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Abstract
Motivation: Existing methods for estimating copy number variations in array comparative genomic hybridization (aCGH) data are 
limited to estimations of the gain/loss of chromosome regions for single sample analysis. We propose the linear-median method for 
 estimating shared copy numbers in DNA sequences across multiple samples, demonstrate its operating characteristics through simula-
tions and applications to real cancer data, and compare it to two existing methods.
Results: Our proposed linear-median method has the power to estimate common changes that appear at isolated single probe positions 
or very short regions. Such changes are hard to detect by current methods. This new method shows a higher rate of true positives and a 
lower rate of false positives. The linear-median method is non-parametric and hence is more robust in estimating copy number. Addi-
tionally the linear-median method is easily computable for practical aCGH data sets compared to other copy number estimation 
methods.
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1. Introduction
During cell division, a cell replicates its genome by 
synthesizing a new copy of each chromosome, using 
the original DNA as a template. The expected copy 
number of 2, may be less/greater than 2 when altera-
tions occur during the replication process. Research 
has suggested that such abnormalities in the number 
of DNA copies in a cell are associated with the devel-
opment and progression of disease, including cancer.1 
Laboratory research to estimate the altered copy 
 numbers in a DNA sequence often uses aCGH. The 
technology used to produce aCGH data, however, 
may result in data that contain uncontrollable noise.2 
The use of appropriate statistical methods to normal-
ize the data and produce meaningful estimates of 
copy number variation in a DNA sequence is integral 
to this research. Developing improved statistical 
methods for this application is the focus of this 
paper.

Different statistical methods have been suggested 
for use with aCGH data to estimate copy numbers 
in DNA sequences. Methods to analyze copy num-
bers in terms of identifying the locations of gains or 
losses of chromosome regions have been developed. 
Assuming that there is a connection between copy 
number changes in a cancer cell and the develop-
ment/progression of the cancer, there must exist some 
common change regions in DNA sequences collected 
from different patients with the same cancer  diagnosis. 
Techniques for analyzing shared copy number regions 
have been developed.3,4 For detecting copy number 
regions in a single sample, Olshen et al5 and 
 Venkatraman et al6 had developed a widely used 
method, the faster circular binary segmentation 
(CBS) method. In this paper, we propose a new 
method, the linear-median method, for estimating 
shared copy number alterations in DNA sequences 
collected from the same type of cancer cells. The 
linear-median method is able to optimally use the 
information available across independent DNA 
sequences.

This paper is organized as follows. In Section 2.1, 
we discuss current existing statistical models used to 
assess aCGH data and describe a new model for ana-
lyzing multiple independent aCGH data sets. We 
introduce the linear-median method in Section 2.2. In 
Section 3.1, we present three simulation studies. We 
study how much extra information on copy number 

aberration can be obtained by using the linear-median 
method compared to the comparative genomic 
 hybridization minimal common region (cghMCR) 
method and the CBS algorithm. We present an 
 application of the linear-median method to real data 
in Section 3.2. Supporting figures and tables are avail-
able online as Supplementary Material.

2. Methods
2.1. Modeling DNA copy number  
alterations in aCGh data
aCGH employs the comparative hybridization of 
genomic DNA that is differentially labeled according 
to its source in a cancer cell versus a normal cell. The 
ratio of the hybridization intensities along the chro-
mosomes provides a measure of the relative copy 
number of sequences in the genomes that hybridize to 
each location on the chromosomes. Estimating copy 
numbers and identifying the locations of gains and 
losses in a DNA sequence are two main challenges in 
the analysis of aCGH data. We label the normal 
genomic sequences as “reference” sample and the 
genomic sequences from cancer cells as the “test” 
sample. Let Tp denote the “test” copy number at probe 
position p and Rp denote the “reference” copy number 
at probe position p.

We briefly describe two current methods for 
 modeling aCGH data. Let us denote by Yp the aCGH 
data (the logarithm intensity ratio) observed at probe 
position p.

Model 1: Yp = log2(Tp/Rp) + εp, (1)

where εp are i.i.d. with normal distribution N ( , ).0 2σ ε  
This Gaussian model forms the basis of many models 
for aCGH data.4,6–8

Model 2: Y
T
Rp

p p

p p
=

+
+









log2

ε
η

, (2)

where εp and ηp are i.i.d with a normal distribution 
N(0,σ2).9,10

In practice, Rp is assumed to be 2. Given the loga-
rithm intensity ratio observations, {Yp}, we want to 
estimate the true copy number at position p or to esti-
mate if the copy number at p is greater/less than 2.
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Models 1 and 2 assume very different probability 
structures to describe the system. The variance of the 
log intensity ratios given by Model 1 is a constant, 
whereas the variance of the log intensity ratios given 
by Model 2 is a function of Tp.

We consider which of the two models is a more 
appropriate model for the analysis of aCGH data. 
Although Model 1 looks simpler, it is not an appropri-
ate model for aCGH data. The main reason for this is 
that aCGH data provide the ratio of the copy  number 
variations, not the ratio of the copy numbers. Further-
more, empirical studies show that the standard error 
of the logarithm of the intensity ratios increases as the 
copy number increases. Additionally, the distribution 
of the logarithm of intensity ratios is skewed.9 Thus, 
the distribution of εp should not be assumed to be nor-
mal if Model 1 is adopted.

Compared to Model 1, Model 2 is a more appro-
priate model for aCGH data, as it takes into account 
the ratio of the copy number variations. However, 
this model can be improved further. The normality 
assumptions on the distributions of εp and ηp can 
imply that negative values of εp and ηp will lead to 
log2 (Tp + ε/2 + η) being ill-defined. Theoretically, 
this will cause problems for statistical inference 
 methods based on such an assumption.

In Model 2, the errors εp and ηp play the role of 
 measurement errors. Given the fact that the aCGH tech-
nique is maturing, it might be reasonable to suggest that 
both εp and ηp follow a uniform distribution U(-a, a), 
where a can assume any value between 0 and 2, depend-
ing on the nature of the underlying aCGH technique. If 
a takes a value close to 2, this may mean that the under-
lying aCGH technique is not very accurate, possibly 
leading to a very large variation in the observations of 
the intensity ratios. If a takes a value close to 0, we may 
assume that the underlying aCGH technique is very 
accurate and that there is less variation in the observa-
tions of the  intensity ratios. For explicit technical con-
siderations see wikipedia.2 For our purpose, we restrict 
a to be less than 2. We apply this restriction to real data 
analysis in Section 3.2. The output of the real data anal-
ysis shows the restriction is acceptable.

Therefore, we consider a third model:

Model 3: X
T
Rp

p p

p p
=

+
+
ε
η

,  (3)

where εp and ηp are independent and have uniform 
distribution U(-a, a) with constant a ∈ (0, 2), and Xp 
is the observed intensity ratio at probe position p.

To allow the model to be more flexible, we can 
assume that the uniform distributions for εp and ηp are 
not necessarily the same.

Model 3 is used to model one aCGH profile from 
one sample/patient. However, if there is a group of 
independent samples of aCGH data (eg, multiple 
patients) and their data share copy number change 
regions, we can extend Model 3 to such data.

Consider the following scenario. A group of n 
patients suffer from a common cancer. For each 
patient a sample of aCGH data is collected from a 
cancer cell. Let Xi,p be the observed intensity ratio for 
the ith sample at probe position p. We use tp to denote 
the theoretical true value of the shared copy number 
at probe position p for the “test” and let Ti,p be the true 
copy number for the ith patient at probe position p. 
Ti,p is not necessarily equal to tp because, for different 
patients, the copy number at position p might be 
affected by different uncontrollable random factors. 
We use Tp to denote the observed copy number for 
“test” at position p. Tp is a random variable and Ti,p is 
a sample from Tp. Let Ri,p be the true copy number for 
the ith “reference” at the position p. In this paper, we 
always assign Ri,p = 2 because the true copy number 
for the reference (normal) genome is 2 (For the pur-
pose of this study we ignore some special cases).

For multiple independent aCGH data, the extended 
model can be considered as

Model 4

1 1 2

: ,

, , , , ,

,
, ,

, ,
X

T
R

p M i n

i p
i p i p

i p i p
=

+
+

=

ε
η

# # 

 (4)

where M is the total number of probe positions; n is 
the number of independent samples in the group; εi,p 
and ηi,p are mutually independent random  variables; 
Ti,p has distribution P(Ti,p = tp) = π and P(Ti,p = 2) = 1–π, 
if tp ≠ 2, ie, if at probe position p the shared true copy 
number is not 2, then the copy  number given by the 
ith sample at the probe position will follow a Ber-
noulli distribution with mean π; εi,p and ηi,p will have 
uniform distributions U(-a,a), as defined in Model 3. 
(Different uniform distributions are allowed for εi,p 
and ηi,p; however, such applications are beyond the 
scope of this paper.)
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Model 4 provides a flexible way to model multiple 
independent aCGH data in terms of the following 
arguments:

i. The probability distributions of εi,p and ηi,p are 
allowed to be different. This means that the prob-
ability distribution of the measurement errors for 
the “test” and “reference” are allowed to be 
different.

ii. The true shared copy number at position p is no lon-
ger a constant. Tp is a random variable. This means 
that the copy number (if it were observable) at posi-
tion p could be different from patient to patient.

Hereafter, we consider multiple independent 
aCGH data and assume Model 4 as the basis for 
developing a method to estimate the shared copy 
number tp, p = 1, ⋅⋅⋅, M.

2.2. The linear-median method
Currently, all raw data used for copy number analysis 
are presented in the format of a log2 intensity of the 
ratios of the test to the reference. From the current 
literature, we know that a linear format refers to using 
the intensity of the ratios of the test to the reference, 
and a nonlinear format refers to using a log2 intensity 
of the ratios of the test to the reference, as the 
log2(ratio) is not linearly related to the copy number. 
The variance of a linear format tends to be larger than 
the variance of a nonlinear format when the relative 
copy number is far away from 1.11 This may explain 
why the nonlinear format is widely used.

It is expected that the log2 of the true relative 
copy number, ie, log2 (tp /Rp), can be well estimated 
using the observations of the log2 intensity of the 
ratios of the test to the reference, ie, log2 [(Ti,p+ εi,p)/
(Ri,p+ηi,p  )], through the sample mean. Unfortunately, 
this is generally not true. A simple reason for this is 
that, in general,
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Further, the probability distribution of log2 [(Tp+ εp)/
(Rp+ ηp   )] is not symmetric. Therefore, the sample 

mean of log2 [(Ti,p+ εi,p)/(Ri,p+ ηi,p)] might be biased 
from E [log2 ((Tp+εp)/(Rp+ηp))] for smaller  samples. 
Figure 1 shows a histogram of simulated data drawn 
from the population log2 [(1 + ε)/(2 + η)], with ε and η 
i.i.d. uniformly distributed U(-1.8, 1.8) (the function 
will not be defined if 1 + ε # 0).

For the estimating procedure we propose, we will 
use linear format data rather than nonlinear format 
data to estimate the shared copy number at probe 
position p, 0 # p # M.

As defined in Model 4, Xi,p is a random variable of 
the intensity of the ratios of the test to the reference 
given by the ith sample at probe position p, 1 # p # M, 
and satisfies the model

X
T
R

p M i ni p
i p i p

i p i p
,

, ,

, ,
, , , , , , , , ,=

+
+

= =
ε
η

1 2 1 2 

where i denotes the ith sample/patient; εi,p and ηi,p are 
i.i.d. with uniform distribution U(-a, a); Ti,p and Ri,p 
are the test intensity and reference intensity, respec-
tively, for probe p for the ith sample.

As stated in Section 2.2, we always assign Ri,p = 2, 
which is the information given by the “reference” 
genome. The true shared copy number tp at position p 
needs to be estimated. The estimate of tp is denoted by 
t̂ p,1 # p # M.

Let xi,p be the observed values of Xi,p, i = 1, 2, ⋅⋅⋅, n, 
p = 1, ⋅⋅⋅, M. Herein, we assume that parameter a is 
unknown but has a value within (0, 2) and that 
parameter π (defined in Model 4) is known or can be 
estimated from empirical knowledge.

12
00

0
10

00
0

80
00

60
00

F
re

q
u

en
cy

40
00

20
00

0

−15 −10 −5 0

Figure 1. Histogram of log2 [(1 + ε )/(2 + η)].
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The estimation of tp, p = 1, ⋅⋅⋅, M, consists of three 
steps:

Step 1 Calculate the median of {xi,p} i = 1,2, ... ,n for each 
p, denoted by Mp.

Step 2 Calculate 2(Mp-1 + π)/π for each p.
Step 3 Determine the estimate of tp, p = 1, ⋅⋅⋅, M,

ˆ 2( 1 , if 2( 1
2( 1 0.5;

p p p

p

t M M
M

 = - + π) π - + π) π 
 ≤ - + π) π + 

ˆ 2( 1 1,if 2( 1
2( 1 0.5,

p p p

p

t M M
M

 = - + π) π + - + π) π 
 > - + π) π + 

where [c] denotes the integer part of the real 
number c.

We call this 3-step method the “linear-median 
method”. “Linear” indicates that the data (the inten-
sity of the ratios of the test to the reference) are in a 
linear format. “Median” indicates that the median of 
the data is employed by this method.

Next, we explain theoretically why copy num-
bers can be accurately estimated by this 3-step 
method.

Let Xp be the intensity of the ratios of the test to the 
reference at probe position p,

X
T

p
p p

p
=

+
+
ε
η2

,

where εp and ηp are i.i.d. with uniform distribution 
U[-a, a]; and Tp is a random variable independent of 
εp and ηp, and has distribution P(Tp = tp) = π and 
P(Tp = 2) = 1 - π, if the shared copy number tp ≠ 2. As 
explained in Section 2.1, we assume 0 , a , 2.

Following the definition of Xp and assuming the 
independence of Tp + εp and ηp, we have
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Equation (5) gives the exact relationship between 
tp and E(Xp). For each probe position p, if the mean of 
the intensity of the ratios of the test to the reference is 
known, and the system parameters a and π are known, 
the shared copy number at the probe position can be 
correctly identified.

However, E(Xp) is unknown in practice and the 
probability distribution of Xp is not usually  symmetric. 
It is inappropriate to estimate E(Xp) by using the 
 sample mean X p when the sample size is not appro-
priately large. Therefore, it is difficult to evaluate tp 
directly from (5) in practice.

To overcome this difficulty, we suggest the fol-
lowing way to evaluate tp:
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where mX p
 is the median of Xp. It is technically 

 possible to directly evaluate the ratio
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and prove that the ratio is close to 1, for any a ∈  
(0, 2) and any π ∈ (0, 1).
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We use the Monte Carlo method to indirectly show 
that the value of (6) is close to 1 for a = 0.1, 0.2, ⋅⋅⋅, 
1.9 and π = 0.1, 0.2, ⋅⋅⋅, 1. (see Appendix A and 
 Supplementary Tables 1 and 2 in the online materials 
for details). Therefore,

t
m

p
X p≈

- -2 1( ( ))
.

π

π

3. Implementation and results
3.1. Simulation studies
The linear-median method is designed for estimating 
shared copy number aberrations and mainly focuses 
on the information across the sample for each probe 
position. Therefore, this method ignores the depen-
dency within each individual sample. Our focus is 
two-fold: i) to determine the extent of information of 
shared copy number aberrations that can be detected, 
regardless of the impact of dependency, and ii) to 
assess the differences in detection outcomes obtained 
from the linear-median method versus other methods.

In a recent review of methods for detecting 
 “recurrent” copy number alterations, Rueda and Diaz-
Uriarte evaluated the CGHregions method, Master 
HMMs, cghMCR, GISTIC, MSA, RAE, and others.12 
In this subsection, we compare the linear-median 
method to the cghMCR method and the CBS 
method.

We present three simulation studies to highlight the 
performance of our proposed linear-median method.

Example 1: A sequence of integers

2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 44 4
5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
1 1 1 1 1 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

“test” at probe position 1 is 2; t11 = 3 means that the 
true gain in the shared copy number by the “test” at 
probe position 11 is 3.

We simulated a group of independent realizations 
{Xi,p} from model (tp + εi,p   )/(2+ηi,p   ), p = 1, 2, ⋅⋅⋅, 100 
and i = 1, 2, ⋅⋅⋅, n, where εi,p and ηi,p are i.i.d. with uniform 
distribution U [-a, a].

Subsequently, we generated 1000 replicates. For 
the kth replicate, k = 1, 2, ⋅⋅⋅, 1000, let d(k) be the per-
centage of tp - t�p ≠ 0 out of the 100 probe positions; 
d(k) is used to measure the error rate in the estimation 
of tp. The mean and standard error of {d(k)} are pre-
sented in Table 1.

Table 1 shows that the error rate increases with a. 
This is obvious because a larger value of a is equiva-
lent to a larger measurement error in the data. How-
ever, the error rate will be reduced when the number 
of independent samples in the group increases. In 
general, the mean error rate calculated for the linear-
median method is reasonably low: the mean error rate 
was less than 10%, as expected, for all three cases of 
varying a.

Although the underlying model involves the 
parameter a, Example 1 shows, in general, that the 
impact of the value of a on the estimation of the copy 
number is not significant in terms of the mean of d(k), 
except for a very large value of a(.1). (Further 
 demonstrations are presented in the Supplementary 
Material.) In summary, the value of a ∈ (0, 2) has 
minimal effect on the estimation of the shared copy 
number when the sample size is reasonable large. As 
a result, the linear-median method can be employed 
without knowing the value of a, as long as a ∈ (0, 2).

serves as a sequence of the true shared copy 
 number tp, p = 1, 2, ⋅⋅⋅, 100, obtained from the 
experimental sample, ie, the “test”. To simplify, 
we assume π = 1. Thus, for example, t1 = 2 means 
that the true shared copy number shown by the 

Example 2: In Table 1 of their review of 15 esti-
mation methods, Rueda and Diaz-Uriarte indicate 
that only the cghMCR method both uses an input of 
the log2 ratio and produces estimations of the 
 differences in the states of two successive probes.12 
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The cghMCR method is designed to identify the 
 minimal common copy number alteration regions 
among a group of independent samples; thus it is 
analogous to the linear-median method and is an 
appropriate method to compare to the linear-median 
method. Using segmented data (ie, smoothed data), 
the cghMCR algorithm first identifies altered  segments 
within each subject (those above the 97th or below 
the 3rd percentile of the data) and then joins adjacent 
segments separated by a user-defined parameter. The 
R package for the cghMCR method is available at the 
following URL: http://www.bioconductor.org/packages/ 
2.6/bioc/html/cghMCR.html. See the work of  Aguirre 
et al for explicit details and a complete review of the 
cghMCR method.3

We use simulated data to compare the performance 
of the linear-median method to that of the cghMCR 
method. The data were simulated by assuming non 
dependency between the intensity ratios across probe 
positions, which is a very simple situation.

Consider a sequence of true shared copy number 
{tp} plotted in Figure 2.

The sequence tp consists of four abnormal shared 
copy number regions, corresponding to copy numbers 
1, 3, 4 and 5. Some of the abnormal shared copy 
regions are very short, involving only 1 or 4 probe 
positions. Using this example, we compare the linear-
median method to the cghMCR method in terms of 
each methods’ capability of correctly assessing the 
information of gains/losses in shared copy numbers.

We simulated data from the following model
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 (7)

i = 1, 2, ⋅⋅⋅, n, where εi,p and ηi,p are i.i.d. with uni-
form distribution U(-a, a). Let B(1, π) be a random 
variable with a Bernoulli distribution such that 
E[B(1, π)] = π. We considered 3 × 5 × 3 different 
combinations for (a, π, n), where a = 0.5, 1, 1.5, 
π = 0.2, 0.4, 0.6, 0.8, 1 and n = 20, 50, 100.

We applied the linear-median method and the cgh-
MCR method to each group of independent samples 
with size n for different pairs of parameters (a, π), 

Table 1. The sample mean and sample standard error of 
the estimated error rate {d(k)} given by different combina-
tions of a and n, where a is the parameter of the uniform 
distribution U[-a, a] and n is the number of the indepen-
dent sequences in the realizations.

a n
25 50 75

0.5 0.00267 
(0.00505932)

0.00021 
(0.00143456)

0.00003 
(0.00054717)

0.8 0.03080 
(0.01634096)

0.00578 
(0.00725564)

0.00566 
(0.01330000)

1 0.06900 
(0.02388243)

0.01822 
(0.01335702)

0.00771 
(0.00880531)

1.5 0.19759 
(0.03871163)

0.08208 
(0.02652880)

0.04332 
(0.02063500)

1.9 0.30161 
(0.04409140)

0.15426 
(0.03687835)

0.09367 
(0.02802528)
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Figure 2. Plot of the sequence of the true copy numbers.
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respectively. Then, for each triplet (a, π, n), we 
calculated the true positive (TP) rates and the false 
positive (FP) rates produced by each model. TP 
rate = P(the method shows “copy number changed” 
| copy number is changed). FP rate = P(the method 
shows “copy number changed” | copy number is not 
changed). The linear-median method is able to pro-
vide an estimate of the shared copy number at each 
probe position. Therefore, when we say that a correct 
detection of the shared copy number was produced 
by the linear- median method at position p, it means 
that t^p = tp. In contrast, the cghMCR method provides 
information on only the shared copy number gain/
loss at each probe position. It does not provide infor-
mation on how many copy numbers were gained/lost. 
Therefore, when we say that a correct detection was 
produced by the cghMCR method at position p, it 
means only that a gain/loss was correctly identified at 
position p.

Finally, we carried out 250 replicates for the case 
where n = 20; 100 replicates for the case where n = 50, 
and 50 replicates for the case where n = 100. The 
resulting TP and FP rates, means, and standard errors 
obtained from both methods are shown in Supple-
mentary Tables 3–5.

In terms of the TP rates, the linear-median method 
worked reasonably well in each case and per-
formed vastly better than the cghMCR method, which 
showed poor performance, especially when a was 
larger and π was smaller. In this particular example 
of a true shared copy number sequence, the cghMCR 
method tended to give a lower FP value, ie, it did not 
call as many gains/losses, and hence was very con-
servative. Compared to the cghMCR method, the 
linear-median method gave a lower FP value when a 
was not close to 2 or π was greater than 0.5. In sum-
mary, two advantages of using the linear-median 
method include:

1. The ability to estimate the actual shared copy num-
ber at each position p. The estimation accuracy of 
the linear-median method is very high, as reflected 
by the values of the TP and FP rates.

2. Better power in identifying shorter alternating 
regions. For example, considering the data simu-
lated from (7) with a = 1.5, π = 1 and n = 20, we 
can compare the means of the estimated copy num-
bers given by both methods. Since a = 1.5, the 

variance for U(-a, a) is relatively large and the 
simulated data involve a lot of random noise. By 
choosing π = 1, there is no variation on the true 
copy numbers shared across the independent sam-
ples. Technically, one expects that the linear-me-
dian method and the cghMCR method will perform 
at the same level. However, it turns out that the 
linear-median method dominates the cghMCR 
method. At almost every probe position, the sam-
ple mean and median of the estimated shared copy 
number given by the linear-median method was 
the same as the true shared copy number. In con-
trast, the cghMCR method did not accurately iden-
tify the gain/loss regions (see Supplementary 
Figures 1–3).

This simulation example (Example 2) illustrates 
that the cghMCR method performs very poorly in 
high-noise scenarios, for example, a = 1.5, and 
the cghMCR method is not robust for large values 
of a. We believe this is due to the fact that the cgh-
MCR method performs segmentation and calling 
functions independently of one other; whereas the 
linear-median method borrows strength from all 
the samples.

Example 3: In this example we consider data Xi,p, 
simulated from the following model:
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where εi,p and ηi,p are i.i.d uniformly distributed in 
[–1, 1], i = 1, 2, ⋅⋅⋅ 60. In this example we continue to 
assume π = 1. The abnormal copy number regions are 
[101, 150] for tp = 3; [151, 152] for tp = 4; [153, 200] 
for tp = 3; [201, 202] and [205, 300] for tp = 1.  Segments 
of [101, 150], [153, 200] and [205, 300] are relatively 
longer. Segments of [151, 152] and [201, 202] are 
 relatively shorter.

In this example, we compare the linear-median 
method to the circular binary segmentation (CBS) 
method, which was developed by Olshen et al.6 An R 
package description for the CBS method is available  at 
the following URL: http://bioconductor. org/packages/ 
2.6/bioc/manuals/DNAcopy/man/DNAcopy.pdf. The 
CBS method is employed to find segments along the 
chromosome that share constant DNA copy numbers. 
Technically, it is inappropriate to directly compare 
the analytical results obtained by these two methods 
because the CBS method is designed for application to a 
single sample of data, whereas the linear-median method 
is applicable to a group of independent samples.

To apply the CBS algorithm to observations {xi,p}, 
i = 1, ⋅⋅⋅, 60, p = 1, ⋅⋅⋅, 300, we make the following 
adjustment. We calculate log2(xi,p) for all i and p, since 
the CBS method is designed for data in a nonlinear 
format. Then, for each fixed p, we calculate the median 
of {log2(xi,p)}, forming a new sequence. Finally, we 
apply the CBS method to this sequence. We justify 
this comparison with the following  argument: If there 

are common copy number alteration regions among 
the group of independent samples, the new sequence 
must contain the information on shared common 
regions. We consider the new sequence as if it were a 
single sample of data from a “patient”. Thus, if the 
information of a shared common region is strong 
enough, the CBS method should be able to detect the 
region based on the data of the new sequence. We used 
the default parameters in our application of the 
R package to the simulation data in this example.

Figure 3 shows the plot of the medians of {log2(xi,p)} 
and the estimate of log2(tp/2) (in red), obtained by the 
CBS method (top panel), and the plot of the  estimation 
of tp obtained by the linear-median method (bottom 
panel). We see that the linear-median method is able 
to detect all the changes in the copy number.

Comparing the plots in Figures 3, both approaches, 
the linear-median method and the CBS method, were 
able to detect all the longer regions of alternations. 
However, all the shorter regions of alterations, [151, 
152], [201, 202] and [203, 204], were missed by the 
CBS method. This indicates that the linear-median 
method has more power than the CBS method to 
detect shorter segments of alterations or narrow gaps 
between segments.

3.2. Application to real data
We applied the linear-median method to a subset of 
aCGH data from 39 well-studied lung cancer cell lines. 

Figure 3. Application of the CBS method to the sequence of the median of the logarithm of the ratios (top panel). The red bars show the values of 
the estimation of log2(tp/2). Application of the linear-median method to the data in Example 3 (bottom panel), showing the estimates of tp at each 
probe position.
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The data, originally published by Coe et al13 and 
 Garnis et al14 are available for downloading from 
http://sigma.bccrc.ca/. For this study, we used data 
from only the subgroup with the largest sample size, 
that of non-small cell adenocarcinoma (NA), which 
included 18 samples.

As both the linear-median method and the cgh-
MCR method are designed for application to multiple 
aCGH data, the sample size is a critical issue. Data 
with more independent samples are able to provide 
more information on the commonalities across all 
samples.

Accurately identifying the locations of copy number 
aberrations has many important medical applications. 
As far as we know, the cghMCR method is one of the 
methods used to estimate the shared copy number for 
multiple aCGH data. Many other methods give an 
estimation of only the probability of gain/loss at each 
probe position.4,13

Information on the exact shared copy number(s) 
at each probe position is not available for the data we 
have analyzed (the NA data). Therefore, based on 
only the analytic outputs of the linear-median method 
and the cghMCR method, it is difficult for us to claim 
which method is better in terms of the accuracy of 
estimating the true copy numbers. As a result, we 
compared the similarities between the analytic out-
puts of the two methods and determined which method 
provides more information on the changes in the copy 
numbers in the NA data. As a reference for this com-
parison, we used the probability of gain/loss at each 
probe position that was reported by Shah et al.4

The total number of probe positions in the NA data 
(chromosome 9) is 1249. Recalling Model 4 in Sec-
tion 2.1, in order to estimate the shared copy num-
bers in a “test” DNA sequence, we need to know the 
parameter π. This type of information is also required 
for the cghMCR method. The value of π might be 
estimated based on the researcher’s empirical 
 knowledge. For the NA data, empirical knowledge on 
the value of π is not available. Therefore, we applied 
the cghMCR method and the linear-median method 
to the data for different values of π, 0.2, 0.4, 0.6, 0.8 
and 1. Then we compared the results from both meth-
ods and also compared those results to findings 
reported by Shah et al.4 We expected to find little 
 difference in the results obtained from the three 
 methods. Shah et al found a loss of the shared copy 

number in a  significant portion of the NA data (see 
Figure 7 in their paper).4 However, for π = 0.4, 0.6, 
0.8 or 1, both the cghMCR method and the linear-
median method provided high proportions of neutral 
states, ie, where the shared copy number equals 2. 
Therefore, it is reasonable to use π = 0.2 when ana-
lyzing the NA data. We limit our report of the ana-
lytic results to the case where π = 0.2.

Combining all the results given by the linear- 
median method and the cghMCR method for π = 0.2, 
0.4, 0.6, 0.8 and 1, we were able to identify a com-
mon trend in the outputs of the two methods for all 
probe positions as the value π moves from 1 to 0.2 
(data not shown). For the NA data, both the linear-
median method and the cghMCR method give neutral 
states to all probe positions when π is assigned as 1, 
with the exception of a few probe positions identified 
as gain/loss by the linear-median method. In our 
empirical study of the NA data, if a probe position a 
is more likely to lose copy number(s), then the shared 
copy number estimation given by both methods will 
decrease as π moves from 1 to 0.2; if a probe position 
a is more likely to gain copy number(s), then the 
shared copy number estimation given by both meth-
ods will increase as π moves from 1 to 0.2. One 
important phenomenon we observed from the outputs 
of the two methods is that once a probe position has 
been identified as having a shared copy number 
change when π = π0, the observation remains the same 
for any π . π0. Comparing the results of the two 
methods, we found that the estimation of the shared 
copy number at each probe position given by the cgh-
MCR method is reluctant to change as the value of π 
decreases. In contrast, the linear-median method can 
show changes in the estimated shared copy number 
as π decreases. This may reflect the later detection of 
an aberration by the cghMCR method compared to 
the linear-median method when the true shared copy 
number at a probe position is gained/lost, and as the 
value of π decreases. Based on our analysis of the NA 
data, the linear-median method was able to report the 
estimated shared copy number at each probe posi-
tion; whereas the cghMCR method reported only the 
state of the shared copy number, ie, wether there was 
a gain, loss or no change (neutral state), in the shared 
copy number. To simplify the comparison between 
the results given by the two methods, we report only 
the gain, loss, or neutral states of the shared copy 

Lin et al

238 Cancer Informatics 2010:9

http://sigma.bccrc.ca/
http://www.la-press.com


number for the linear-median method. A plot of the 
states for both methods is given in Figure 4. In the 
plot, we use “1”, “0” and “-1” to indicate a shared 
copy number gain, neutrality, or loss, respectively. 
We summarize the results as follows.

From probe positions 1 to 500 and 1235 to 1249, 
both the cghMCR method and the linear-median 
method provide similar results, except for some iso-
lated prob positions. This is what we expect to find 
because our simulation studies demonstrated that the 
linear-median method can identify those isolated 
regions.

From probe positions 501 to 1234, the results 
obtained from the linear-median method and the cgh-
MCR method are quite different. The cghMCR 
method claims that all the probe positions are neutral, 
in contrast to the findings of the linear-median method, 
which identifies gains/losses at these probe positions. 
One possible explanation for the large difference 
between the two sets of results in this prob region is 
that the π used in the estimation for this region may 
be too high. A lower value of π should be used to 
accurately estimate copy numbers in this interval. 
These results suggest that the parameter π might vary 
over sequences of NA data. If this is true, then, 
 detecting the change in π will be an interesting 
 challenge for future studies.

Information on the true shared copy numbers for 
the NA data is not available; hence, we cannot be cer-
tain which method would best estimate the shared 
copy number variations in these data. However, 
through our comparison of the two methods and tak-
ing into account the results given by Shah et al4 we 
can claim that the linear-median method has some 
capability to reasonably estimate shared copy num-
bers in DNA sequences. As shown in our simulation 
studies, the linear-median method can easily identify 
isolated probe positions with shared copy number 
changes or short shared alternating segments. These 
changes are often missed by the cghMCR approach.

The 1249 probe sets we studied target the shared 
copy number status of 1262 genes present in the chro-
mosome 9.

In order to classify these genes as one of three gen-
eral categories, we performed a search of the OMIM 
database (http://www.ncbi.nlm.nih.gov/omim). The 
three categories we used were “not related to/unknown 
cancer phenotype (NR/U)”, “cancer-related pheno-
type, except for lung cancer (CR)”, and “lung cancer-
related phenotype (LCR)”. The results are presented 
in Tables 2 and 3. Identifying altered regions where 
important cancer-related genes are located aids the 
biological interpretation of our findings and works as 
an empirical form of validation. Detailed locations of 
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the genes categorized as NR/U, CR and LCR are 
 presented in Supplementary Appendix B. From 
Tables 2 and 3 we can see that the linear-median 
method is able to report more CR and LCR with copy 
number losses/gains than the cghMCR method.

We were able to find additional information of 
interest from the output of the linear-median method. 
Focusing on the probe positions at which the  estimated 
shared copy number given by the linear-median 
method was ,1 or .3 when π = 0.2, we identified 
145 such probe positions out of 1249 (see Figure 5). 
Among those 145 probe positions, 22 probe positions 

Table 2. number of genes identified by the linear-median 
method (lM) and the cghMCR method in the regions of 
shared copy number aberrations with the status of copy 
number loss, neutrality or gain. nR/U is not cancer-related 
or unknown function phenotype, CR is cancer-related phe-
notype (except for lung cancer), and lCR is lung cancer-
related phenotype.

nR/U cR LcR Total
LM cgh 

McR
LM cgh 

McR
LM cgh 

McR
LM cgh 

McR
Losses 670 346 89 33 9 4 768 383
Neutral 342 758 35 103 3 9 380 870
Gains 100 8 13 1 1 0 114 9

1112 137 13

Table 3. List of lung cancer-related genes for each 
 phenotypic group identified by the linear-median method 
(lM) and the cghMCR method.

LM cghMcR
Loss PSIP1, CDKN2A PSIP1, CDKN2A

TUSC1, iGFBPl1 TUSC1, iGFBPl1
TlE1, FRMD3
DAPK1, MiRlET7A1
PTPN3

Neutral PHF19, DAB2IP PHF19, DAB2IP
RPl12 RPl12, TlE1

FRMD3, DAPK1
MiRlET7A1, PTPn3
GAS1

Gain GAS1

showed an estimated copy number $4 or #-1. These 
results provided a more serious warning of copy 
 number aberrations — a warning that was not obtained 
from the cghMCR method.

4. conclusion
We developed a new model for aCGH data analysis, 
the linear-median method, which estimates shared 
copy numbers in DNA sequences. Using simulated 
data, we found the linear-median method to be more 
powerful than the cghMCR method in terms of 
achieving a higher rate of true positives and a lower 
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rate of false positives. In addition to estimating the 
common gain/loss of chromosome regions, the 
 linear-median method estimates the number of DNA 
copies. In other words, analytic results produced by 
the linear-median method allow us to extract addi-
tional information on the tested DNA sequences. In 
particular, the linear-median method has the power to 
estimate common changes that appear at isolated 
 single probe positions or very short regions. The only 
drawback of the linear-median method is that it 
ignores the dependency information in samples. How-
ever, based on our application of the proposed method 
to real data, we find that most information on shared 
copy number aberrations can be captured by the 
 linear-median method using only the information 
across independent samples.
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supplementary Material 
Appendix A
Use Monte Carlo method to indirectly show that the 
value of aE(Xp   )/{log [(2+a)/(2− a)] mXp   } is close to 1 
for a = 0.1, 0.2, ⋅⋅⋅, 1.9 and π = 0.1, 0.2, ⋅⋅⋅, 1.

The simulation is conducted as follows. For each 
triplet (a, π, tp), 5000 independent samples are simu-
lated from model

X X a
T

p p
p

 ( , ) ,π
ε
η

=
+

+2
,

where random variables Tp, ε and η are independent; 
Tp has a distribution such that P(Tp = tp) = π and 
P(Tp = 2) = 1 - π; ε and η have uniform distribution 
U(-a, a), a = 0.1, 0.2, 0.3, ⋅⋅⋅, 1.9 and π = 0.1, ⋅⋅⋅, 1 
with increments of 0.1 respectively; tp = 1, 2, ⋅⋅⋅, 9 
with increments of 1. The mean and median of Xp(a, π) 
are estimated by its sample mean X ap ( , )π  and 
 sample median median(Xp)(a, π) respectively. Then 
aE(Xp(a,π))/{log [(2+a)/(2− a)] mXp(a,π)} is esti-
mated and evaluated by
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and reported in Tables 1 and 2, which follow, where 
s2(π) is given within the parentheses.

The Monte Carlo simulation results clearly show 
that all the sample means m(π, tp) are close to 1 and 
the sample variance s2(π, tp) are close to 0. Therefore, 
it is reasonable to accept that aE(Xp(a,π))/{log [(2+a)/
(2− a)] mXp(a,π)}, for any a ∈ (0, 2), π ∈ (0, 1) and 
tp ∈ {l, ⋅⋅⋅, 9}.

Table s1. The values of m(π, tp) and s2(π, tp) (Part A).

π = 1
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
0.9988320 
(1.204417e-05)

0.9999922 
(6.722244e-06)

1.0006107 
(5.334313e-06)

0.9996400 
(1.261637e-05)

1.0010851 
(1.167334e-05)

tp = 6 tp = 7 tp = 8 tp = 9
0.9996429 
(1.231912e-06)

1.0007002 
(5.472384e-06)

0.9996422 
(5.472957e-06)

0.9995458 
(4.414939e-06)

π = 0.9
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
1.0234726 
(7.944477e-04)

0.9999251 
(3.122031e-06)

0.9945141 
(7.239544e-05)

0.9874093 
(2.153089e-04)

0.9815765 
(3.306295e-04)

tp = 6 tp = 7 tp = 8 tp = 9
0.9784618 
(4.723169e-04)

0.9754699 
(5.685863e-04)

0.9728850 
(5.824456e-04)

0.9690245 
(5.801032e-04)

(Continued)
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Table s1. (Continued)

π = 0.8
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
1.0387630 
(2.886933e-03)

0.9996188 
(9.836780e-06)

0.9892445 
(2.590746e-04)

0.9765723 
(8.382101e-04)

0.9673282 
(1.415877e-03)

tp = 6 tp = 7 tp = 8 tp = 9
0.9586696 
(1.799211e-03)

0.9522338 
(2.116493e-03)

0.9460126 
(2.245196e-03)

0.9428445 
(2.510819e-03)

π = 0.7
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
1.0490667 
(5.548408e-03)

1.0001018 
(1.432224e-05)

0.9855943 
(5.197429e-04)

0.9663545 
(1.709809e-03)

0.9524253 2 
(2.958586e-03)

tp = 6 tp = 7 tp = 8 tp = 9
0.9407424 
(3.912353e-03)

0.930110 
(4.538055e-03)

0.9227174 
(5.050342e-03)

0.9165458 
(5.479345e-03)

π = 0.6
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
1.0488169 
(7.753325e-03)

1.0010726 
(6.911221e-06)

0.9854699 
(7.413494e-04)

0.9623178 
(2.893487e-03)

0.9414670 
(4.946303e-03)

tp = 6 tp = 7 tp = 8 tp = 9
0.9257995 
(6.682264e-03)

0.9128190 
(8.140030e-03)

0.9026656 
(9.115055e-03)

0.8949812 
(1.010583e-02)

Table s2. The values of m(π, tp) and s2(π, tp) (Part B).

π = 0.5
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
0.9976367 
(3.009497e-03)

1.0008558 
(3.751868e-06)

1.0051801 
(1.132037e-03)

1.0075940 
(8.828197e-03)

1.0563732 
(3.143084e-02)

tp = 6 tp = 7 tp = 8 tp = 9
1.0996647 
(5.681301e-02)

0.9949510 
(3.069008e-02)

1.0348440 
(5.681301e-02)

1.2778189 
(3.069008e-02)

π = 0.4
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
0.9689243 
(2.197164e-03)

1.0004657 
(8.269312e-06)

1.0224327 
(1.544194e-03)

1.0774329 
(1.112485e-02)

1.1533009 
(3.060863e-02)

tp = 6 tp = 7 tp = 8 tp = 9
1.2460811 
(5.815739e-02)

1.3484609 
(9.379170e-02)

1.4610660 
(1.286891e-01)

1.5757287 
(1.732840e-01)

π = 0.3
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
0.9690245 
(1.446965e-03)

1.0008585 
(3.876559e-06)

1.0242324 
(1.226318e-03)

1.0860159 
(6.909656e-03)

1.1647982 
(1.727091e-02)

tp = 6 tp = 7 tp = 8 tp = 9
1.2629289 
(2.912726e-02)

1.3679820 
(4.057614e-02)

1.4846238 
(5.020234e-02)

1.5987995 
(5.951541e-02)

(Continued)
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Figure s1. The plot of the mean of gains/losses obtained at each probe position using the cghMCR method.

Table s2. (Continued)

π = 0.2
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
0.9737273 
(6.463392e-04)

1.0001785 
(3.456922e-06)

1.0231539 
(5.653691e-04)

1.0743057 
(3.026114e-03)

1.1446959 
(6.303903e-03)

tp = 6 tp = 7 tp = 8 tp = 9
1.2239605 
(9.262918e-03)

1.3104238 
(1.097795e-02)

1.3991247 
(1.232603e-02)

1.4862704 
(1.325612e-02)

π = 0.1
tp = 1 tp = 2 tp = 3 tp = 4 tp = 5
0.9836251 
(1.448035e-04)

0.9996371 
(1.181245e-05)

1.0143460 
(1.537200e-04)

1.0458579 
(6.429722e-04)

1.0869769 
(1.166530e-03)

tp = 6 tp = 7 tp = 8 tp = 9
1.1335024 
(1.374409e-03)

1.1808455 
(1.518496e-03)

1.2294815 
(1.587512e-03)

1.2743215 
(1.669519e-03)
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Appendix B
The locations of the genes of NR/U, CR and LCR in 
non-small cell adenocarci-noma (NA) and related 
references.

• Probe positions from 1 to 295: A total of 200 genes 
are found in this region, 28 of them (14%) are 
genes related to cancer phenotype while 3 (1.5%) 
are related to lung cancer phenotype. All LCR 
genes are located in chromosomal regions identi-
fied as losses by both methods (LM and cghMCR). 
The LCR genes located at this region are PSIP1, 
CDKN2A, and TUSC1. PSIP1 and CDKN2A, a 
well-known lung cancer suppressor1 are both 
located in a region frequently found deleted in lung 
cancer patients.2 In addition, TUSC1 is found 
mutated and silent in nonsmall cell lung carcinoma 
cell lines.3

• Probe positions from 296 to 331: A total of 
12 NR/U genes are found in this region.

• Probe positions from 332 to 341: Only 3 genes are 
located in this region with one of them being clas-
sified as CR (ACO1). Both methods identify the 
region where this gene is located as loss.

• Probe positions from 342 to 375: A total of 
113 genes are located in this regions with 14 of 
them being classified as CR.

• Probe positions from 376 to 500: A total of 
171 genes are located in this region. Four of them 
are CR and only one (IGFBPL1, classified as loss 
by both methods) is classified as LCR. IGFBPL1 
has already been shown to be downregulated in 
lung tumor samples.4

• Probe positions from 501 to 1234: A total of 
744 genes are located in this region, 90 of them being 
classified as CR, and 9 as LCR. The  cghMCR 
method does not identify any region containing LCR 
as altered. On the other hand, the LM method identi-
fies five of the LCR genes in chromosomal regions 
of loss (TLE1, FRMD3, DAPK1, MIRLET7A1, 
PTPN3) and, consequently, are expected to have 
lower expression in lung tumor samples. In fact, 
TLE1 is frequently found altered in squamous cell 
carcinomas and  adenocarcinomas5 while FRMD3 
expression is usually silenced in primary nonsmall 
cell lung carcinomas.6 Likewise, mouse lung carci-
noma clones characterized by highly aggressive 
metastatic behavior did not express Dapk1.7 Also, 
MIRLET7A1 and PTPN3 expressions are downreg-
ulated in lung cancer.8,9 The LM indeti-fies one gene 
located in a gain region (GAS1), and therefore, it is 
expected to be overexpressed in lung cancer samples. 
 Surprisingly, Gas1 expression is known by its capac-
ity of  suppressing metastasis in lung,10 therefore, 
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Figure s2. The plot of the mean of copy numbers obtained at each probe position using the linear-median method.
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we hypothesize that the this gene might be regu-
lated epigenetically or it is a false positive iden-
tified by the LM method. Again, the cghMCR 
method does identifies this region as neutral. In 
addition, 3 genes are found by both methods in 
neutral regions (PHF19, DAB2IP, RPL12) and, 
therefore, we believe that their regulation is 
being performed by epigenetic factors. In fact, 
PHF19 mRNA is known to be overexpressed in 
lung cancers9 as well as methylation of the pro-
moter of DAB2IP is associated with the lung 
cancer phenotype.11 Likewise, RPL12 splice 
variant are frequently found in human lung car-
cinoma cell.12

• Probe positions from 1235 to 1249: A total of 
17 genes are located in this regions with only 
one of them (ABL1) being classified as CR and 
identified as a gain by both methods.

Appendix c
R code for the linear-median function
• x is an n × T matrix, the elements of y are aCGH 

observations in linear format
• n denotes the number of independent samples

•  T denotes the size of each individual sample
• At any probe position p, if the true shared copy 

number is not 2, the probability of having copy 
number changed is “prob”

• Function “Linear_Median” gives the estimate of 
shared copy number at each probe position.

Linear_Median = function(x,n,T,prob){
medianx = c()
for (i in 1:T){
medianx[i] = median(x[i,])
}
justx = c()
justx = 2*(medianx-1+prob)/prob

xx = c()
xx = floor(justx)

for(i in 1:T){
if (justx[i].= xx[i]+0.5)
xx[i] = xx[i]+1
}

xx

}

Figure s3. The plot of the median of copy numbers obtained at each probe position using the linear-median method.
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Table s3. The true positive (TP) rates and false positive (FP) rates for the linear-median method and the cghMCR method, 
where n = 20.

n = 20 L-M cgh 
McR

L-M cgh 
McR

L-M cgh 
McR

π α = 0.5 α = 1 α = 1.5
0.2
TP 0.6382 0.0714 0.7568 0.0024 0.8096 0

(0.0496) (0.1101) (0.0406) (0.0188) (0.0414) (0)
FP 0.3785 0.0040 0.6549 2.83e-04 0.7657 0

(0.0384) (0.0154) (0.0384) (0.0041) (0.0357) (0)
0.4
TP 0.7849 0.6760 0.7696 0.0308 0.7616 0

(0.0429) (0.1830) (0.0413) (0.0779) (0.0453) (0)
FP 0.0861 0.0415 0.3827 0.0011 0.5611 0

(0.0248) (0.0302) (0.0402) (0.0081) (0.0408) (0)
0.6
TP 0.9503 0.9075 0.8708 0.2759 0.8013 0

(0.0227) (0.0224) (0.0359) (0.1129) (0.0410) (0)
FP 0.0122 2.58e-05 0.2000 0.0023 0.3905 0

(0.0090) (0.0004) (0.0310) (0.0114) (0.0419) (0)
0.8
TP 0.9966 0.9030 0.9451 0.3877 0.8677 0

(0.0060) (0.0206) (0.0204) (0.1308) (0.0331) (0)
FP 0.0013 0 0.0238 0 0.2617 0

(0.0028) (0) (0.0917) (0) (0.0358) (0)
1
TP 1 0.9490 0.9817 0.6542 0.9237 0

(0) (0.0147) (0.0147) (0.1561) (0.0287) (0)
FP 7.74e-05 0 0.04026 0 0.1667 0

(0.0007) (0) (0.0154) (0) (0.0314) (0)

Table s4. The true positive (TP) rates and false positive (FP) rates for the linear-median method and the cghMCR method, 
where n = 50.

n = 50 L-M cgh 
McR

L-M cgh 
McR

L-M cgh 
McR

π α = 0.5 α = 1 α = 1.5
0.2
TP 0.6309 0.02442 0.7147 0 0.7521 0

(0.0547) (0.0626) (0.0499) (0) (0.0455) (0)
FP 0.1712 6.45e-04 0.4866 0 0.6425 0

(0.0346) (0.0065) (0.0488) (0) (0.0437) (0)
0.4
TP 0.8895 0.6643 0.8574 0.0019 0.7975 0

(0.0347) (0.1542) (0.0357) (0.0109) (0.0420) (0)
FP 0.0089 0.0439 0.1737 0 0.3603 0

(0.0070) (0.0297) (0.0365) (0) (0.0416) (0)
0.6
TP 0.9949 0.9046 0.9581 0.2762 0.8926 0

(0.0072) (0.0149) (0.0212) (0.0842) (0.0358) (0)
FP 6.45e-05 0 0.0482 0 0.1814 0

(0.0006) (0) (0.0189) (0) (0.0364) (0)

(Continued)
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Table s5. The true positive (TP) rates and false positive (FP) rates for the linear-median method and the cghMCR method, 
where n = 100.

n = 100 L-M cgh 
McR

L-M cgh 
McR

L-M cgh 
McR

π α = 0.5 α = 1 α = 1.5
0.2
TP 0.6771 0.0048 0.7438 0 0.7335 0

(0.0539) (0.0203) (0.0505) (0) (0.0461) (0)
FP 0.0561 0 0.3266 0 0.5146 0

(0.0187) (0) (0.0412) (0) (0.0381) (0)
0.4
TP 0.9566 0.6650 0.9299 0.0004 0.8718 0

(0.0233) (0.1317) (0.02653) (0.0030) (0.0341) (0)
FP 0.0003 0.0455 0.0578 0 0.2012 0

(0.0013) (0.0270) (0.0196) (0) (0.0340) (0)
0.6
TP 0.9998 0.9033 0.9920 02804 0.9556 0

(0.0015) (0.0108) (0.01010) (0.0706) (0.0239) (0)
FP 0 0 0.0065 0 0.0621 0

(0) (0) (0.0075) (0) (0.0224) (0)
0.8
TP 1 0.8956 0.9998 0.3345 0.9922 0

(0) (0.0087) (0.0015) (0.0193) (0.0099) (0)
FP 0 0 0.0003 0 0.0167 0

(0) (0) (0.0013) (0) (0.0125) (0)
1
TP 1 0.8971 0.9998 0.2263 0.9983 0

(0) (0.0177) (0.0015) (0.1156) (0.0044) (0)
FP 0 0 0.0003 0 0.0043 0

(0) (0) (0.0013) (0) (0.0056) (0)

Table s4. (Continued)

n = 50 L-M cgh 
McR

L-M cgh 
McR

L-M cgh 
McR

π a = 0.5 a = 1 a = 1.5
0.8
TP 1 0.8962 0.9912 0.3384 0.9545 0

(0) (0.0118) (0.0100) (0.0416) (0.0209) (0)
FP 0 0 0.0100 0 0.0826 0

(0) (0) (0.0082) (0) (0.0238) (0)
1
TP 1 0.9207 0.9992 0.4155 0.9848 0

(0) (0.0154) (0.0029) (0.1679) (0.0107) (0)
FP 0 0 0.0023 0 0.0348 0

(0) (0) (0.0038) (0) (0.0153) (0)

Lin et al

248 Cancer Informatics 2010:9

http://www.la-press.com


publish with Libertas Academica and 
every scientist working in your field can 

read your article 

“I would like to say that this is the most author-friendly 
editing process I have experienced in over 150 

publications. Thank you most sincerely.”

“The communication between your staff and me has 
been terrific.  Whenever progress is made with the 
manuscript, I receive notice.  Quite honestly, I’ve 
never had such complete communication with a 

journal.”

“LA is different, and hopefully represents a kind of 
scientific publication machinery that removes the 

hurdles from free flow of scientific thought.”

Your paper will be:
• Available to your entire community 

free of charge
• Fairly and quickly peer reviewed
• Yours!  You retain copyright

http://www.la-press.com

References
1. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator 

 potentially involved in genesis of many tumor types. Science. 1994;264: 
436–40.

2. Singh DP, Kimura A, Chylack LT Jr, Shinohara T. Lens epithelium-derived 
growth factor (LEDGF/p75) and p52 are derived from a single gene by alter-
native splicing. Gene. 2000;242:265–73.

3. Shan Z, Parker T, Wiest JS. Identifying novel homozygous deletions by microsat-
ellite analysis and characterization of tumor suppressor candidate 1 gene, TUSC1, 
on chromosome 9p in human lung cancer. Oncogene. 2004;23:6612–20.

4. Cai Z, Chen HT, Boyle B, Rupp F, Funk WD, Dedera DA. Identification of a 
novel insulin-like growth factor binding protein gene homologue with tumor 
suppressor like properties. Biochem Biophys Res Commun. 2005;331:261–6.

5. Allen T, van Tuyl M, Iyengar P, et al. Grg1 acts as a lung-specific oncogene 
in a transgenic mouse model. Cancer Res. 2006;66:1294–301

6. Haase D, Meister M, Muley T, et al. FRMD3, a novel putative tumour sup-
pressor in NSCLC. Oncogene. 2007;26:4464–8.

 7. Inbal B, Cohen O, Polak-Charcon S, et al. DAP kinase links the control of 
apoptosis to metastasis. Nature. 1997;390:180–4.

 8. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. 
RAS Is Regulated by the let-7 MicroRNA Family. Cell. 2005;120: 
635C647.

 9. Gobeil S, Zhu X, Doillon CJ, Green1 MR. A genome-wide shRNA screen 
identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes 
Dev. 2008;22:2932–40.

10. Wang Z, Shen D, Parsons DW, et al. Mutational analysis of the tyrosine 
phosphatome in colorectal cancers. Science. 2004;304:1164–6.

11. Yano M, Toyooka S, Tsukuda K, et al. Aberrant promoter methylation of 
human DAB2 interactive protein (hDAB2IP) gene in lung cancers. Int J 
Cancer. 2005;113:59–66

12. Cuccurese M, Russo G, Russo A, Pietropaolo C. Alternative splicing and 
nonsense-mediated mRNA decay regulate mammalian ribosomal gene 
expression. Nucleic Acids Research. 2005;33:5965–77.

The linear-median method

Cancer Informatics 2010:9 249

http://www.la-press.com
http://www.la-press.com

