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Introduction
The ability of high-throughput gene expression tech-
nologies to reproducibly capture differences between 
populations stratified by a clinical covariate, such as 
cancer metastasis, is difficult when the sample size is 
small. When increasing the sample size of a study is 
not possible due to limited resources, approaches that 
integrate information from otherwise similar studies, 
though possibly employing different high-throughput 
technologies, may be explored.

Combining data from multiple studies is often 
 discussed in the context of its potential to increase the 
statistical power for detecting differentially expressed 
genes.1 An additional advantage of a  cross-study 
 analysis is the potential to reduce spurious associa-
tions driven by an artifact in a single platform or study. 
Statistical approaches for integrating gene expression 
data from multiple high-throughput  platforms include 
combining measures of statistical significance, such 
as P-values, calculated independently from the 
 individual studies,2 Bayesian models for the joint 
distribution of gene expression across studies,3,4 and 
the derivation of a study-independent scale, such as 
posterior probabilities of differential expression,5 to 
which standard single-study methods can be applied.6 
When the sample size in the  individual studies is 
small, nonparametric approaches that use the rank of 
fold-changes in expression across a binary phenotype 
may provide additional robustness to technological 
artifacts and outliers.7–9 This paper further explores 
the joint analysis of multiple platforms when the sam-
ple size in the individual studies is small.

The dataset used in this analysis consists of two 
primary (Capan2 and Panc1) and two metastatic 
(Capan1 and Hs766t) cell lines that were measured by 
3 high-throughput technologies for gene expression: 
two-color cDNA arrays, Affymetrix oligonucleotide 
arrays, and serial analysis of gene expression (SAGE). 
The data was originally described elsewhere.10 See11 
for a discussion of the technologies.11 As late  detection 
of pancreatic adenocarcinoma is a primary reason for 
its poor prognosis, the study of pancreatic cancer 
 progression is a biologically relevant problem. Stage-
specific genetic alterations can be useful markers for 
the more agressive phenotype.12 The heterogeneity of 
the pancreatic cancer phenotype and the small num-
ber of samples motivated an approach that integrated 
information from the multiple technologies.

Methods
Preprocessing
Our analysis uses previously collected data from 
 metastatic pancreatic cancer cell lines Capan1 (c1) 
and Hs766t (ht), and primary pancreatic cancer 
cell lines Capan2 (c2) and Panc1 (p1). See10 for a 
description of the cell lines.10 Inferences regarding 
differential expression depend crucially on appropri-
ate  pre-processing and normalization. Although we 
strongly prefer unprocessed data to processed data, 
this was not possible for the Affymetrix  platform. We 
used Mas 5.0 normalized Affymetrix data without 
 further processing. SAGE libraries were  standardized 
to tags per 50,000. cDNA data was normalized 
by loess smoothing of M versus A scatterplots13 
without  subtracting local estimates of background 
 fluorescence.14 Expression measures were trans-
formed to the log2 scale and centered by the gene-
specific means in each study.

Common gene set
Following normalization, the studies were merged 
to produce a common set of features measured in all 
three platforms. Note that the unit of measure for the 
combined analysis need not be genes. For instance, 
one may map probe identifiers in each platform to 
exons using the sequence information of the probes, 
and then treat exon-level measures of expression as 
the unit to be compared across technologies.15 As 
probes in an Affymetrix probe-set may map to more 
than one exon, one could pre-process and normal-
ize probe-level intensities using redefined probe-
sets.16  Alternatively, one may map features in each 
 platform to a Unigene cluster or refSeq identifiers. 
For this dataset, probe-level data was not available 
in the Affymetrix platform and the choice for cross-
 referencing annotations was limited. We therefore 
mapped probes (or probesets) in each platform to 
Unigene Cluster Identifiers (build 180) using the 
R package MergeMaid.17 One-to-many mappings of 
probes to Unigene clusters were excluded and many-
to-one mappings were averaged.

Gene filtering
As SAGE can in theory detect the mRNA transcripts 
for any gene, we only required membership in the 
Affymetrix and cDNA platforms. Specifically, any 
gene present in Affymetrix and cDNA that was not 
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detected by SAGE was assigned a count of zero in 
SAGE. For the cDNA and Affymetrix platforms, we 
excluded genes with very low levels of expression in 
2 or more of the cell lines to limit the influence of low 
abundance genes in the combined analysis. While 
more aggressive filtering strategies can improve 
measures of cross-study correlation, inter-platform 
discordance can arise from technological as well as 
biological sources of variation (eg, probes from dif-
ferent platforms may hybridize to different regions 
of a gene that is alternatively transcribed). After the 
above filtering, 3117 genes remain and were used in 
the cross-study analysis of differential expression.

Concordance
Concordance of the log-fold changes across plat-
forms were assessed using Spearman correlation 
coefficients, a rank-based alternative to the Pearson 
correlation coefficient, and Kappa statistics. Kappa 
statistics regard the high-throughput platforms as dif-
ferent observers of gene expression and can be used 

to quantify inter-observer agreement using qualitative 
measures of differential expression. Using a quan-
tile of the fold-change distribution in each platform, 
the observed fold-changes were classi-fied as  under-, 
none-, and over-expressed in each of the possible pair-
wise combinations of platforms. We used  qualitative 
categories of under-expressed, over-expressed, and 
not differentially expressed, yielding a 3 × 3 table 
with elements on the diagonal corresponding to the 
number of genes that have the same qualitative cat-
egory of differential expression in the two platforms. 
We adopted a weighted Kappa statistic that penalizes 
discordance of over versus under-expression.18

Results
Spearman correlations of the log2-transformed inten-
sities of cDNA and Affymetrix ranged from 0.21–0.57 
(Fig. 1). Correlations of cDNA and Affymetrix inten-
sities to standardized SAGE counts ranged from 
0.0–0.32, likely reflecting the greater dissimilarity in 
the technologies.
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Figure 1. For each platform, we calculated all 6 pairwise combinations of fold changes in expression between the four cell lines. Panels are color-coded 
to indicate whether the log2 fold change was between primary-primary (blue), metastatic-primary (yellow background), or metastatic-metastatic (green) 
cell lines.
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As a potentially more robust alternative to the 
Spearman correlation coefficient, we also assessed 
inter-platform concordance using qualitative catego-
ries of differential expression using a weighted Kappa 
statistic. We avoided characterizing agreement using 
a single arbitrary threshold by plotting the weighted 
Kappa over a range of thresholds based on quan-
tiles of the fold-change distribution (Fig. 2). Kappa-
statistics estimated from absolute fold-changes can 
be used to relax the assumption that the percentage 
of over- and under-expressed genes are the same, 
but were qualitatively similar to the Kappa plots in 
Figure 2 in the pancreatic cancer dataset (not shown). 
Again, the two intensity-based platforms (cDNA and 
Affymetrix) have the highest inter-platform agree-
ment (Kappa . 0.4). Together with the Spearman 
correlation coefficients, the small Kappa in several 
of the pancreatic cancer cell line comparisons reflects 
(i) our decision to minimize data filtering prior to the 
combined analysis, (ii) the absence of technologi-
cal replicates for quality control measures, (iii) the 
biological heterogeneity of the pancreatic cancer cell 
lines through passage, (iv) different laboratories per-
forming the experiments (batch effects), and (v) the 
non-overlapping technologies. To the extent that each 

platform is measuring a similar biological process, 
concordant findings in multiple platforms may reduce 
the occurrence of spurious single-study associations. 
With this view, we explore rank-based approaches 
for prioritizing a gene list and provide visualiza-
tions that make the cross-platform variability in the 
ranks transparent.

Rank-based approaches for cross-study analysis of 
differential expression in high-throughput microar-
ray platforms have been proposed by others.19,8 An 
implementation of these approaches is available in the 
R package RankProd. For this dataset, we ranked the 
average fold changes for the metastatic to primary can-
cer comparisons, and summarized the study-specific 
ranks by the arithmetic mean. By contrast, RankProd 
computes the geometric mean of the ranked fold 
changes.19,8 An advantage of using a geometric mean 
(instead of an arithmetic mean) is that the ranking 
will be more robust to unusual observations. In our 
dataset, there are four possible pairwise comparisons 
within a study and a given cell line is represented in 
half of the possible comparisons. In the absence of 
a better gene-specific measure of unusual, the effect 
of the arithmetic mean is that genes with higher vari-
ance in the ranks within and across studies will tend 
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 (fold-change . 1 − q), where q is a quantile of the fold-change distribution. On the vertical axis is a weighted kappa-statistics that penalizes discordance 
(over-expressed in platform 1, under-expressed in platform 2).
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to be positioned further down the list. See19 for a more 
detailed discussion of the when an arithmetic mean 
may be preferable.19 Overall, we expect that the two 
approaches will be qualitatively similar for the set of 
genes with low variance in the rankings.

While the rank of the average rank can be used to 
prioritize genes that show on average large fold changes 
in expression, such a statistic hides the variability in the 
ranks. We adopted the range of the ranks for each gene 
as a measure of spread. Of interest are genes that are 
consistently over (under)-expressed in metastatic rela-
tive to primary cell-lines as reflected by a small range 
of ranks and a large (small) average rank. In order to 
obtain a null distribution, we permuted the vector of 
ranked average fold changes in each study indepen-
dently of the other studies and recomputed the range of 
ranks and the rank of the average ranks. Repeating the 
permutation a large number of times, we obtained a null 
distribution for the range of ranks for each rank of the 
average rank. Figure 3 plots the observed range (y-axis) 
against the rank of the average rank (x- axis) as blue 
points. The background is shaded by the density of the 
null distribution for the range of ranks, where lighter 
shades of gray denote more densely plotted regions 
of the null. Boxplots of the null distribution at the far 
left and far right of this plot can be useful for magnify-
ing the lowest and highest average ranks, respectively 
(Fig. 4). In addition to plotting the null distribution for 
the range of ranks, we flagged genes for which the log 
fold change between the 2 primary cell lines or the 

2 metastatic cell lines exceeded 3 in one or more of the 
platforms. Again, a motivation for the flag is that the 
average fold-change can hide the underlying variability 
from which the ranks were estimated.

We selected eight genes for qPCR validation from 
the top 100 over- or under-expressed using the crite-
ria that the range of ranks was generally below the 
25th percentile of the null and whose whose biologi-
cal characteristics were of interest to collaborators 
with expert knowledge of pancreatic cancer. Among 
the under-expressed genes includes NME4, a mem-
brane protein that shares homology with the putative 
metastasis suppressor gene NME1,20 and TALDO1, an 
enzyme that helps protect cellular integrity from oxy-
gen intermediates. Included in the over-expressed list 
are NSDHL, a protein involved in cholesterol synthe-
sis, ATAD2, and CEACAM5. ATAD2 and CEACAM5 
are both known to be up-regulated in cancer cells.21,22 
Figure 5 plots the fold changes measured by qPCR 
as a fourth platform together with the high-throughput 
fold changes. The direction of the average qPCR fold 
change (up-regulated or down-regulated) is consis-
tent with the high-throughput platforms for 8/10 of 
the genes validated by qPCR, or 35/40 of the pairwise 
combinations. While the log2 fold-changes for Affyme-
trix and cDNA are often uncorrelated with SAGE, the 
direction of differential expression in SAGE is gener-
ally concordant for the set of qPCR-validated genes.

Among the qPCR-validated genes that were 
under-expressed in metastatic relative to primary 

0

200

400

600

800

1000

1200

1400

Rank (R)

R
an

g
e 

(R
)

1

Under−expressed Over−expressed

31172500200015001000500

Figure 3. Plotted are the ranks of the average platform-specific ranks of the average fold-change in expression comparing metastatic to primary cell lines 
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cell lines, the qPCR-estimated fold changes are 
overall correlated to the high-throughput measures 
of fold-changes, yet for a few of the comparisons 
the direction of fold change is discordant. In par-
ticular, the fold change estimated by qPCR for the 
ht-p1 comparison is greater than 2 for both the 
TALDO1 and PAM genes, whereas the fold change 
is slightly below 1 in each of the high-throughput 
platforms for these genes (Fig. 5). To determine 
whether alternative splicing could be a contribut-
ing factor for the apparent discordance between the 
high-throughput platforms and qPCR, we mapped 
the probe sequences in each of the four platforms to 
exons and used Aceview to assess whether known 
isoforms could account for differences.23 The exon 
mappings for 3 genes in which discordance could 
plausibly arise from alternative splicing are dis-
played in Figure 6. For instance, qPCR primers for 
TALDO1 in the initial experiment (q1) map to the 
4–5 exon junction. The 4–5 exon junction is not 
spanned by the high-throughput platforms and is 
absent in some transcripts on Aceview (not shown). 
Repeating the qPCR-validation (q2) with different 
primers, we found that the ht-p1 and ht-ct com-
parisons for TALDO1 were more consistent with 
the high-throughput platforms, yet fold-changes in 
expression remained discordant in others (6).

Discussion
This paper explores several approaches to assess con-
cordance of differential gene expression  measured 

from 2 primary and 2 metastatic pancreatic  cancer 
cell lines by 3 high-throughput platforms, with the 
goal of prioritizing a gene list for validation by 
qPCR. Pairwise scatter plots of the fold-changes in 
expression highlight the challenges of this analy-
sis, with near-zero correlations observed between 
the intensity-based arrays (Affymetrix and cDNA) 
and SAGE. As qualitative categories of differen-
tial expression can be less sensitive to technologi-
cal differences than quantitative measures of fold 
change, Kappa statistics plotted as a function of the 
threshold used to classify differential expression can 
provide a more robust assessment of concordance. 
For the pancreatic cancer analysis, Spearman cor-
relation coefficients and Kappa statistics indicate 
moderate concordance of the Affymetrix and cDNA 
platforms, but low concordance with SAGE. As 
opposed to dropping SAGE from the analysis, we 
adopted an approach whereby genes prioritized by 
the rank of the average platform-specific ranks could 
be visualized along with the spread of the observed 
ranks. Plotted against a background estimated from 
a null that assumes that the the ranks were indepen-
dent across platforms, one can identify genes near 
the top and bottom of the list that are ranked more 
consistently than one would expect under the null. 
Such a visualization could also be applied to alterna-
tive rank-based schemes for prioritizing gene lists, 
and alternative measures of rank variability. Over-
all, the fold changes in expression as measured by 
the high-throughput platforms for 10 genes near 
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the top (under-expressed in  metastatic) and bottom 
 (over-expressed in metastatic) of the list were in 
agreement with the fold changes measured by qPCR. 
While batch- and technological artifacts unrelated 
to the sequence-characteristics of the probes in 

the individual platforms are likely to account for 
much of the cross-platform discordance, hypotheses 
regarding biological mechanisms for discordance 
such as alternative splicing can be explored using 
the approaches discussed here.
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