cy3 see (Mujumdar, Ernst, Mujumdar et al. 
1993)). We added a fourth slide containing two 
induced samples as a control for measurement 
errors.

The second experiment involves the TATA 
binding protein Associated Factor 4 (TAF4). The 
transcription factor TFIID is a multiprotein 
complex composed of the TATA box-binding 
protein (TBP) and multiple TBP-associated 
factors (TAFs). TFIID plays an essential role in 
mediating transcriptional activation by gene-
specifi c activators. TAFs have been postulated to 
exert several important roles in transcription 
acting as core promotor specifi city factors and 
co-activators. Genetic studies in vertebrate cells 
also point to an essential role of TAFs in cell cycle 
progression (Thomas and Chiang, 2006; Naar, 
BD and Tjian, 2001; Albright and Tjian, 2000; 
Davidson, Kobi, Fadloun et al. 2005). Using 
siRNAs we measured the influence of TAF4 
depletion on the transcriptome1. These experi-
ments were performed in HeLa cells and SK-N-DZ 

cells. For each cell type we used 4 slides with 
scrambled siRNAs and 4 slides with TAF4-
directed siRNA. The microarrays relied on DIG 
(digoxigenin) labeling.

The third experiment focuses on a putative 
glycosyltransferase. A number of congenital 
muscular dystrophies (CMD) are now known to 
be associated with mutations in genes encoding 
for proteins that are either putative or determined 
glycosyltransferases. This supporst the idea that 
aberrant posttranslational modifications of 
proteins may represent a new mechanism 
of pathogenesis in the muscular dystrophies. One 
of these genes, fukutin-related protein (FKRP), 
is thought to be coding for a putative glycosyl-
transferase, but its function has not yet been 
established (Brockington, Blake, Brown et al. 
2002). To evaluate the possible effect of FKRP 
on transcription we transfected C2C12 cells with 
siRNA that targets FKRP. The results of the trans-
fection were measured using microarray analysis 
using DIG labeling. Table 1 gives an overview of 
the different experiments.

2. Analysis Method
The presented analysis method measures the 
variance of a control sample, then uses it to model 
an intensity dependent error distribution and based 
on that, defi nes confi dence intervals for each indi-
vidual spot, or group of spots. Regulations are 
reported as terms within a confi dence interval of 
95%. Conversion to ratios can be performed as 
necessary.

Acquiring the error model
To acquire the error model, one can employ two 
techniques. The fi rst supplies a number of iden-
tical pairs of biological samples and puts them on 
different slides. For instance, one slide can 
contain the TAF4 downregulated transcript, while 
another slide contains the normal transcript. One 
can then use the inter-slide variance to develop 
an error model. A second approach, and the one 
used for the MK5 experiment, acquires the error 
on the regulation difference. In this setup, one 
provides the same sample for red and green. 
Because red and green have the same content, one 
expects both channels to be equal for all spots. In 
the discussion below we assume that red and 
green name two samples that ought to be 
compared. Whether they are using Cy5/Cy3 

1SiRNA will bind to the transcript and activate the destruction or prevent 
translation of the target sequence (Elbashir, 2001).
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staining or DIG labeling is irrelevant for the 
discussion.

Figure 1 plots the red and green channel of such a 
control slide. We fi nd that the variance around the 
expected values increases together with the spot inten-
sity. This phenomenon indicates relative errors, and 
is the main reason why one relies on a log-transform. 
However, in the second half (with red or green inten-
sities larger than 32768) the variance decreases with 
increasing spots intensity. A partial reason for this 
might lie in the number of saturated pixels.

The above observation on the error distribution 
prohibits us to use a maximum likelihood estima-
tion of the absolute and relative errors (Ideker, 
Thorsson, A.F.Siegel et al. 2000; Press, Teukolsky, 
Vetterling et al. 2003). Instead, we model a collec-
tion of error distributions: one for each intensity. 
A two-dimensional map will count the number of 
spots with a specifi c intensity and deviation. Spot 
intensity (set out horizontally) is calculated as the 
mean of the red and green channel. Spot deviation 

Cy3

Cy5

x

y

Figure 1. Scatterplot of the control slides and the two measurements of the MK5 experiments. The red points are from slide 1. The green 
points are from slide 3. The blue points are from the control slide. Horizontally the red channel is set out, vertically the green. The bend is 
due to quenching (Kubista, 1994). The variance of the control slide can be observed in the width of the blue area. It increases up to 32768 
(indicated with gray dotted lines), after which it decreases again. In a perfect world, the control sample should have the same red as green 
value, and be a straight line.

(set out vertically) is red subtracted from green. 
Afterwards, the algorithm normalizes the two-
dimensional histogram so that each intensity has: 
a) a proper cumulative probability distribution and 
b) relies on enough samples to have a good estimate 
of the modeled error. This process is detailed in 
section 7 and results in two functions F and G. 
They produce respectively a probability distribu-
tion and cumulative probability distribution for 
each intensity (x).

 G x y P r g y r g x( ) ( ) ( )= − < + =with
2

 

For illustrative purposes, we added x and y labels 
to Figure 1. Figure 2 plots the error distribution 
of the MK5 experiment. When the error model is 
obtained from different slides then the probability 
distribution F (and associated cumulative distri-
bution G) is based on the error model of each slide 
and convolved accordingly.
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Confi dence intervals on one 
measurement
Assuming that the probability distribution f 
expresses the error distribution of a specifi c spot, 
and that r is the real (but unknown) regulation, 
then our measurement m will report a value in the 
range m = r + �, in which � satisfi es f. In other 
words, instead of measuring the real regulation, 
we will always measure the real regulation with 
some extra unknown error. Since we know m and 
have some understanding of � (its distribution) 
we can state that r = m − �. Thus, by determining 
a confi dence interval on � we can report a confi -
dence interval on r as well.

A 95% confi dence interval for spots with inten-
sity x is given as [G−1 (x) (0.025) : G−1 (x) (0.975)]. 
If a spot measures as m, then in 95% of the cases, 
the real regulation falls within

 m G m m G m− −⎡⎣ ⎤⎦
− −1 10 025 0 975(| |) ( . ) : (| |) ( . )  

Reporting regulations
A widely accepted method for quantitative measure-
ment are log-ratios. Despite widely used, they have 
a number of important limitations. First, the log ratio 
cannot capture information such as the measurement 

Figure 2. Error Distribution of various up/down regulation experiments. Horizontally the spot intensity is set out. Vertically the measurement 
error is set out as a cumulative distribution function. The cumulative distribution expresses the probability that a specifi c difference will occur 
due to experimental, biological or measurement variations. The colors are more intense within the 95% confi dence interval. With such a 
diagram one can to determine the limits in which a regulation is very likely to fall. The multiple diagrams are measurement errors obtained 
from different experiments and different machines. The MK5 sample was Cy5/Cy3 stained and scanned on a Tecan scanner. All other 
samples were DIG labeled and scanned on an Applied Biosystems 1700 microarray scanner. As an example how to read the diagrams: in 
the MK5 diagram (top right) we fi nd that the biological variation is larger for spots with intensity 32768. If a measured spot has intensity 
32768, then its 95% confi dence interval on the difference between the two channels is around[−9000, 9000] (marked with a white arrow).
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error. For instance the ratio 2/1 has probably more 
errors involved than 2000/1000. The log10 ratio will 
report 0.3 regardless. Secondly, the log ratio has 
numerical problems near zero. An up- or down-
regulation from zero to 1416 might make biological 
sense but it seems inappropriate to express it as a 
(log-)ratio of ∞.

To approach these challenges, our method 
reports the measured regulation as the difference 
between two slides, thereby including the lowest 
and highest expected differences (Table 2). In 
many cases this leads to an up- or downregulation. 
Such non-sensical regulations ought to be fi ltered 
out since the possible error outweighs the actual 
measurement. E.g. a confidence interval of 
[−1950 : 1950] for a spot with a regulation of 
−500 indicates that the real regulation-difference 
will range within [−2450 : 1450]. Figure 3A illus-
trates a set of points omitted due to such 
fi ltering.

When a consensus on the regulation exists 
(lowest boundary and highest boundary have the 
same sign), we can calculate the regulation ratios 
by assuming that either red or green could have 
been fully responsible for the measurement error. 
In such extreme cases the highest ratio can have a 
value of ∞.

Confi dence intervals on multiple 
measurements 
When multiple measurements are available, we 
can make the fi nal confi dence intervals smaller by 

convolving their respective probability functions. 
Section 7 covers the details. Table 2 illustrates the 
combination of oligosequences belonging to the 
same gene and consequently reports smaller confi -
dence intervals.

As an illustrative example of the advantage of 
combining the different probability distributions 
we investigate gene #34 (Table 2). The microarray 
measures this gene using two distinct probes, 
labeled Rn30006190 and Rn30021393. On slide 
1, Rn30006190 has an upregulation in the range 
[−455 : 2504] (measured as 999). On slide 2, it has 
an upregulation in the range [−256, 675] (measured 
as 184). On slide 1, Rn30021393 has an upregula-
tion in the range [−815 : 3106] (measured as 1017). 
On slide 2, it has an upregulation in the range 
[−1080 : 4131] (measured as 1623). None of these 
individual measurements can tell us something 
about the gene regulation since they all could have 
been downregulated as well. However, by 
combining their error distributions we are able to 
report that the overall gene is upregulated with at 
least a 6% increase and at most a 4.6 times increase 
(last row of Table 2).

3. Validation
We validated our method by means of qPCR and 
by comparing it to standard analysis protocols. For 
MK5 this analysis was performed at the Microarray 
facility in Tromsø. For the FKRP and TAF4 
experiments, this analysis was performed by 
UNIGEN (Trondheim).

A B

Figure 3. Plots illustrating the difference between standard fi ltered results (based on loess normalization and a consensus for both slides) 
and the fi ltering based on the confi dence intervals for the MK5 experiment. A) the red spots are reported by the standard method but no 
longer by the confi dence interval method. The green spots are the control slide, illustrating the large variance of the measurement. All spots 
omitted in the confi dence interval method were too close to the measurement error to be useful. B) The red spots are those reported in the 
confi dence interval method but not in the standard analysis. The green spots again represent the control slide.
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Quantitative PCR 
To validate the regulations we found in the TAF4 
experiment, we selected 22 genes and monitored 
their transcript levels by quantitative PCR (qPCR). 
Such qPCR results should be treated with caution. 
First, it is an inherent different measurement tech-
nique and thus it is unexpected that the results will 
completely fall within the reported confi dence 
intervals. Secondly, the quantitative PCR experi-
ment is often based on a new batch of cells, which 
means that the transfection efficiency can be 
different, and thus the actual results as produced 
in the qPCR can be a ratio higher or lower. A new 
batch was used for the TAF4 HeLa cells. The SK-
N-DZ cells were based on the same batch. To 
account for the transfection efficiency, we 
performed a least square fi t of the qPCR results to 
the microarray results. Thirdly, the primer 
sequences can be slightly different leading to 
different measurement effi ciencies. Fourth, the 
housekeeping gene used in the qPCR experiment 
can be indirectly linked with the genes we measure, 
leading to a gene specifi c bias. And as a last remark, 
since we do not have an error model of the qPCR 
measurements, the dynamic range of the house-
keeping gene might put a limitation on the qPCR 
accuracy. Notwithstanding these considerations, 
we performed 22 qPCR experiments, which 
confi rmed that our technique is a valuable analysis 
method. Table 4 summarizes the results.

From the 22 measurements, 3 were not used 
because we could doubt both the PCR and micro-
array results. In particular, a number of qPCR 
measurements could be considered up or down-
regulated depending on the analysis process 
followed (e.g. mean of ratios versus ratio of 
means). From the 19 remaining genes, 12 were 
fully correct, that is, the qPCR results fell within 
the reported confi dence interval. For 2 genes, the 
predicted upperbound was too low. For 3 genes, 
the microarray reported strong regulations, 
however the qPCR measurement was unable to 
measure the exact value because the CP values 
were too large. For these genes it is very likely 
that the microarray reported correct. One gene 
did not match between both experiments. And for 
1 gene the microarray experiments reported a 
confi dence interval that was substantially larger 
than the qPCR value.

In the strictest sense (upperbounds and lower-
bounds match), our method was able to match 79% 
of the qPCR results. If one is satisfi ed with proper 

lower bounds, then 89% of the results were 
reported accurately.

FKRP and TAF4 
Next to the qPCR validation, we compared our 
method to a blind analysis by other groups. The 
blind analysis for the FKRP and TAF4 experiments 
followed the guidelines of Allison, Cui, Page et al. 
2006. The PCA analysis revealed no outlier for any 
of the slides. The analysts attempted to gage the 
genetic variations (abbreviated: genvar) between 
the different slides and then report those that 
changed signifi cantly. For the TAF4 HeLa cells 
experiment, the genvar error model reduced the 
dataset to 70 signifi cant genes, while the intensity 
dependent analysis (abbreviated: indep) retained 
2497 genes2. Five genes were only reported in the 
genvar set. Those 5 were all below the average gene 
intensity and the mismatch may be due to the 
normalization differences (quantile vs Applied 
Biosystems) or microarray outliers. We would liked 
to have validated those 5 mismatches through qPCR, 
but no probe sequences, nor gene annotations were 
available, so we could not verify them. The previous 
22 qPCR measurements did however include 3 
genes that were reported in the genvar analysis. Two 
of these produced qPCR values with large CP values 
(thus with a high error rate), thereby offering little 
extra information. For the FKRP experiment there 
were no signifi cant alterations which was, according 
to the report, due to the few samples we provided 
(4 replicas vs 3 replicas). The indep analysis reported 
2977 regulations for the siRNA#1 group and 576 
regulations for the siRNA#2 group.

Compared to a standard analysis, our method 
reported more genes. In the TAF4 experiment, we 
found 35× more genes than the standard analysis. 
Most of these genes could be validated with qPCR, 
leading to the conclusion that standard analysis 
methods may be too stringent.

MK5
The standard microarray analysis, based on loess 
normalization (Cleveland, Grosse, and Shyu, 1992; 
Smyth and Speed, 2003), contained 27648 spots 
for each slide, of which 4007 pairs in agreement 
(both slides reporting the same qualitative regula-

2The TAF4 SK-N-DZ was not sent for analysis, but to be complete, we 
found 661 to be signifi cant.
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tion, being up or down). Based on both slides, our 
method only reported 1422 spots. Three hundred 
and eleven spots occurred in both methods, 1111 
spots were unique to our analysis and 3696 spots 
were unique to the standard analysis.

To better understand the differences in reported 
genes, it is helpful to include a picture (Figure 3) 
that illustrates both the variance on the measure-
ments and the samples we removed/retained.

The fi rst consideration regards spots that occurs 
in the loess set but not in our analysis. Is there a 
good reason why we should not take those partic-
ular data points into account ? Figure 3A illustrates 
the spots that only occurred in the loess set (red) 
as well as the variance of the experiment (green). 
Clearly, the omitted spots were too close within 
the expected variance to be useful.

The second concern regards those spots that only 
occurred in our analysis. These are pictured in Figure 
3B. The main reason why our method was more 
sensitive and could report them lies in the convolution 
of the error distributions of similar spots. This infor-
mation was unavailable to the loess method since 
there we were forced to stick to a more rigid approach 
that both slides agreed qualitatively.

The last concern regards overlapping spots. All of 
them should report at least the same qualitative regu-
lation. From the 311 spots, 10 failed to do so. Looking 
at the non-normalized data (Table 3) we fi nd that all 
spots were correctly reported by the confidence 
interval method. The reason why the loess method 
failed, probably lies in the model fi tting that will 
inevitable position certain spots at the wrong side of 
the zero-line (a ratio of 2 is after all closely located 
to zero when expressed as a log10 ratio).

4. Discussion
Our method was validated using qPCR and we 
found that it reports useful confi dence intervals 
(79% correct, 89% when omitting the upper limit). 
We also found that the method surpasses standard 
methods in the number of genes it reports (x35 in 
our case).

Difference between machines, cell 
lines and experiments 
The sampling of the error distribution is specifi c 
to the gain of the acquisition hardware, the biolog-
ical sample, the slide quality, slide manufacturer, 
supplier of the microarray hardware, temperature, 

sample handling and probably many more infl u-
ences. Therefore, the error model must be devel-
oped for each specifi c experiment. This is illus-
trated in Figure 2, which visualizes the difference 
between a number of these variables.

1.  We illustrated the technique on a knockdown of 
a gene as well as on a constitutive active gene. 
Figures 2A and B are the constitutive active 
MK5. Figures 2C, D, E and F are those with a 
knockdown of a gene. These fi gures also illus-
trate the technique on two different scanners. 
Figures 2A & B are made on a Tecan scanner 
with Cy5/Cy3 labeling. All others are made with 
DIG labeled slides scanned on an Applied Bio-
systems 1700 scanner.

2.  Figures 2G, H & I versus Figures 2C, D, E and 
F illustrate the differences between scrambled 
siRNA and specifi c siRNA. The results show 
that scrambled siRNA introduces more vari-
ability in the cell system than previously an-
ticipated. This might suggest that a scrambled 
siRNA alone as a negative control might not be 
suffi cient, or will in a sense, reduce the number 
of useful results that can be obtained from this 
type of experiment.

3. We illustrated the technique on the same 
experiment, but with different cell types. 
Figures 2C, G are performed in HeLa cells, while 
Figure 2E, I plots the data from SK-N-DZ cells. 
Compared to the FKRP experiments, they reach 
their maximum variability point at lower inten-
sities. Between the two different cell types we 
find that the SK-N-DZ cells reached their 
maximum variability point also at lower intensi-
ties.

4. Figure 2D plots siRNA#1 while Figure 2F plots 
the siRNA#2, which target slightly different 
FKRP mRNA. The small variations in Figure 2F 
might suggest that we would obtain more data 
from this experiment. This however is incorrect. 
For siRNA#2 we only obtained 576 valuable 
genes, while the siRNA#1 group produced 2977 
genes. This probably happened due to either a 
bad transfection efficiency (leading to low 
variations, but also to little useful data) or a low 
siRNA#2 impact in general. This illustrates that 
the size of the error as such does not provide 
much information, it must always be related to 
the impact of the cell alteration itself.

5.  Figures 2D, F, H are mouse survey gene arrays, 
while Figures 2C, E, G, I are human genome 
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have a major impact on the shape of the error plots. 
The type of cell perturbation, in our case, is a 
second major factor (scrambled siRNA vs specifi c 
siRNA). The specifi c cell lines (HeLa vs SK-N-
DZ), actual genes (TAF4 vs FKRP) and type of 
microarray (mouse versus human) have a lesser 
impact on the overall shape of the error plot.

Optimal areas of measurement 
Looking at the results (Figure 2 and 3B), our obser-
vations do not support the general believe that 
‘bright spots are good spots’. Actually, we fi nd that 
intense spots are subject too much larger errors. 
Therefore we might wonder whether there are 
measurement areas that produce the most informa-
tion. In our MK5 error model we fi nd that the bright 
spots are the ones that should be removed from the 
data set since they are too close to the expected 
error, while the darker spots often fall outside the 
measurement error (see Fig. 3A). Figure 3B illus-
trates this further: contrary to what one would 

survey arrays. We fi nd little overall impact of 
the type of array in the shape of the error 
plots.

6. Figure 2A is made using Cy5/Cy3 labeling 
without normalization. Figure 2B is the same 
fi gure but relying on quantile normalization. 
Figure 2C-I are based on the applied biosystem 
inter array normalization algorithm. The dif-
ferences in confidence intervals between 
Figure 2A and Figure 2B illustrates how our 
algorithm can model the inter-filter effect 
(Kubista, 1994). Instead of having a fl at ‘eye-
shaped’ error model (Fig. 2B), one fi nds back 
a ‘banana-shaped’ error model. This means that 
the model is independent from a particular 
normalization to account for light reabsorption. 
Using confi dence intervals, there is no particu-
lar need to perform separate dye specifi c nor-
malizations.
Looking at these observations, we see that the 

machine fabricant and normalization algorithm 

Table 4. Quantitative PCR analysis to verify differentially expressed genes. A number of the genes that were 
reported to be expressed differentially by the microarray analysis were measured using quantitative PCR. 

   qPCR results  Microarray results
TAF4 # Mean CT Ratio Fixed *1 Ratio least most Comments
 1 29.88 down 1.33 1.6 down 1.2 2.45 OK
 2 29.72 down 1.32 1.59 up 1.07 1.66 NO, *2
 3 29.41 up 1.03 1.24 up 1.22 1.78 OK
 4 30.84 up 1.09 1.32 up 7.84 inf NO, *6
 5 25.46 up 2.76 3.34 up 2.64 5.01 OK, *6
 6           down large large down 122.53 inf OK, *3,6
Hela  7 38.93 down 2.67 3.23 down 3.57 inf OK, *3
Cells 8 38.26 down 1.25 1.52 down 3.18 8.5 OK, *3
 9 34.02 up 1.04 1.26 up 1.13 1.88 OK
  10 31.1 down 1.2 1.45 down 1.22 2 OK
 11 26.09 down 1.02 1.23 down 1.23 1.91 OK
 12 35.48 up 1.38 1.67 up 1.03 1.59 NO, *4
 13 34.03 down 1.05 1.27 up 1.1 1.65 NO, *2,5
 14 35.99 up 1.03 1.25 down 1.11 1.54 NO, *2,5
 15 31.38 down 2.04 2.47 down 1.5 2.23 NO, *4
 16 31.01 up 1.06 1.28 up 1.08 1.65 OK
 17 34.67 up 1.49 1.8 up 1.36 3.32 OK
 18 28.73 down 1.47 1.47 down 1.16 1.7 OK
SK-N-DZ 19 28.15 down 1.52 1.52 down 1.03 1.98 OK
Cells 20 35.02 up 1.38 1.38 up 1.06 2.96 OK
 21 33.11 down 1.49 1.49 down 1.09 1.87 OK
 22 38.04 up 1.24 1.24 down 14.99 inf NO, *2,3
All results are reported as a ratio from the scrambled siRNA to the specifi c siRNA
* 1) HeLa cells results have been multiplied to account for transfection effi ciency; 2) Regulation direction reported wrong; 3) qPCR result 
diffi cult to obtain due to large CP values; 4) Microarray upperbound too low; 5) Diffi cult consensus on PCR results; 6) Also listed in the 
genvar analysis
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expect we fi nd the largest collection of useful spots 
at the edges around the origin.

Amplifi cation errors seem to outweigh 
genetic variability
Given the considerations these days on genetic 
pathways and genetic variability, we now discuss 
how these two factors influence our analysis 
method. The fi rst concern is that certain genes have 
a larger natural variability (unstable expressed 
genes) than other, more stably expressed, genes. 
Since our method does not assess genetic vari-
ability, it might omit signifi cant changes in stably 
expressed genes if they are too close to each other. 
It might also report highly unstable expressed 
genes as signifi cantly altered while, in reality, they 
might just have fallen outside the confidence 
interval by chance. While there may be such genes, 
our initial observations does not seem to be infl u-
enced by it. Our PCR results confi rm our confi -
dence intervals, which seems to indicate that the 
impact of genetic variability is much lower than 
anticipated. Instead we fi nd that the experimental 
variability, cell perturbation and consequent ampli-
fi cation/propagation cascades outweighs natural 
genetic variability.

The second concern addresses genetic path-
ways: the gene expression pattern in a cell is the 
result of a cascade event, where products of 
primary gene transcripts can affect the expression 
of other genes. Of course, when measuring the 
same samples, one still expects to fi nd the same 
values (e.g. in Figure 1, regardless of the gene 
linking, the control should be a straight line). 
However, if an error or a variability occurs in the 
initial perturbation, then it is not unexpected that 
this error will propagate along the same pathways. 
This effectively leads to a cascade of expression 
patterns, in which every step can reduce or increase 
the net output effect. In other words, the amount 
of transcribed gene can be dependent on the 
amount of transcripts of linked genes, but multi-
plied with an unknown factor. Very seldom will 
we fi nd that one expression pattern produces a new 
expression pattern with exactly the same amount 
of transcripts. So, by pooling together a random 
set of transcripts based on their intensity, we 
substantially limit the impact of genetic pathways. 
In the worst case scenario, if there were a signifi -
cant collection of dependent transcripts, all with 
the same expression levels, then they would be 

placed in the same intensity-slice, thereby sharp-
ening the probability distribution on that slice. This 
would in turn lead to a list of genes that could 
contain non-signifi cantly altered gene expressions. 
In our work, we did not fi nd much evidence that 
our intensity-based pooling is inadequate and/or 
overly sensitive to genetic pathways. The entire 
collection of probability distributions was in all 
our experiments smooth without outliers.

Lorentz distributions 
We believe that the presented method makes a fair 
trade off between a full understanding of the gene 
linkages/variations (which is something we cannot 
measure with 3 or 4 slides) and error models that 
do not take such possibility into account at all. 
Standard microarray error models are often based 
on the log-scale of the two channels (red/green or 
slide1/slide2) (Brody, Williams, Wod et al. 2002; 
Huber, von Heydebreck and Vingron, 2004). The 
resulting distributions appear as a Lorentz distribu-
tion (Press, Teukolsky, Vetterling et al. 2003; 
Brody, Williams, Wod et al. 2002). However, such 
distributions cannot capture relative errors in the 
experimental process. This leads to standard error 
models that are too wide for low intensity spots 
and too small for high intensity spots.

5. Conclusion
We presented a method to analyze differences 
between groups of microarrays, such as often found 
in differential gene expression experiments. Instead 
of reporting one single number for each regulation, 
we report the regulation including its confi dence 
interval. The confi dence interval is obtained from 
an error model that must be measured within the 
experiment itself.

We compared our method to a standard analysis 
method and illustrated its capability to fi lter out 
spots that are too close to the error to be useful. 
For indicative purposes we compared the reported 
results to standard analysis methods. We also 
performed a limited qPCR experiment. Although 
a relative small number of samples have been 
investigated, they support the credibility of our 
analysis method.

6. Material and Methods
Manufacturers instructions are used unless stated 
otherwise.
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Constitutive active MK5 cell-line
To clone the cDNA sequence of MK5, we intro-
duced two mutations in the pcDNA-HA-MK5WT 
plasmid (Seternes, Johansen, Hegge et al. 2002). 
Both used the Stratagene mutagenesis kit. The fi rst 
mutation assured compatibility with the pTRE2 
plasmid and used by using primer 5′-CCC-AAG-
CTT-GAC-GCG-TCC-ATG-TAT-GAT-G-3′ and 
its complementary reversed primer. The second 
mutation turned the wt MK5 into a constitutive 
active MK5L337A mutant. The resulting MK5 cDNA 
sequences were excised by MluI/NotI digestion 
and cloned into the corresponding sites of pTRE2. 
We verifi ed the plasmid by sequencing. Two 6-well 
plates with 5.105 PC12 TetOff cells (BD Biosci-
ences) were transfected with 14 µg of pTRE2-
MK5L337A and 2 µg pTKHyg per well using lipo-
fectamine 2000 (Invitrogen) (Pianese, Busino, 
Biase et al. 2002). After 3.5 h, the medium was 
changed and supplemented with 10 ng/ml Doxy-
cycline (Sigma). 24 h after transfection, cells were 
transferred to 10 cm dishes with fresh medium and 
Doxycycline. 48 h after transfection, 100 µg/ml of 
Geneticin (Gibco) and 200 µg/ml Hygromycin B 
(Invitrogen) was supplied additionally to the 
medium. The cells were grown until visible colo-
nies of resistant cells could be detected. From each 
plate two colonies were transferred in threefold 
dilution to a 96 well plate. For positive clones, we 
confi rmed the transgene expression through reverse 
transcriptase-PCR and western blot. Cells were 
maintained in DMEM supplied with 10% horse 
serum and 5% fetal bovine serum, 2 mM L-
glutamine, penicillin (110 units/ml) and strepto-
mycin (100 µg/ml). Additionally, 50 µg/ml of 
Geneticin, 100 µg/ml Hygromycin B were supplied 
to maintain selection. To suppress HA-MK5L337A 
expression during ordinary cell culture, we added 
10 ng/ml Doxycycline.

TAF4/FKRP knock-down using 
siRNAs
SiRNAs introduced into the cells lead to degrada-
tion of mRNA having the complementary 
sequence, thereby silencing/depressing gene 
expression. SiRNAs were pre-designed and 
ordered from Qiagen (http://www.qiagen.com/). 
For the FKRP experiment, the siRNAs sequences 
targeted AACCTCCTAGTCTTCTTCTAT; 
AACCCAAAGACTGGAGCAACT. For the 
TAF4 experiments ,  the s iRNA targeted 

AAGGCCTGTGGATACTCTTAA . Cells were 
plated at 105 cells/ml into a 6-well dish. Because 
of different growth-rates, HeLa and C2C12 cells 
were transfected after 24 hours, while SK-N-DZ 
cells were transfected after more than 48 hours. 
Two different transfection mixes were made. Both 
included 90 vol% D-MEM(SBS). The fi rst trans-
fection mix contained 10 vol% TAF4 siRNA (30 
nM siRNA/well). The second transfection mix 
contained 10 vol% scrambled siRNA. The 
different mixes were vortexed, 7.5 µl RNAiFect 
was added and then incubated for 15 minutes 
(room temperature). D-MEM was aspirated from 
the wells. Subsequently, 100 µl of the transfection 
mixture was added to each well in addition to 1.9 
ml fresh D-MEM (10% FBS + antibiotics). We 
produced each transfection mix in triplicate. 
Twenty-four hours after transfection, RNA was to 
be extracted for further analysis. The same proce-
dure was followed in the FKRP knockdown 
experiments.

RNA extraction and cDNA synthesis
C2C12 (FKRP), HeLa (TAF4) and SK-N-DZ 
(TAF4) cells were plated at 2.105 cells per well 
in a 6 well dish; MK5 stable cells at 5.105cells 
per 6 well dish. For the TAF4 and FKRP experi-
ment, cells were lysed by incubation in lysis 
buffer containing chaotropic salt and Proteinase 
K, after which RNA was isolated with the MagNA 
Pure Compact RNA system (Roche-Applied-
Science). For the MK5 experiment, we used the 
Nucleospin II RNA isolation kit (Machery-Nigel). 
The Nanodrop ND-1000 (Nanodrop technologies 
Inc.) verifi ed RNA concentrations and purity. One 
µg of RNA was reverse transcribed to cDNA using 
the iScript cDNA synthesis kit (Biorad) (MK5) 
and SuperScriptTMII from InvitrogenTM (remaining 
experiments).

Quantitative realtime PCR TAF4 
related genes
We made 4 cDNA dilutions: 1:2, 1:5, 1:10 and 
1:50. All were supplemented with mastermix, 
primers, probe and water. Relative expression for 
each target gene was normalized to GAPDH using 
the 2dCT method (Livak and Schmittgen, 2001). 
The expression differences between scrambled 
and normal siRNA were calculated by dividing 
the averages of each cell type. The qPCR exper-
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iments were performed on LightCycler 480 
(Roche), with accompanying software version 
1.2.0.0625.

Microarray
The number of slides and their layout is provided 
in Table 1. For the MK5 experiment, we made 3 
slides, each containing an induced (Cy3) and unin-
duced sample (Cy5). The 4th slide contained two 
induced samples. Samples were labeled with the 
3DNA 350S HS labeling kit (Genisphere). Hybrid-
ized slides were scanned using the Genepix 4000B 
(Molecular Devices) with a constant gain of  
950/800. We obtained more than 70% hybridiza-
tion (measured as #spots > median + 1SD). Spots 
with too large an intensity (>90% of the maximum) 
or too large a regulation (> × 10) were removed. 
For standard analysis, we relied upon a blind 
analysis of the microarray facility in Tromsø, 
which used loess normalization (Cleveland et al. 
1992). Our own analysis used quantile normaliza-
tion (Dudoit et al. 2000). For the FKRP and TAF4 
experiments, we used an Applied Biosystems 1700 
scanner, with AB. v2.0 slides surveying respec-
tively the mouse genome and human genome. 
UNIGEN in Trondheim performed a blind data 
analysis following the guidelines of (Allison, Cui, 
Page et al. 2006). This included quantile normaliza-
tion on the raw machine output. Our analysis was 
based on the already normalized output of the 
Applied Biosystems scanner.

7. Detailed Analysis Method

Notation 
We denote every slide with a number which is 
placed top-right. The control slide is marked with 
a c. In the bottom-right we refer to either the red 
or green channel. Eg dr

i  refers to the red channel 
of spot d in slide i. Each channel must be measured, 
with or without quantile normalization, but always 
without taking the logarithm. The maximum 
measurable value is expressed as C, which typi-
cally is 65535 (this is the maximum value that can 
be expressed using 16 bits). The dataset is prefer-
ably already fi ltered for false positives. The norm 
of a spot d is written as

 | |:d
d dr g=

+
2

 

The difference between the two channels is 
subscribed with a δ subscript. E.g. d d dr gδ = − .

Creating Histograms 
We model the error distributions as a collection of 
histograms in function of spot intensity. We rely 
upon sx bins, each in which we store a histogram. 
We denote hx the histogram for bin x. It will cover 
all the spots within intensity range xC

s
xC C

sx x
, .+⎡

⎣
⎢

⎤

⎦
⎥ The 

histogram hx counts the occurrences of a specifi c 
intensity. Using 2.sy bins, hx,y will cover all the 
spots for which the difference lies within               

yC
s

yC C
sy y

, .+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
The creation of these histograms obviously 

starts with each h 
x,y = 0. The algorithm below 

calculates the 2 dimensional histogram.

 

foreach spotd

x d s
C

y
d s

C
h h

x

y

x y x y

: | |

:
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=

=

= +

δ
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Smoothing 
After performing this process we smoothen out the 
distribution along the intensity axis. This ensures 
that each histogram contains a minimum amount of 
measurement-error measurements. The smoothing 
is performed adaptively by widening a window 
around each intensity until enough points are gath-
ered. If we call sp the minimum mass of each histo-
gram, then the algorithm below will create a 
smoothed collection of probability distributions and 
store it in g.

 

foreach intensity

while

X
w

g h

w w
g s

g

xx X w

X w

p

:

:

:

:

=

=

= +

<

= −

+∑

∑

0

1

do

x

x

x ==
∑
g
g
x
x

 

In the above, the total mass of a histogram is 
written as Σ h. The addition of histograms is the 
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same as the addition of the counts in each bin. If 
a and b are two histograms then c = a + b ⇔ ci = 
ai + bi.We use similar notation for division.

Multiple measurements 
Assume that we have a set of spots  M, all measuring 
the same process (e.g. the same oligosequence, or 
the same gene), then we can defi ne the overall 
measurement m as mr = ∑ ∈d M rd  and mg = Σd∈Μ  
dg . Then we also have that

 m d
d M

δ δ=
∈
∑  

The error distribution associated with a specifi c 
spot is written as �d

For each value of dδ we have an associated error 
distribution. The overall error distribution for mδ 
will consequently be the convolution of the under-
lying error distributions (written as *).

 � �m d
d M

=
∈
*  

Confi dence intervals
The confi dence interval of κ associated with m, 
given the error distribution m~ is given by

 CDF CDF� �m m
− −−⎛

⎝⎜
⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1 11
2

1
2

κ κ,  

ml and mh are the lowest and highest boundaries 
for measurement m.

Regulation Factors
Converting absolute regulation differences to 
regulation ratios requires that we assume that either 
mr or mg could have been fully responsible for the 
measurement error. This leads to the following 
possible regulation ratios:

 

f m m
m m

m

f m m
m m

m
f

g l
g l

g

g h
g h

g

1

2

3

0

0

= − < ∞
−

= − < ∞
−

if then else

if then else

== + < ∞ +
= + < ∞ +

if then else
if then else

m m m m
f m m m mh

r l r l

r h r

0
04

 

Min ({f1, f2, f3, f4}) reports the lowest possible 
regulation ratio. Max ({f1, f2, f3, f4}) reports the 
highest possible regulation ratio.
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