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Introduction

The ability of high-throughput gene expression tech-
nologies to reproducibly capture differences between
populations stratified by a clinical covariate, such as
cancer metastasis, is difficult when the sample size is
small. When increasing the sample size of a study is
not possible due to limited resources, approaches that
integrate information from otherwise similar studies,
though possibly employing different high-throughput
technologies, may be explored.

Combining data from multiple studies is often
discussed in the context of its potential to increase the
statistical power for detecting differentially expressed
genes.! An additional advantage of a cross-study
analysis is the potential to reduce spurious associa-
tions driven by an artifact in a single platform or study.
Statistical approaches for integrating gene expression
data from multiple high-throughput platforms include
combining measures of statistical significance, such
as P-values, calculated independently from the
individual studies,” Bayesian models for the joint
distribution of gene expression across studies,** and
the derivation of a study-independent scale, such as
posterior probabilities of differential expression,’ to
which standard single-study methods can be applied.®
When the sample size in the individual studies is
small, nonparametric approaches that use the rank of
fold-changes in expression across a binary phenotype
may provide additional robustness to technological
artifacts and outliers.”” This paper further explores
the joint analysis of multiple platforms when the sam-
ple size in the individual studies is small.

The dataset used in this analysis consists of two
primary (Capan2 and Pancl) and two metastatic
(Capanl and Hs766t) cell lines that were measured by
3 high-throughput technologies for gene expression:
two-color cDNA arrays, Affymetrix oligonucleotide
arrays, and serial analysis of gene expression (SAGE).
The data was originally described elsewhere.!® See!!
for a discussion of the technologies.!! As late detection
of pancreatic adenocarcinoma is a primary reason for
its poor prognosis, the study of pancreatic cancer
progression is a biologically relevant problem. Stage-
specific genetic alterations can be useful markers for
the more agressive phenotype.'? The heterogeneity of
the pancreatic cancer phenotype and the small num-
ber of samples motivated an approach that integrated
information from the multiple technologies.

Methods

Preprocessing

Our analysis uses previously collected data from
metastatic pancreatic cancer cell lines Capanl (cl)
and Hs766t (ht), and primary pancreatic cancer
cell lines Capan2 (c2) and Pancl (pl). See' for a
description of the cell lines.!” Inferences regarding
differential expression depend crucially on appropri-
ate pre-processing and normalization. Although we
strongly prefer unprocessed data to processed data,
this was not possible for the Affymetrix platform. We
used Mas 5.0 normalized Affymetrix data without
further processing. SAGE libraries were standardized
to tags per 50,000. cDNA data was normalized
by loess smoothing of M versus A scatterplots'
without subtracting local estimates of background
fluorescence.'* Expression measures were trans-
formed to the log, scale and centered by the gene-
specific means in each study.

Common gene set

Following normalization, the studies were merged
to produce a common set of features measured in all
three platforms. Note that the unit of measure for the
combined analysis need not be genes. For instance,
one may map probe identifiers in each platform to
exons using the sequence information of the probes,
and then treat exon-level measures of expression as
the unit to be compared across technologies.” As
probes in an Affymetrix probe-set may map to more
than one exon, one could pre-process and normal-
ize probe-level intensities using redefined probe-
sets.!® Alternatively, one may map features in each
platform to a Unigene cluster or refSeq identifiers.
For this dataset, probe-level data was not available
in the Affymetrix platform and the choice for cross-
referencing annotations was limited. We therefore
mapped probes (or probesets) in each platform to
Unigene Cluster Identifiers (build 180) using the
R package MergeMaid."” One-to-many mappings of
probes to Unigene clusters were excluded and many-
to-one mappings were averaged.

Gene filtering

As SAGE can in theory detect the mRNA transcripts
for any gene, we only required membership in the
Affymetrix and cDNA platforms. Specifically, any
gene present in Affymetrix and cDNA that was not
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detected by SAGE was assigned a count of zero in
SAGE. For the cDNA and Affymetrix platforms, we
excluded genes with very low levels of expression in
2 or more of the cell lines to limit the influence of low
abundance genes in the combined analysis. While
more aggressive filtering strategies can improve
measures of cross-study correlation, inter-platform
discordance can arise from technological as well as
biological sources of variation (eg, probes from dif-
ferent platforms may hybridize to different regions
of a gene that is alternatively transcribed). After the
above filtering, 3117 genes remain and were used in
the cross-study analysis of differential expression.

Concordance

Concordance of the log-fold changes across plat-
forms were assessed using Spearman correlation
coefficients, a rank-based alternative to the Pearson
correlation coefficient, and Kappa statistics. Kappa
statistics regard the high-throughput platforms as dif-
ferent observers of gene expression and can be used

to quantify inter-observer agreement using qualitative
measures of differential expression. Using a quan-
tile of the fold-change distribution in each platform,
the observed fold-changes were classi-fied as under-,
none-, and over-expressed in each of the possible pair-
wise combinations of platforms. We used qualitative
categories of under-expressed, over-expressed, and
not differentially expressed, yielding a 3 x 3 table
with elements on the diagonal corresponding to the
number of genes that have the same qualitative cat-
egory of differential expression in the two platforms.
We adopted a weighted Kappa statistic that penalizes
discordance of over versus under-expression.'®

Results

Spearman correlations of the log,-transformed inten-
sities of cDNA and A ffymetrix ranged from 0.21-0.57
(Fig. 1). Correlations of cDNA and Affymetrix inten-
sities to standardized SAGE counts ranged from
0.0-0.32, likely reflecting the greater dissimilarity in
the technologies.
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Figure 1. For each platform, we calculated all 6 pairwise combinations of fold changes in expression between the four cell lines. Panels are color-coded
to indicate whether the log, fold change was between primary-primary (blue), metastatic-primary (yellow background), or metastatic-metastatic (green)

cell lines.
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As a potentially more robust alternative to the
Spearman correlation coefficient, we also assessed
inter-platform concordance using qualitative catego-
ries of differential expression using a weighted Kappa
statistic. We avoided characterizing agreement using
a single arbitrary threshold by plotting the weighted
Kappa over a range of thresholds based on quan-
tiles of the fold-change distribution (Fig. 2). Kappa-
statistics estimated from absolute fold-changes can
be used to relax the assumption that the percentage
of over- and under-expressed genes are the same,
but were qualitatively similar to the Kappa plots in
Figure 2 in the pancreatic cancer dataset (not shown).
Again, the two intensity-based platforms (cDNA and
Affymetrix) have the highest inter-platform agree-
ment (Kappa > 0.4). Together with the Spearman
correlation coefficients, the small Kappa in several
of the pancreatic cancer cell line comparisons reflects
(1) our decision to minimize data filtering prior to the
combined analysis, (ii) the absence of technologi-
cal replicates for quality control measures, (iii) the
biological heterogeneity of the pancreatic cancer cell
lines through passage, (iv) different laboratories per-
forming the experiments (batch effects), and (v) the
non-overlapping technologies. To the extent that each
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platform is measuring a similar biological process,
concordant findings in multiple platforms may reduce
the occurrence of spurious single-study associations.
With this view, we explore rank-based approaches
for prioritizing a gene list and provide visualiza-
tions that make the cross-platform variability in the
ranks transparent.

Rank-based approaches for cross-study analysis of
differential expression in high-throughput microar-
ray platforms have been proposed by others."”® An
implementation of these approaches is available in the
R package RankProd. For this dataset, we ranked the
average fold changes for the metastatic to primary can-
cer comparisons, and summarized the study-specific
ranks by the arithmetic mean. By contrast, RankProd
computes the geometric mean of the ranked fold
changes."”® An advantage of using a geometric mean
(instead of an arithmetic mean) is that the ranking
will be more robust to unusual observations. In our
dataset, there are four possible pairwise comparisons
within a study and a given cell line is represented in
half of the possible comparisons. In the absence of
a better gene-specific measure of unusual, the effect
of the arithmetic mean is that genes with higher vari-
ance in the ranks within and across studies will tend
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Figure 2. Genes were classified as under-expressed (fold-change < @), not differentially expressed (g < fold-change = 1 — q), or over-expressed
(fold-change > 1 — q), where q is a quantile of the fold-change distribution. On the vertical axis is a weighted kappa-statistics that penalizes discordance

(over-expressed in platform 1, under-expressed in platform 2).
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to be positioned further down the list. See'® for a more
detailed discussion of the when an arithmetic mean
may be preferable.!'” Overall, we expect that the two
approaches will be qualitatively similar for the set of
genes with low variance in the rankings.

While the rank of the average rank can be used to
prioritize genes that show on average large fold changes
in expression, such a statistic hides the variability in the
ranks. We adopted the range of the ranks for each gene
as a measure of spread. Of interest are genes that are
consistently over (under)-expressed in metastatic rela-
tive to primary cell-lines as reflected by a small range
of ranks and a large (small) average rank. In order to
obtain a null distribution, we permuted the vector of
ranked average fold changes in each study indepen-
dently of the other studies and recomputed the range of
ranks and the rank of the average ranks. Repeating the
permutation a large number of times, we obtained a null
distribution for the range of ranks for each rank of the
average rank. Figure 3 plots the observed range (y-axis)
against the rank of the average rank (x- axis) as blue
points. The background is shaded by the density of the
null distribution for the range of ranks, where lighter
shades of gray denote more densely plotted regions
of the null. Boxplots of the null distribution at the far
left and far right of this plot can be useful for magnify-
ing the lowest and highest average ranks, respectively
(Fig. 4). In addition to plotting the null distribution for
the range of ranks, we flagged genes for which the log
fold change between the 2 primary cell lines or the

2 metastatic cell lines exceeded 3 in one or more of the
platforms. Again, a motivation for the flag is that the
average fold-change can hide the underlying variability
from which the ranks were estimated.

We selected eight genes for qPCR validation from
the top 100 over- or under-expressed using the crite-
ria that the range of ranks was generally below the
25th percentile of the null and whose whose biologi-
cal characteristics were of interest to collaborators
with expert knowledge of pancreatic cancer. Among
the under-expressed genes includes NME4, a mem-
brane protein that shares homology with the putative
metastasis suppressor gene NME1,?° and TALDO1, an
enzyme that helps protect cellular integrity from oxy-
gen intermediates. Included in the over-expressed list
are NSDHL, a protein involved in cholesterol synthe-
sis, ATAD2, and CEACAMS. ATAD2 and CEACAMS5S
are both known to be up-regulated in cancer cells.?!*
Figure 5 plots the fold changes measured by qPCR
as a fourth platform together with the high-throughput
fold changes. The direction of the average qPCR fold
change (up-regulated or down-regulated) is consis-
tent with the high-throughput platforms for 8/10 of
the genes validated by qPCR, or 35/40 of the pairwise
combinations. While the log, fold-changes for Affyme-
trix and cDNA are often uncorrelated with SAGE, the
direction of differential expression in SAGE is gener-
ally concordant for the set of qgPCR-validated genes.

Among the gPCR-validated genes that were
under-expressed in metastatic relative to primary

1 500 1000 1500 2000 2500 3117

Under-expressed

. Over-expressed
Rank (R)

Figure 3. Plotted are the ranks of the average platform-specific ranks of the average fold-change in expression comparing metastatic to primary cell lines
(x-axis) versus the range of the within-platform ranks (y-axis). The null distribution was obtained from 1000 permutations of the gene labels within each
study. For each permutation, the range of ranks were ordered by the average rank. The shaded background depicts the density of the null distribution
of the range of ranks at each rank of the average rank, with lighter shades denoting more densely plotted regions of the null. The black line is the 0.05
quantile of the permutation distribution.
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Figure 4. Left: Boxplots of the null distribution of the range of ranks for the top 10 under-expressed and over-expressed genes across. The observed
range is plotted as a circle. Flagged circles indicate a within-class (primary or metastatic) fold change exceeding 3 in one or more of the platform. Right:
The observed fold changes for the top genes with the smallest (under-expressed in metastatic) and largest (over-expressed in metastatic) rank of the

average rank.

cell lines, the qPCR-estimated fold changes are
overall correlated to the high-throughput measures
of fold-changes, yet for a few of the comparisons
the direction of fold change is discordant. In par-
ticular, the fold change estimated by qPCR for the
ht-pl comparison is greater than 2 for both the
TALDO1 and PAM genes, whereas the fold change
is slightly below 1 in each of the high-throughput
platforms for these genes (Fig. 5). To determine
whether alternative splicing could be a contribut-
ing factor for the apparent discordance between the
high-throughput platforms and qPCR, we mapped
the probe sequences in each of the four platforms to
exons and used Aceview to assess whether known
isoforms could account for differences.”® The exon
mappings for 3 genes in which discordance could
plausibly arise from alternative splicing are dis-
played in Figure 6. For instance, qPCR primers for
TALDOI in the initial experiment (ql) map to the
4-5 exon junction. The 4-5 exon junction is not
spanned by the high-throughput platforms and is
absent in some transcripts on Aceview (not shown).
Repeating the qPCR-validation (q2) with different
primers, we found that the ht-pl and ht-ct com-
parisons for TALDO1 were more consistent with
the high-throughput platforms, yet fold-changes in
expression remained discordant in others (6).

Discussion
This paper explores several approaches to assess con-
cordance of differential gene expression measured

from 2 primary and 2 metastatic pancreatic cancer
cell lines by 3 high-throughput platforms, with the
goal of prioritizing a gene list for validation by
qPCR. Pairwise scatter plots of the fold-changes in
expression highlight the challenges of this analy-
sis, with near-zero correlations observed between
the intensity-based arrays (Affymetrix and cDNA)
and SAGE. As qualitative categories of differen-
tial expression can be less sensitive to technologi-
cal differences than quantitative measures of fold
change, Kappa statistics plotted as a function of the
threshold used to classify differential expression can
provide a more robust assessment of concordance.
For the pancreatic cancer analysis, Spearman cor-
relation coefficients and Kappa statistics indicate
moderate concordance of the Affymetrix and cDNA
platforms, but low concordance with SAGE. As
opposed to dropping SAGE from the analysis, we
adopted an approach whereby genes prioritized by
the rank of the average platform-specific ranks could
be visualized along with the spread of the observed
ranks. Plotted against a background estimated from
a null that assumes that the the ranks were indepen-
dent across platforms, one can identify genes near
the top and bottom of the list that are ranked more
consistently than one would expect under the null.
Such a visualization could also be applied to alterna-
tive rank-based schemes for prioritizing gene lists,
and alternative measures of rank variability. Over-
all, the fold changes in expression as measured by
the high-throughput platforms for 10 genes near
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Figure 5. The observed fold changes of 10 genes selected for validation by gPCR. Fold changes less than 1/16 or greater than 16 were thresholded.

the top (under-expressed in metastatic) and bottom
(over-expressed in metastatic) of the list were in
agreement with the fold changes measured by qPCR.
While batch- and technological artifacts unrelated
to the sequence-characteristics of the probes in
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the individual platforms are likely to account for
much of the cross-platform discordance, hypotheses
regarding biological mechanisms for discordance
such as alternative splicing can be explored using
the approaches discussed here.
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Figure 6. Probes for the high-throughput platforms and primers from the initial

(91) and repeated gPCR (g2) experiments were each mapped to exons

(top). For TALDO1, the fold changes measured by gPCR were more consistent with the high throughput platforms using a primer that does not span the
exon 4-5 junction. For PAM, the pattern of expression is similar in both qPCR experiments, regardless of whether the primer spanned exons 13-15 or 25.
For the HMMR gene, we observe substantial heterogeneity in the SAGE platform with probes for exon 18. While we observe similar levels of heterogeneity
in the repeated gPCR experiment with primers for exon 18, the fold changes were only moderately correlated.
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