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Abstract: Recent progress in the biochemical classification and structural determination of allergens and allergen–antibody complexes 
has enhanced our understanding of the molecular determinants of allergenicity. Databases of allergens and their epitopes have facilitated 
the clustering of allergens according to their sequences and, more recently, their structures. Groups of similar sequences are identi-
fied for allergenic proteins from diverse sources, and all allergens are classified into a limited number of protein structural families. 
A gallery of experimental structures selected from the protein classes with the largest number of allergens demonstrate the structural 
diversity of the allergen universe. Further comparison of these structures and identification of areas that are different from innocuous 
proteins within the same protein family can be used to identify features specific to known allergens. Experimental and computational 
results related to the determination of IgE binding surfaces and methods to define allergen-specific motifs are highlighted.
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Introduction
Our current view of allergy as a treatable illness began 
with our ability to first, define and control the allergic 
reaction, and second, to better identify the allergens 
involved. The results of this study, as we will discuss 
in more detail below, have indicated that while aller-
gens do not have one common structure, most of the 
major allergens can be grouped according to common 
features and, in some cases, enzymatic  activities. 
Identifying similarities in allergens can be used clini-
cally, to alert patients who are sensitive to substances 
known to trigger extreme allergic reactions, such as 
peanuts, shellfish, or latex, to the presence of similar 
proteins in different sources. Defining characteristic 
features of allergenicity is also needed for regulatory 
purposes, to avoid introducing novel allergenic foods, 
drugs or genetically modified organisms that contain 
proteins similar to known allergens1 and to stipulate 
manufacturing precautions and labeling requirements. 
Future advances in these areas depend on our ability 
to reliably discriminate the properties of allergens that 
distinguish them from structurally related innocuous 
proteins. Here, we discuss some of the physicochem-
ical and structural features of allergens, and motifs 
that can be defined for allergens in the same group 
that differentiate them from non-allergenic structural 
relatives.

not All proteins are Allergenic
Fortunately, only a relatively small fraction of proteins 
in our environment are allergenic. The first efforts to 
define common properties of allergenic proteins in 
the 1970s were limited to characteristics that were 
measureable at that time, such as molecular size, the 
abundance of the protein in airborne sensitizing par-
ticles or, for food allergens, acid or heat stability.2 We 
now have gene and protein sequence information 
for more than 800 characterized allergens. Nuclear 
Magnetic Resonance (NMR) and X-ray crystal three 
dimensional (3D) structures are available in the Pro-
tein Data Bank (PDB)3 for over 60 allergens, includ-
ing such clinically important allergens as birch pollen 
Bet v 1,4 cockroach allergen Bla g 2,5 olive pollen Ole 
e 6,6 maize pollen Zea m 1,7 and cedar pollen Jun a 1.8 
In addition, a large percentage of all allergens with-
out an experimentally determined 3D structure can be 
reliably modelled with current 3D prediction tools.9 
This increasing knowledge of the  structural and 

 biochemical properties of allergens makes it  feasible 
to classify allergenic proteins by their 3D structures 
and to identify shared substructures that might be 
important for allergic sensitization and reactions. 
While the idea that a single structural feature common 
to all allergenic proteins responsible for IgE binding 
has yielded to results showing a plethora of different 
structures, we do know that many of the most aller-
genic proteins closely resemble one another and can 
be grouped into discrete families.

Allergen nomenclature and Databases
In response to the large amount of new information 
about individual allergens, the International Union 
of Immunological Societies (IUIS) established in 
1986 nomenclature rules and criteria to evaluate 
the clinical data for substantiating that a protein is 
allergenic,10 which were revised in 1994.11 The list of 
proteins that met these criteria grew rapidly, leading 
to a website (www.allergen.org) dedicated to pro-
teins that are generally recognized as causing allergic 
symptoms in humans. The approved allergens were 
named systematically according to the Latin species 
name of their natural source and the order in which 
they were  identified. By 2001, it was clear that bio-
informatics tools were required to define important 
similarities in the amino acid sequences and struc-
tural features of these allergens, since molecular 
similarities of allergen from different sources are not 
reflected in the nomenclature described above. For 
example, Ara h 1, the first allergen to be identified 
in peanut (Arachis hypogaea), is similar to the vici-
lin allergen Jug r 2, from English walnut (Juglans 
regia), with a sequence identity of 36% and E-value 
of 1.8 × 10–22. The E-values, provided routinely as an 
indication of the extent of sequence similarity identi-
fied by FASTA12 or BLAST searches,13 is a measure 
of how many matches with the same sequence would 
be expected to occur randomly in the database. A very 
low E-value (generally ,0.001) generally indicates a 
highly significant sequence match.

As part of the deregulation process for genetically 
modified (GM) foods, regulatory agencies around the 
world required a more systematic overview of aller-
gen sequences to detect proteins that were potentially 
allergenic based on their sequence similarities. The 
first guidelines were based only on protein sequence 
comparisons. A committee organized by the World 
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Table 1. Allergen databases and servers.

Web site and URL Features
IUIS 
International Union of Immunological Societies 
http://www.allergen.org

lists official names 
links to GenBank, UniProt, PDB

SDAP 
Structural Database of Allergenic Proteins 
http://fermi.utmb.edu/SDAP

allergen sequences, structures, Ige epitopes 
links to GenBank, UniProt, PDB 
FASTA search in SDAP 
LAST search in GenBank, SwisProt, PIR 
Pfam classification 
FAO/WHO allergenicity rules 
tools for sequence and epitope comparison 
high-quality allergen models

FARRP 
Food Allergy Research and Resource Program 
http://www.allergenonline.org

allergen list 
FASTA search in FARRP 
FAO/WHO allergenicity rules 
links to GenBank

Allergome  
http://www.allergome.org

allergen list 
links to PubMed, Uniprot, PDB 
links to sequence databases

AllFam 
http://www.meduniwien.ac.at/allergens/allfam

Pfam classification

CSL (Central Science Laboratory, UK) 
http://allergen.csl.gov.uk//index.htm

allergen list 
links to GenBank 
Ige epitopes

InformAll 
http://foodallergens.ifr.ac.uk

clinical data

ADFS (Allergen Database for Food Safety) 
http://allergen.nihs.go.jp/ADFS/

allergen list 
sequences 
Ige epitopes 
3D structures 
epitope search 
FAO/WHO allergenicity rules 
motif-based allergenicity prediction

All Allergy 
http://allallergy.net

allergen list species description

IeDB 
Immune epitope Database and Analysis Resource 
http://immuneepitope.org

T-cell and B-cell epitopes

Allermatch 
http://www.allermatch.org

FAO/WHO allergenicity rules

Health Organization (WHO)/Food and Agriculture 
Organization (FAO) and the European Food Safety 
Authority (EFSA) proposed that a novel protein was 
likely to be an allergen if its amino acid sequence 
was .35% identical to any known allergen, over a 
window of 80 amino acids with a suitable gap pen-
alty, or it contained 6 (or more recently, 8) contiguous 
amino acids that are identical to a known allergen.14–16 
Several cross-referenced databases created for the 
comparison of the sequences and properties of aller-
gens (Table 1)17–23 can be used to objectively test the 
utility of these guidelines. While a recent statistical 

analysis of the WHO guidelines demonstrates that 
a 35% sequence identity is a realistic cut-off value 
to achieve a good balance between sensitivity and 
specificity,24 the simple identity search for 6 or 8 con-
tiguous residue matches is not a reliable criterion, as 
such analysis provides too many false positives.1,25 In 
one case, cross-reactivity between the Cry1F protein 
and the Der p 7 allergen of dust mite could not be 
confirmed experimentally, even though they share a 
stretch of 6 contiguous amino acids.26

Bioinformatics tools to implement the WHO/FAO 
criteria are widely available, and include the FARRP 
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database (www.allergenonline.com), the Structural 
Database of Allergenic Proteins (SDAP; http://fermi.
utmb.edu/SDAP/)27 and Allermatch (http://allermatch.
org/),28 where a user can rapidly compare molecular 
features of individual or groups of known allergens, 
such as protein sequence, 3D structure, IgE epitopes 
and literature references. Bioinformatics tools incor-
porated in some of these databases allow the user to 
find additional information by cross reference to other 
data bases, such as the protein family of an allergen in 
Pfam,29 the experimentally determined 3D structure in 
the Protein Data Bank,3 gene sequences in GenBank,30 
or publications in PubMed. Bioinformatics analysis 
of the properties of allergens has progressed greatly 
in the last few years, and the established databases 
now provide a solid scientific foundation beyond 
the WHO guidelines for assessing the potential risk 
of allergenicity in GM foods.24,31 Additional infor-
mation on B-cell and T-cell epitopes is collected in 
the Immune Epitope Database (http://www.immu-
neepitope.org/).32 This site also lists peptides from 
the sequences of allergens that have been tested and 
shown not to bind IgE. This information can be useful 
for those designing hypoallergenic proteins designed 
to induce T-cell tolerance.

Classification of Allergens
Grouping allergens into protein families based upon 
their amino acid sequences and biochemical functions, 
as exemplified by the Pfam database,29 has shown that 
there are only a limited number of allergen structural 
classes. The Pfam database is a comprehensive col-
lection of families of proteins with similar biochemi-
cal functions and sequence similarities. As proteins 
are generally composed of one or more domains, each 
domain is separately represented by multiple sequence 
alignments and hidden Markov models (HMMs) and 
annotated with its biochemical function. There are two 
components of Pfam: Pfam-A, a set of high quality, 
manually curated families and Pfam-B, a set of auto-
matically generated domain usually of lower quality. 
Pfam assignments can be obtained from precomputed 
domains using UniProt, TrEMBL or SwissProt acces-
sion numbers, or individual BLAST or HMM profile 
searches of individual allergen sequences.

Two independent studies of the classification of all 
known allergens within two different databases came 
to similar conclusions. All the allergens in the Allfam 

database (http://www.meduniwien.ac.at/ allergens/ 
allfam) could be grouped into 143 of the 9,318 dis-
tinct families in the Pfam database,33 whereas the 
allergens listed in SDAP database can be grouped into 
130 Pfam families.34 Representative 3D folds of nine 
major protein families that encompass the majority 
of known allergens illustrate the variety of different 
folds of these families (Fig. 1). Members of the same 
protein family in general have very similar 3D protein 
folds, so given a sufficient degree of sequence iden-
tity (above about 35%),35 one can model the structure 
of other family members using the known structures 
as templates. Reliable 3D models, which can be used 
to map experimentally determined linear epitopes and 
predict conformational epitopes, have been prepared 
for most of the allergens in SDAP.9

Molecular and structural Features  
of cross-reactive Allergens
Clinical cross-reactivity is frequently 
observed between allergens from 
different sources
Clinical cross-reactivity between two allergens refers 
to the situation in which a patient who has been 
sensitized to and has IgE antibodies specific for one 
allergen, also reacts to a second allergen. Patients 
need not have been exposed to the related allergen; 
for example, IgE antibodies in sera of patients 
sensitized to Texas mountain cedar also recognize 
allergens from Japanese red cedar (“Sugi”) pollen.36 
Such cross-sensitivity can be identified from clinical 
history, in vitro quantification of allergen-specific IgE, 
skin test reactivity and provocation challenges with 
purified allergens. Competition assays can be used 
to quantify and verify the findings: preincubation of 
sera with the suspected cross-reactive antigen should 
reduce the binding of the IgE to the sensitizing 
antigen.

Some common allergen cross-reactivities have 
been explained by sequence/structural similarities 
between proteins from different sources. For example, 
shellfish allergies have been linked to reaction to tro-
pomyosins of more distantly related arthropods, such 
as cockroaches or dust mites, using in vitro and animal 
models.37,38 The cross-reactivity observed for cedar 
pollens across a large array of taxonomically related 
groups,36 can be explained by the fact they all contain 
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forms of the major allergenic proteins  (particularly 
pectate lyases and certain pathogenesis-related (PR) 
proteins) that are highly similar in sequence. Similar 
cross-reactivities to plants from different phyla have 
been related to their nearly identical profilins, lipid 
transfer proteins, calcium-binding proteins and PR 
proteins.39,40

The situation is more complex in other impor-
tant food sources, such as nut proteins, where sev-
eral major allergens have been identified. About 35% 
of patients who are allergic to peanuts also react to 

tree nuts, particularly walnuts.41 The major allergenic 
 proteins in peanuts and walnuts are vicilins, albu-
mins, and pathogenesis related proteins, which have a 
high structural similarity. While the vicilins are quite 
similar, the percent identities of the other allergens lie 
well below the 35% cutoff listed in the WHO rules. 
Sera from patients with nut allergies detect many 
proteins and subsequences of known allergens on 
Western blots and microarrays, and the patterns dif-
fer greatly from one patient to another.42 Thus, much 
more effort will be required to establish which of the 

A B C

D E F
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Figure 1. Representative experimentally determined X-ray crystal and NMR structures of allergens from the nine most abundant Pfam database  protein 
families. A) Protease inhibitor/seed storage/LTP family (Pfam ID = PF00234); representative allergen LTP from maize (Zea m 14) B) Profilin family 
(PF00235); birch pollen profilin (Bet v 2) c) eF hand (PF00036); pollen allergen from Timothy grass (Phl p 7) D) expansin family (2 domains PF01357 
and PF03330); beta-expansin from maize (Zea m 1) e) Cysteine-rich secretory protein family (PF00188); venom allergen III from fire ant (Sol i 3)  
F) pathogenesis related protein family PR10 (PF00407); cherry allergen (Pru av 1) G) Cupins (PF00190); peanut allergen (Ara h 3) H) lipocalin (PF00061); 
alpha-2U-globulin from mouse (Mus m 1) I) Pectate lyase family (PF00544); major cedar pollen allergen (Jun a 1).
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protein groups in the two sources is most important 
for cross-reactivity.

In some cases, the source of allergenic triggers do 
not appear to be related to each other; for example, 
in pollen–food allergy syndrome (also known as oral 
allergy syndrome (OAS)), the sensitizing allergen 
is often a plant pollen and the trigger is a food pro-
tein. Pollen-food allergy syndrome is elicited by a 
variety of plant proteins cross-reacting with airborne 
 allergens. Symptoms are mostly confined to the oral 
and pharyngeal region after eating foods that have 
not been denatured by cooking. It is estimated that 
OAS affects up to 50%–70% of patients suffering 
from pollen allergy, especially to birch and ragweed. 
These patients were sensitized with pollen allergens 
and symptoms develop when they ingest food which 
contains homologous allergens.

Allergens that can both sensitize and trigger reac-
tions are known as “complete” allergens; those that 
can only trigger reactions in previously sensitized 
individuals are known as “incomplete” allergens. 
The latter include Group 2 food allergens, which 
are not sensitizing but cross-react with IgE antibod-
ies that individuals produce in response to aeroal-
lergens, and are implicated in OAS.40 For example, 
some individuals sensitive to the birch pollen aller-
gen Bet v 1 can experience OAS after eating fruits 
of the Rosaceae such as apple, cherries, celery root, 
and carrots, which contain the allergens Mal d l, 
Pru av 1, Api g 1 and Dau c 1, respectively, all of 
which share sequence identity of more than 35% 
with Bet v 1.43–46

Cross-reactive allergens are often  
from the same protein family
The classification of allergens according to Pfam 
also provides a framework to explain clinically 
observed cross-reactivities.27,47–49 For example, simi-
lar lipid transfer proteins (LTP) have been implicated 
in food allergies to cherry (Pru av 3), apricot (Pru 
ar 3), hazelnut (Cor a 8), peach (Pru p 3) and corn 
(Zea m 14). The 3D structures of these proteins form 
a compact four-helix bundle (Fig. 1a) which is stabi-
lized by disulfide bonds. A structural homologue of 
these allergens in plane tree pollen (Pla a 3) may be 
the sensitizing allergen for cross reactivity with pol-
len fruit allergens in the Mediterranean population.50 
Several other studies demonstrated cross-reactivities 

of  structural homologues of LTPs in other foods, such 
as rice, strawberry and cabbage.40

Profilins (Fig. 1b) are pan allergens, considered to 
be responsible for cross-reactivities between latex, 
pollen and plant food.51,52 However, not all plant pro-
filins are cross-reactive to the same extent, and ELISA 
inhibition data with sera from different patients could 
be correlated in a semi-quantitative analysis with 
conserved and species-specific epitopes of profilin.53 
The extent of cross-reactivity among profilins from 
Timothy grass, birch, latex and celery was greater 
than cross-reactivity to mugwort and bell pepper 
profilins.

The 3D structures of the cross-reactive allergens 
from grass pollen (Phl p 7), tree pollen (Bet v 4) and 
weed pollen (Che a 3) contain a common domain 
known as the EF-hand, a structural motif for calcium 
binding (Fig. 1c).54 Other pollen allergens, grass 
allergens Phl p 1 and Phl p 2 from timothy grass 
and Zea m 1 from corn, are expansins that medi-
ate cell wall extension in plants. Expansins contain 
two domains that form a binding groove for a glycan 
backbone. The first domain, a double-psi beta barrel,55 
resembles the structure of the family-45 glycoside 
hydrolase (GH45), although Zea m 1 lacks a critical 
residue in the active site and does not hydrolyze poly-
saccharides.7 The second domain is an immunoglobu-
lin (Ig)-like β sandwich (Fig. 1d). Common epitopes 
among corn and grass pollen allergens have been 
located on the protein portion of these expansins, but 
these epitopes of group 1 grass allergens are not con-
served among all members of the expansin superfam-
ily. Five surface exposed regions in the major latex 
allergen Hev b 2 are conserved in the 1,3 β-glucanase 
homologue from banana, and might be responsible 
for latex-banana cross-reactivity.52

These examples illustrate that clinically observed 
cross-reactivities of allergens can often be explained 
by structural similarity of conserved surface patches 
of allergenic proteins in the same protein family. 
These observations are also valid for other families, 
such as the cysteine-rich secretory protein family; 
PR-10 proteins, cupins, lipocalins, and pectate lyases 
(Fig. 1e–i). Recent annotations of allergen databases 
with protein family relations, such as SDAP or All-
fam can alert physicians of allergenic patients to 
sources containing structurally related allergens, and 
in vitro tests such as Western blotting and ELISA 
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can then be used to determine whether the patient’s 
serum IgE binds to the allergenic proteins in those 
sources.27,40,48,49,56 New proteomic microarray technol-
ogy allow the detection of IgE-related sensitization 
of large panels of allergens using many sera samples, 
and can provide a comprehensive basis for the rela-
tion between sequence similarity and IgE recognition 
in the future.57

Linear and conformational  
Ige epitopes
Identifying Ige epitope containing  
areas as allergen specific motifs
It is possible that small areas of similar sequence 
might be sufficient to account for cross-reactivity 
between sources by constituting an IgE epitope. Two 
different methods have been proposed to define areas 
of sequence and structural homology that are com-
mon and distinctive for homologous allergens,34,58 
known as allergen specific motifs (ASMs).

The first approach defines ASMs as MEME motifs 
50 amino acids in length occurring repeatedly in pro-
tein sequences of currently known allergens.59 MEME 
motifs are sequence patterns that are represented as 
probabilities for each amino acid in a position-depen-
dent manner.60 Stadler found that more than 90% of the 
test allergens shared 52 repeating sequence motifs. A 
recent test of the MEME methodology showed that a 
motif-based peptide from tropomyosins had the same 
reactivity with IgE in patient sera as did full-length 
tropomyosins from shrimp.58

The second approach uses the Pfam classification 
of allergens and generates PCPMer motifs, typically 
5–20 residues in length. PCPMer motifs are short 
contiguous sequences with a statistical significant 
conservation of physicochemical properties of amino 
acid residues derived from a multiple sequence align-
ment of proteins.61 PCPMer motifs can be generated 
online from any protein sequence alignment with the 
PCPMer suite (http://landau.utmb.edu:8080/pcpmer/
index.jsp); these motifs correspond to some extent 
with known IgE epitopes.34 An algorithm for quan-
titatively assessing the similarity in physicochemi-
cal properties of a sequence amino acids in linear 
epitopes, known as the property distance (PD) scale, 
has been experimentally validated and implemented 
in the SDAP allergen data base.62 The PD scale and 

PCPMer motifs, available on the SDAP web server, 
can be used to screen novel proteins for the presence 
of sequences similar to those found in known aller-
gens to assess the potential risk of allergenicity in 
recombinant food products.24

Defining conformational epitopes
Most of the IgE epitopes that have been elucidated so 
far are “linear” or “continuous” ASMs as they were 
defined by probing overlapping synthetic peptides of 
the allergens for the binding of IgE from the sera of 
allergic patients. However, the epitopes to which IgE 
binds most tightly are most commonly formed by res-
idues that become contiguous on the protein surface 
after folding.5,6,8,63–67 Identifying such “conformational 
epitopes” is currently a major challenge.17,24,27,48,58,68,69 
Experimentally, conformational IgE epitopes can be 
defined most convincingly by examining the crys-
tal structures of complexes of the allergen and the 
binding fragments (Fab) of relevant antibodies.66,70–72 
However, only five X-ray structures of complexes 
of allergen–Fab fragments have been determined so 
far (Fig. 2): the major allergens from Timothy grass 
 pollen Phl p 273 and bovine milk β-lactoglobulin 
Bos d 571 with recombinant Fab fragments of human 
IgE; the major allergens from birch pollen Bet v 1,74 
bee venom hyaluronidase Api m 2,72 and the major 
allergen from German cockroach Bla g 2 with mono-
clonal IgG antibodies66 that were shown in competi-
tion assays to bind to or near human IgE epitopes.

Padavattan et al compared the first four of these 
epitopes defined by X-ray crystallography73 and sug-
gested that the flattened shape (formed by four par-
allel β strands) of the Bos d 5 and Phl p 2 epitopes 
recognized by their human IgE antibodies were dif-
ferent from the protruding epitopes of Bet v 1 and 
Api m 2 (formed from a β hairpin and a helix-loop 
helix motif) because these epitopes were recognized 
by IgE vs. IgG antibodies. However, the monoclonal 
IgG antibodies used in the study could be considered 
as surrogates for human IgEs, based on their ability to 
inhibit the binding of human IgG to the target aller-
gen. Subsequently the structure of an epitope of the 
German cockroach allergen Bla g 2,66 a flat area dom-
inated by a quasi-helical structure, was defined in a 
co-crystal with a high affinity IgG monoclonal anti-
body, which effectively competed with patient IgE 
antibodies for Bla g 2 binding. These observations 
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on structural characteristics of IgE vs. IgG epitopes 
are based on the rather limited data that are currently 
available, and additional co-crystal structures are 
needed to define structural patterns of epitopes that 
distinguish epitopes for IgE from IgG responses.

The extent of fragmentation of the sequences that 
form epitopes was also considered as a potential dif-
ference between IgG and IgE epitopes. For example, 
in the IgG epitopes of Bet v 1 and Api m 2, the con-
formational epitopes consist mainly of one contigu-
ous segment of residues. In contrast, the IgE epitopes 
from Bos d 5 and Phl p 2 are formed by four frag-
ments of contiguous residues and several isolated 
residues. The Bla g 2-specific monoclonal antibody 
7C11 binds to the same binding site on Bla g 2 as 
IgE and the epitope consists also of four fragments of 
three or more contiguous residues, with a long frag-
ment of 11 residues.

Another use of crystal structures is to determine 
fine differences that might account for the differ-
ent reactivities of closely related proteins. For 
example, grass pollen allergens were grouped in the 
1960s based on chemical characteristics, including 
molecular weight and isoelectric point.75,76 There 
is extensive cross-reactivity between group 2 and 
group 3 grass pollen allergens, but none between 
these and the group 1 allergens. An IgE epitope of 
the group 2 Timothy grass pollen allergen Phl p 2 is 
dominated by charged and polar residues that form 
tight contacts (some of them by hydrogen bonds) 
to the antibody (Fig. 3a, b).73 Nine residues within 
hydrogen-bonding distance of IgE are conserved 
between group 2 and group 3 allergens (red in 

Fig. 3c) but are different from the five conserved 
potential hydrogen-bonding residues in group 1 
allergens (Fig. 3d). We expect that many clinically 
observed cross-reactivities between allergens could 
be elucidated based on the structural features of 
conformational IgE epitopes.27,40,45,49,54,77

The structural characterization of conformational 
IgE epitopes by X-ray crystal structures is a diffi-
cult and time consuming procedure, since it requires 
monoclonal antibodies that mimic the reactivity of 
human IgE antibodies and production of high quality 
co-crystals. Another approach for defining potential 
conformational epitopes uses random peptide phage 
display to identify mimetic peptides (mimotopes). 
Mimotopes are peptides that are generated by phage 
display technology and screened using monoclonal 
antibodies in an iterative selection process.

The selected peptides mimic the binding site of 
the antigen to the chosen antibody and can be lin-
ear or conformational protein, carbohydrates or lipid 
epitopes. In case of carbohydrates and lipids these 
mimetic peptides compete in binding to the chosen 
monoclonal antibody directed against carbohydrate or 
lipid antigen. Both monoclonal IgG78–80 and purified 
IgE81,82 from patient sera have been used with some 
success. Mimotopes can achieve immunogenicity and 
induce epitope-specific antibody responses upon vac-
cination when coupled to suitable carriers. Manual 
or computational methods have been used to locate 
contiguous regions on the surface of the allergen pro-
teins that most similarly match the physicochemical 
structure of the peptide mimetics.36,83 The similarity 
between the phage peptides and areas on the surface 

Api m 2 Bet v 1 Bla g 2 Bos d 5Phl p 2

Figure 2. Allergens in complex with Ige or IgG Fab fragments. Timothy pollen Phl p 2–Ige; bovine milk beta-lactoglobulin Bos d 5–Ige; German cockroach 
Bla g 2–IgG; birch pollen Bet v 1–IgG; honey bee venom hyaluronidase Api m 2–IgG. Allergens are colored red with epitopes colored yellow, whereas the 
H and L chains of Fab are colored magenta and cyan, respectively.
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of the allergen protein can be assessed and quantified 
using several web servers.83–85

The relation of binding affinities of specific IgE 
epitopes on the physiological effect has been directly 
tested using a panel of recombinant IgE (rIgE) anti-
bodies. For the major dust mite allergen Der p 2 sev-
eral rIgE antibodies with different binding affinities 
were tested for their ability to induce degranulation 
of human blood basophils triggered by different con-
centrations of rDer p 2.86 Their finding strongly sug-
gests that optimal degranulation of basophils requires 
two to three epitope-IgE complexes. Equimolar con-
centrations of the different IgE antibodies were most 
effective; increasing the concentrations of Der p 2 IgE 
antibodies relative to unrelated IgE antibodies was 
important, and certain pairing of their monoclonal 
antibodies to different epitopes was more effective 
than others. This observation might be related to the 

spatial relationships between different IgE epitopes 
on the Der p 2 protein surfaces. Since many allergens 
exist in nature as homodimers, which greatly aug-
ments their ability to activate cells with IgE recep-
tors, the orientation of the dimerization could also 
be an important structural determinant of the relative 
potency of different allergens.

Redesigning Allergenic proteins
The first efforts to reduce allergenicity used chemi-
cal modification, for example polymerization with 
aldehyde87 or coupling to methoxypolyethylene.88 
The polymerized proteins diffuse more slowly and 
contain more concealed antigenic determinants, 
which are preferentially processed by phagocytic 
cells (monocytes, macrophages and dendritic cells),87 
are less likely to cross-link IgE antibodies, and more 
likely to be presented to T cells. Proteins coupled 

A

C

B

D

Figure 3. The Phl p 2 Ige epitope and cross-reactivity between grass pollen from group 2 and group 3 but not group 1. A) and B) Phl p 2 Ige epitope 
colored by residue type: hydrophobic and aromatic—green; polar—yellow; positive—blue; negative—red; proline—magenta. C and D: sequence conser-
vation of Phl p 2 epitope residues in multiple alignments with homologs from group 2 and group 3 c) and group 1 D) red—conserved or conservatively 
substituted residues that form hydrogen bonds, yellow—epitope residues that do not form hydrogen bonds.
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with methoxypolyethylene stimulate antigen-specific, 
T-supressor cells and down regulate the proliferation 
of B cell clones engaged in IgE synthesis.88 Another 
approach is to use fragments of an allergen, obtained 
proteolytically or by recombinant synthesis; for 
example, fragments of Bet v 1 cannot bind IgE but 
can activate T cells.89 However, the fragments might 
not fold correctly, thus greatly decreasing their ability 
to generate an IgG response that could reduce subse-
quent IgE sensitization.90 Treatment with fragments 
did not significantly prevent side reactions, such as 
flushing or swelling at the injection site, generalized 
urticaria, pruritus, and even asthma, dyspnoea, circu-
latory dysregulation, and gastrointestinal disturbance 
when compared to the wild type extract.91

The advent of recombinant allergen synthesis 
allowed the production of allergen isoforms that are not 
only hypoallergenic, i.e, with reduced IgE binding,92,93 
but that specifically stimulate the production of pro-
tective antibodies (eg, specific IgG, IgA and IgM) 
and regulatory T-cells. For grass pollen allergens, IgE 
epitopes appear different from those that bind other 
allergen classes.94 One can also generate IgG antibod-
ies (IgG1, IgG4 and IgG2 subclasses) to major birch 
pollen allergen Bet v 1 epitopes distinct from those 
recognized by IgE.95–97 There are 10 regions on the 
five allergenic caseins in milk, αS1-casein, αS2-casein, 
β-casein, β-lactoglobulin and κ-casein, that are more 
reactive for IgE than for IgG4.98 At least 44 different 
allergens, mostly aeroallergens, have been modified 
in some way to decrease their allergenicity.99 There 
is also an effort to find ways to modify the immune 
response in individuals with food allergies, or at least 
to label all composite foods to alert those with aller-
gies to possible trace contaminants.

Structural studies can also play an important role 
in the redesigning of proteins to mitigate allergenicity. 
Consistent with the structural observations, patients 
allergic to dust mite produced IgG with binding affin-
ity only to conformational epitopes of the major aller-
gen Der p 1, whereas IgG from non- symptomatic 
mite-sensitized subjects and normal control individ-
uals bound with similar affinity to both native and 
 pepsin-hydrolyzed Der p 1.100

Other approaches use specific mutations of the 
allergen that decrease their affinity for IgE while 
retaining the ability to induce T-cell proliferation, as 
successfully demonstrated for Bet v 1.93 Modifying 

T cell epitopes of Cry j 1 yielded a candidate for 
 peptide-based immunotherapy of Japanese cedar 
pollinosis.101 A mimotope gene of a major IgE 
epitope of Phl p 5, when used to immunize mice, 
did not generate an IgE response and prevented 
activation of the epitope-specific T cells.102 Another 
interesting recent approach was to couple a hypoal-
lergenic peptide from the major grass pollen allergen 
Phl p 1 to the VP1 surface protein of a human rhino-
virus (HRV). Mice and rabbits immunized with this 
chimeric antigen produced IgG antibodies that recog-
nized group 1 allergens from different grass species, 
blocked allergic patients’ IgE reactivity to Phl p 1, 
and prevented Phl p 1-induced basophil degranula-
tion.103 Further, antibodies were also detected against 
VP1, suggesting that this vaccine might also be useful 
in vaccinating against HRV, which can cause serious 
infections in asthmatics. These successful efforts in 
modifying allergens by mutations and using geneti-
cally engineered allergen derivatives and fusion con-
structs with reduced allergenic activity for specific 
 immunotherapy (SIT) may result in more convenient 
and safer forms of immunotherapy in the near future.

conclusion
Some specific characteristics of allergenic proteins 
have been detected by combining experimental 
results with bioinformatics studies. The presence of 
multiple allergens from the same Pfam database fam-
ily in many different plants and animals can explain 
many observed clinical cross-reactivities. However, 
more structural information on allergen specific 
motifs and conformational epitopes is needed to make 
reliable in silico predictions about cross-reactivities. 
Fortunately, the progress in producing recombinant 
allergen proteins in sufficient quantities and purity 
for 3D structural analysis by X-ray crystallography 
and NMR techniques have made it possible to obtain 
detailed structural information on conformational 
IgG and IgE epitopes in several clinically important 
allergens. Thanks to a combination of X-ray, NMR 
and reliable 3D-modelling on a large scale, it is now 
possible to prepare complete maps of conformational 
IgE epitopes of all major allergens based on high 
quality 3D experimental structures or models. The 
ability to compare the 3D structures and amino acid 
sequences of allergens with improved bioinformatics 
tools can also provide a rational basis for  regulatory 
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agencies to establish new rules for food labelling 
and for accepting novel recombinant proteins as 
food products. Detailed structural data for allergens 
will aid in designing individual proteins for SIT that 
have reduced allergenicity while retaining the ability 
to generate a protective immune response. Progress 
in this area will depend on further definition of the 
common properties of the major families of allergens 
portrayed here.

Acknowledgements
This work is supported by grants NIH R01 AI 064913, 
U.S. EPA  RD 833137 and a contract from the U.S. Food 
and Drug Administration (HHSF223200710011I) 
to WB, a grant U.S. EPA RE-83406601 to CHS and 
by grants NIH R01AI1052428 and Advanced Tech-
nology Program from THECB to RMG. The article 
has not been formally reviewed by the EPA, and the 
views expressed in this document are solely those of 
the authors.

Disclosures
This manuscript has been read and approved by all 
authors. This paper is unique and not under consid-
eration by any other publication and has not been 
published elsewhere. The authors and peer reviewers 
report no conflicts of interest. The authors confirm 
that they have permission to reproduce any copy-
righted material.

References
1. Selgrade MK, Bowman CC, Ladics GS, Privalle L, Laessig SA. Safety 

assessment of biotechnology products for potential risk of food allergy: 
implications of new research. Toxicol Sci. 2009 Jul;110(1):31–9.

2. Aas K. What makes an allergen an allergen. Allergy. 1978 Feb;33(1):3–14.
3. Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein 

Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. 
Nucleic Acids Res. 2007 Jan;35(Database issue):D301–3.

4. Gajhede M, Osmark P, Poulsen FM, et al. X-ray and NMR structure of Bet v 1, 
the origin of birch pollen allergy. Nat Struct Biol. 1996 Dec;3(12):1040–5.

5. Gustchina A, Li M, Wunschmann S, Chapman MD, Pomes A, Wlodawer A. 
Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding 
aspartic protease with a novel mode of self-inhibition. J Mol Biol. 2005 Apr 
29;348(2):433–44.

6. Trevino MA, Garcia-Mayoral MF, Barral P, et al. NMR solution struc-
ture of Ole e 6, a major allergen from olive tree pollen. J Biol Chem. 2004 
Sep;279(37):39035–41.

7. Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ. Crystal 
structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 
pollen allergen from maize. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40): 
14664–71.

8. Czerwinski EW, Midoro-Horiuti T, White MA, Brooks EG, Goldblum RM. 
Crystal structure of Jun a 1, the major cedar pollen allergen from Juniperus 
ashei, reveals a parallel beta-helical core. J Biol Chem. 2005 Feb;280(5): 
3740–6.

 9. Oezguen N, Zhou B, Negi SS, et al. Comprehensive 3D-modeling of aller-
genic proteins and amino acid composition of potential conformational 
IgE epitopes. Mol Immunol. 2008 Aug;45(14):3740–7.

 10. Marsh DG, Goodfriend L, King TP, Lowenstein H, Platts-Mills TA. 
 Allergen nomenclature. Bull World Health Org. 1986;64(5):767–74.

 11. King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, 
Thomas W. Allergen nomenclature. WHO/IUIS Allergen Nomenclature 
Subcommittee. Int Arch Allergy Immunol. 1994 Nov;105(3):224–33.

 12. Pearson WR. Using the FASTA program to search protein and DNA 
sequence databases. Methods Mol Biol. 1994;25:365–89.

 13. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic 
Acids Res. 1997;25(17):3389–402.

 14. Bindsley-Jensen C, Sten E, Earl LK, et al. Assessment of the poten-
tial allergenicity of ice structuring protein type III HPLC 12 using the 
FAO/WHO 2001 decision tree for novel foods. Food Chem Toxicol. 2003 
Jan;41(1):81–7.

 15. WHO. Joint FAO/WHO Food Standards Programme. Codex Ad Hoc 
 Intergovernmental Task Force on Foods Derived from  Biotechnology, http://
www.codexalimentarius.net/. Yokohama: World Health  Organization; 2003.

 16. EFSA. Guidance document of the GMO Panel for the risk assessment of 
genetically modified plants and derived food and feed, http://www.efsa.
eu.int/science/gmo/gmo_guidance/660_en.html: European Food Safety 
Authority; 2004.

 17. Zhang ZH, Tan SC, Koh JL, Falus A, Brusic V. ALLERDB database and 
integrated bioinformatic tools for assessment of allergenicity and allergic 
cross-reactivity. Cell Immunol. 2006 Dec;244(2):90–6.

 18. Gendel SM, Jenkins JA. Allergen sequence databases. Mol Nutr Food Res. 
2006 Jul;50(7):633–7.

 19. Mari A. Importance of databases in experimental and clinical allergology. 
Int Arch Allergy Immunol. 2005;138(1):88–96.

 20. Ivanciuc O, Schein CH, Braun W. SDAP: database and computational 
tools for allergenic proteins. Nucleic Acids Res. 2003;31(1):359–62.

 21. Brusic V, Millot M, Petrovsky N, Gendel SM, Gigonzac O, Stelman SJ. 
Allergen databases. Allergy. 2003 Nov;58(11):1093–100.

 22. Hileman RE, Silvanovich A, Goodman RE, et al. Bioinformatic methods 
for allergenicity assessment using a comprehensive allergen database. Int 
Arch Allergy Immunol. 2002 Aug;128(4):280–91.

 23. Ivanciuc O, Schein CH, Braun W. Data mining of sequences and 3D struc-
tures of allergenic proteins. Bioinformatics. 2002;18(10):1358–64.

 24. Ivanciuc O, Schein CH, Garcia T, Oezguen N, Negi SS, Braun W. Struc-
tural analysis of linear and conformational epitopes of allergens. Regul 
Toxicol Pharmacol. 2009 Aug;54 Suppl 3:S11–9.

 25. Thomas K, Herouet-Guicheney C, Ladics G, et al. Current and future 
methods for evaluating the allergenic potential of proteins: international 
workshop report 23–25 Oct 2007. Food Chem Toxicol. 2008 Sep;46(9): 
3219–25.

 26. Ladics GS, Bardina L, Cressman RF, Mattsson JL, Sampson HA. Lack 
of cross-reactivity between the Bacillus thuringiensis derived protein 
Cry1F in maize grain and dust mite Der p7 protein with human sera 
positive for Der p7-IgE. Regul Toxicol Pharmacol. 2006 Mar;44(2): 
136–43.

 27. Schein CH, Ivanciuc O, Braun W. Bioinformatics approaches to classifying 
allergens and predicting cross-reactivity. Immunol Allergy Clin North Am. 
2007 Feb;27(1):1–27.

 28. Fiers M, Kleter GA, Nijland H, Peijnenburg A, Nap JP, van Ham R. 
Allermatch (TM), a webtool for the prediction of potential allergenicity 
according to current FAO/WHO Codex alimentarius guidelines. BMC Bio-
informatics. 2004 Sep 16;5:133.

 29. Finn RD, Tate J, Mistry J, et al. The Pfam protein families database. 
Nucleic Acids Res. 2008 Jan;36(Database issue):D281–8.

 30. Benson D, Karsch-Mizrachi I, Lipman D, Ostell J, Wheeler D. Genbank. 
Nucleic Acids Res. 2006;34:D16–20.

 31. Mari A, Rasi C, Palazzo P, Scala E. Allergen databases: current status and 
perspectives. Curr Allergy Asthma Rep. 2009 Sep;9(5):376–83.

 32. Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 
2.0. Nucleic Acids Res. 2010 Jan;38(Database issue):D854–62.

An allergen portrait gallery

Bioinformatics and Biology Insights 2010:4 123

http://www.efsa.eu.int/science/gmo/gmo_guidance/660_en.html:
http://www.efsa.eu.int/science/gmo/gmo_guidance/660_en.html:
http://www.la-press.com


 33. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are 
distributed into few protein families and possess a restricted number 
of biochemical functions. J Allergy Clin Immunol. 2008 Apr;121(4): 
847–52. e847.

 34. Ivanciuc O, Garcia T, Torres M, Schein CH, Braun W. Characteristic 
motifs for families of allergenic proteins. Mol Immunol. 2009 Feb;46(4): 
559–68.

 35. Abagyan RA, Batalov S. Do aligned sequences share the same fold? J Mol 
Biol. 1997 Oct 17;273(1):355–68.

 36. Midoro-Horiuti T, Schein CH, Mathura V, et al. Structural basis for 
epitope sharing between group 1 allergens of cedar pollen. Mol Immunol.  
2006 Feb;43(6):509–18.

 37. Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB. Molecular basis of 
arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, 
house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol. 
2002 Sep;129(1):38–48.

 38. Reese G, Schicktanz S, Lauer I, et al. Structural, immunological and func-
tional properties of natural recombinant Pen a 1, the major allergen of 
Brown Shrimp, Penaeus aztecus. Clin Exp Allergy. 2006 Apr;36(4): 
517–24.

 39. Radauer C, Breiteneder H. Pollen allergens are restricted to few protein 
families and show distinct patterns of species distribution. J Allergy Clin 
Immunol. 2006 Jan;117(1):141–7.

 40. Bonds RS, Midoro-Horiuti T, Goldblum R. A structural basis for food 
allergy: the role of cross-reactivity. Curr Opin Allergy Clin Immunol. 2008 
Feb;8(1):82–6.

 41. Teuber S, Beyer K, Comstock S, Wallowitz M. The big eight foods: clini-
cal and epidemiological overview. In: Malecki S, editor. Food Allergy. 
 Washington DC: ASM Press; 2006:49–79.

 42. Shreffler WG, Beyer K, Chu TH, Burks AW, Sampson HA. Microarray 
immunoassay: association of clinical history, in vitro IgE function, and 
heterogeneity of allergenic peanut epitopes. J Allergy Clin Immunol. 
2004 Apr;113(4):776–82.

 43. Klinglmayr E, Hauser M, Zimmermann F, et al. Identification of B-cell 
epitopes of Bet v 1 involved in cross-reactivity with food allergens. 
Allergy. 2009 Apr;64(4):647–51.

 44. Wiche R, Gubesch M, Konig H, et al. Molecular basis of pollen-related 
food allergy: identification of a second cross-reactive IgE epitope on Pru 
av 1, the major cherry (Prunus avium) allergen. Biochem J. 2005 Jan 1; 
385(Pt 1):319–27.

 45. Wangorsch A, Ballmer-Weber BK, Rosch P, Holzhauser T, Vieths S. 
 Mutational epitope analysis and cross-reactivity of two isoforms of Api g 1, 
the major celery allergen. Mol Immunol. 2007 Apr;44(10):2518–27.

 46. Bohle B. The impact of pollen-related food allergens on pollen allergy. 
Allergy. 2007 Jan;62(1):3–10.

 47. Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills EN. Struc-
tural relatedness of plant food allergens with specific reference to cross-
reactive allergens: an in silico analysis. J Allergy Clin Immunol. 2005 
Jan;115(1):163–70.

 48. Breiteneder H, Mills C. Structural bioinformatic approaches to understand 
cross-reactivity. Mol Nutr Food Res. 2006 Jul;50(7):628–32.

 49. Aalberse RC. Assessment of allergen cross-reactivity. Clin Mol Allergy. 
2007;5:2.

 50. Lauer I, Miguel-Moncin MS, Abel T, et al. Identification of a plane pollen 
lipid transfer protein (Pla a 3) and its immunological relation to the peach 
lipid-transfer protein, Pru p 3. Clin Exp Allergy. 2007 Feb;37(2):261–9.

 51. Ganglberger E, Radauer C, Wagner S, et al. Hev b 8, the Hevea brasiliensis 
latex profilin, is a cross-reactive allergen of latex, plant foods and pollen. 
Int Arch Allergy Immunol. 2001 Jul;125(3):216–27.

 52. Barre A, Culerrier R, Granier C, et al. Mapping of IgE-binding epitopes on 
the major latex allergen Hev b 2 and the cross-reacting 1,3 beta-glucanase 
fruit allergens as a molecular basis for the latex-fruit syndrome. Mol 
 Immunol. 2009 May;46(8–9):1595–604.

 53. Radauer C, Willerroider M, Fuchs H, et al. Cross-reactive and species-
specific immunoglobulin E epitopes of plant profilins: an experimental and 
structure-based analysis. Clin Exp Allergy. 2006 Jul;36(7):920–9.

 54. Verdino P, Barderas R, Villalba M, et al. Three-dimensional structure of the 
cross-reactive pollen allergen Che a 3: visualizing cross-reactivity on the 
molecular surfaces of weed, grass, and tree pollen allergens. J Immunol. 
2008 Feb 15;180(4):2313–21.

 55. Castillo RM, Mizuguchi K, Dhanaraj V, Albert A, Blundell TL, 
Murzin AG. A six-stranded double-psi beta barrel is shared by several 
 protein superfamilies. Structure. 1999 Feb 15;7(2):227–36.

 56. Egger M, Mutschlechner S, Wopfner N, Gadermaier G, Briza P, Ferreira F. 
Pollen-food syndromes associated with weed pollinosis: an update from 
the molecular point of view. Allergy. 2006 Apr;61(4):461–76.

 57. Scala E, Alessandri C, Bernardi ML, et al. Cross-sectional survey on 
immunoglobulin E reactivity in 23,077 subjects using an allergenic 
molecule-based microarray detection system. Clin Exp Allergy. 2010 
Jun;40(6):911–21.

 58. Marti P, Truffer R, Stadler MB, et al. Allergen motifs and the prediction of 
allergenicity. Immunol Lett. 2007 Mar 15;109(1):47–55.

 59. Stadler MB, Stadler BM. Allergenicity prediction by protein sequence. 
FASEB J. 2003 Apr;17(6):1141–3.

 60. Bailey TL, Elkan C. Fitting a mixture model by expectation maximiza-
tion to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 
1994;2:28–36.

 61. Mathura VS, Schein CH, Braun W. Identifying property based sequence 
motifs in protein families and superfamilies: application to DNase-1 
related endonucleases. Bioinformatics. 2003 Jul 22;19(11):138190.

 62. Ivanciuc O, Midoro-Horiuti T, Schein CH, et al. The property distance 
index PD predicts peptides that cross-react with IgE antibodies. Mol 
Immunol. 2009 Feb;46(5):873–83.

 63. Chruszcz M, Chapman MD, Vailes LD, et al. Crystal structures of mite aller-
gens Der f 1 and Der p 1 reveal differences in surface-exposed residues that 
may influence antibody binding. J Mol Biol. 2009 Feb;386(2):520–30.

 64. Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC. The molecular 
basis for allergen cross-reactivity: crystal structure and IgE epitope map-
ping of birch pollen profilin. Structure. 1997;5(1):33–45.

 65. Garman SC, Kinet JP, Jardetzky TS. Crystal structure of the human high-
affinity IgE receptor. Cell. 1998 Dec 23;95(7):951–61.

 66. Li M, Gustchina A, Alexandratos J, et al. Crystal structure of a dimerized 
cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol 
Chem. 2008 Aug 15;283(33):22806–14.

 67. Spangfort MD, Mirza O, Holm J, Larsen JN, Ipsen H, Lowenstein H. The 
structure of major birch pollen allergens—epitopes, reactivity and cross-
reactivity. Allergy. 1999;50:23–6.

 68. Silvanovich A, Nemeth MA, Song P, Herman R, Tagliani L, Bannon GA. 
The value of short amino acid sequence matches for prediction of protein 
allergenicity. Toxicol Sci. 2006 Mar;90(1):252–8.

 69. Saha S, Raghava GP. AlgPred: prediction of allergenic proteins and 
mapping of IgE epitopes. Nucleic Acids Res. 2006 Jul 1;34 (Web Server 
issue):W202–9.

 70. Spangfort MD, Mirza O, Ipsen H, van Neerven RJ, Gajhede M, Larsen JN. 
Dominating IgE-binding epitope of Bet v 1, the major allergen of birch 
pollen, characterized by X-ray crystallography and site-directed mutagen-
esis. J Immunol. 2003 Sep 15;171(6):3084–90.

 71. Niemi M, Jylha S, Laukkanen ML, et al. Molecular interactions between 
a recombinant IgE antibody and the beta-lactoglobulin allergen. Structure. 
2007 Nov;15(11):1413–21.

 72. Padavattan S, Schirmer T, Schmidt M, et al. Identification of a B-cell epitope 
of hyaluronidase, a major bee venom allergen, from its crystal structure in 
complex with a specific Fab. J Mol Biol. 2007 May 4;368(3):742–52.

 73. Padavattan S, Flicker S, Schirmer T, et al. High-affinity IgE recognition of a 
conformational epitope of the major respiratory allergen Phl p 2 as revealed 
by X-ray crystallography. J Immunol. 2009 Feb 15;182(4):2141–51.

 74. Mirza O, Henriksen A, Ipsen H, et al. Dominant epitopes and allergic cross-
reactivity: complex formation between a Fab fragment of a  monoclonal 
murine IgG antibody and the major allergen from birch pollen Bet v 1.  
J Immunol. 2000 Jul 1;165(1):331–8.

 75. Johnson P, Marsh DG. ‘Isoallergens’ from rye grass pollen. Nature. 1965 
May 29;206(987):935–7.

Schein et al

124 Bioinformatics and Biology Insights 2010:4

http://www.la-press.com


publish with Libertas Academica and 
every scientist working in your field can 

read your article 

“I would like to say that this is the most author-friendly 
editing process I have experienced in over 150 

publications. Thank you most sincerely.”

“The communication between your staff and me has 
been terrific.  Whenever progress is made with the 
manuscript, I receive notice.  Quite honestly, I’ve 
never had such complete communication with a 

journal.”

“LA is different, and hopefully represents a kind of 
scientific publication machinery that removes the 

hurdles from free flow of scientific thought.”

Your paper will be:
• Available to your entire community 

free of charge
• Fairly and quickly peer reviewed
• Yours!  You retain copyright

http://www.la-press.com

 76. Marsh DG, Milner FH, Johnson P. The allergenic activity and stability of 
purified allergens from the pollen of common rye grass (Lolium perenne). 
Int Arch Allergy Appl Immunol. 1966;29(6):521–35.

 77. Weber RW. Cross-reactivity of pollen allergens: impact on allergen immu-
notherapy. Ann Allergy Asthma Immunol. 2007 Sep;99(3):203–12.

 78. Jensen-Jarolim E, Leitner A, Kalchhauser H, et al. Peptide mimotopes 
displayed by phage inhibit antibody binding to Bet v 1, the major birch 
pollen allergen, and induce specific IgG response in mice. FASEB J. 
1998 Dec;12(15):1635–42.

 79. Szalai K, Fuhrmann J, Pavkov T, et al. Mimotopes identify conformational 
B-cell epitopes on the two major house dust mite allergens Der p 1 and 
Der p 2. Mol Immunol. 2008 Mar;45(5):1308–17.

 80. Sookrung N, Chaicumpa W, Tungtrongchitr A, et al. Periplaneta ameri-
cana arginine kinase as a major cockroach allergen among Thai patients 
with major cockroach allergies. Environ Health Perspect. 2006 Jun;114(6): 
875–80.

 81. Leitner A, Vogel M, Radauer C, et al. A mimotope defined by phage dis-
play inhibits IgE binding to the plant panallergen profilin. Eur J Immunol. 
1998 Sep;28(9):2921–7.

 82. Pacios LF, Tordesillas L, Cuesta-Herranz J, et al. Mimotope mapping as 
a complementary strategy to define allergen IgE-epitopes: Peach Pru p 3 
allergen as a model. Mol Immunol. 2008 Apr;45(8):2269–76.

 83. Negi S, Braun W. Automated detection of conformational epitopes 
using phage display peptide sequences. Bioinform Biol Insights. 2009; 
3:71–81.

 84. Mayrose I, Shlomi T, Rubinstein ND, et al. Epitope mapping using com-
binatorial phage-display libraries: a graph-based algorithm. Nucleic Acids 
Res. 2007;35(1):69–78.

 85. Huang J, Gutteridge A, Honda W, Kanehisa M. MIMOX: a web tool for 
phage display based epitope mapping. BMC Bioinformatics. 2006; 7:451.

 86. Christensen LH, Holm J, Lund G, Riise E, Lund K. Several distinct proper-
ties of the IgE repertoire determine effector cell degranulation in response 
to allergen challenge. J Allergy Clin Immunol. 2008 Aug;122(2):298–304.

 87. Ibarrola I, Sanz ML, Gamboa PM, et al. Biological characterization of glu-
taraldehyde-modified Parietaria judaica pollen extracts. Clin Exp Allergy. 
2004 Feb;34(2):303–9.

 88. Norman PS, King TP, Alexander JF Jr, Kagey-Sobotka A, Lichtenstein LM.  
Immunologic responses to conjugates of antigen E in patients with rag-
weed hay fever. J Allergy Clin Immunol. 1984 Jun;73(6):782–9.

 89. Vrtala S, Akdis CA, Budak F, et al. T cell epitope-containing hypoaller-
genic recombinant fragments of the major birch pollen allergen, Bet v 1, 
induce blocking antibodies. J Immunol. 2000 Dec 1;165(11):6653–9.

 90. Vrtala S, Focke M, Kopec J, et al. Genetic engineering of the major timo-
thy grass pollen allergen, Phl p 6, to reduce allergenic activity and preserve 
immunogenicity. J Immunol. 2007 Aug;179(3):1730–9.

 91. Purohit A, Niederberger V, Kronqvist M, et al. Clinical effects of immuno-
therapy with genetically modified recombinant birch pollen Bet v 1 deriva-
tives. Clin Exp Allergy. 2008 Sep;38(9):1514–25.

 92. Cocco RR, Jarvinen KM, Sampson HA, Beyer K. Mutational analysis of 
major, sequential IgE-binding epitopes in alpha(s1)-casein, a major cow’s 
milk allergen. J Allergy Clin Immunol. 2003 Aug;112(2):433–7.

 93. Ferreira F, Ebner C, Kramer B, et al. Modulation of IgE reactivity of aller-
gens by site-directed mutagenesis: potential use of hypoallergenic variants 
for immunotherapy. FASEB J. 1998 Feb;12(2):231–42.

 94. Batard T, Laroze A, David B, Peltre G, Basuyaux B. Isotypic analysis 
of grass-pollen-specific antibodies in human plasma. III. Relationship to 
autoantibodies to IgE. Allergy. 1996 Jul;51(7):473–81.

 95. Flicker S, Steinberger P, Eibensteiner PB, Lebecque S, Kraft D, 
Valenta R. Molecular characterization of a human immunoglobulin G4 
antibody specific for the major birch pollen allergen, Bet v 1. Clin Exp 
Allergy. 2008 Feb;38(2):365–73.

 96. Denepoux S, Eibensteiner PB, Steinberger P, et al. Molecular character-
ization of human IgG monoclonal antibodies specific for the major birch 
pollen allergen Bet v 1. Anti-allergen IgG can enhance the anaphylactic 
reaction. FEBS Lett. 2000 Jan 7;465(1):39–46.

 97. Visco V, Dolecek C, Denepoux S, et al. Human IgG monoclonal anti-
bodies that modulate the binding of specific IgE to birch pollen Bet v 1.  
J  Immunol. 1996 Jul 15;157(2):956–62.

 98. Cerecedo I, Zamora J, Shreffler WG, et al. Mapping of the IgE and 
IgG4 sequential epitopes of milk allergens with a peptide microarray-
based immunoassay. J Allergy Clin Immunol. 2008 Sep;122(3):589–94.

 99. Bhalla PL, Singh MB. Engineered allergens for immunotherapy. Curr 
Opin Allergy Clin Immunol. 2004 Dec;4(6):569–73.

 100. Duchateau J, Michils A, Michel O, Baras L. Mite allergy is associated with 
a specific profile of IgG epitopes recognized on antigen p1 of Dermatopha-
goides pteronyssinus. Clin Exp Allergy. 1997 Mar;27(3):296–305.

 101. Masuyama K, Chikamatsu K, Ikagawa S, et al. Analysis of helper T cell 
responses to Cry j 1-derived peptides in patients with nasal allergy: can-
didate for peptide-based immunotherapy of Japanese cedar pollinosis. 
 Allergol Int. 2009 Mar;58(1):63–70.

 102. Wallmann J, Proell M, Stepanoska T, et al. A mimotope gene encoding the 
major IgE epitope of allergen Phl p 5 for epitope-specific immunization. 
Immunol Lett. 2009 Jan;122(1):68–75.

 103. Edlmayr J, Niespodziana K, Linhart B, et al. A combination vaccine for 
allergy and rhinovirus infections based on rhinovirus-derived surface pro-
tein VP1 and a nonallergenic peptide of the major timothy grass pollen 
allergen Phl p 1. J Immunol. 2009 May 15;182(10):6298–306.

An allergen portrait gallery

Bioinformatics and Biology Insights 2010:4 125

http://www.la-press.com
http://www.la-press.com

