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Abstract: Microarray technologies have been an increasingly important tool in cancer research in the last decade, and a number of 
initiatives have sought to stress the importance of the provision and sharing of raw microarray data. Illumina BeadArrays provide a 
particular problem in this regard, as their random construction simultaneously adds value to analysis of the raw data and obstructs the 
sharing of those data.
We present a compression scheme for raw Illumina BeadArray data, designed to ease the burdens of sharing and storing such data, that 
is implemented in the BeadDataPackR BioConductor package (http://bioconductor.org/packages/release/bioc/html/BeadDataPackR.
html). It offers two key advantages over off-the-peg compression tools. First it uses knowledge of the data formats to achieve greater 
compression than other approaches, and second it does not need to be decompressed for analysis, but rather the values held within can 
be directly accessed.
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Introduction
Background
From identifying deleterious copy number aberra-
tions,1 to refining classes of tumor,2 to genome-wide 
associations studies,3 the value of microarrays to can-
cer research in the last decade is readily apparent. 
Early on in this trend it became clear that the avail-
ability of data,4 and the quality of reporting,5 were 
crucial factors in the value of microarray experiments. 
With an understanding of the sometimes subtle influ-
ences of normalization, summarization and other pre-
processing steps,6,7 came an appreciation of the need 
for the provision of raw data in order that the validity 
of conclusions could be assessed.

The Minimum Information about a Microarray 
Experiment (MIAME) initiative indeed calls for raw 
microarray data files (including images),8 but antici-
pates raw microarray data being in a regular format. 
This poses a problem for randomly constructed arrays 
such as Illumina’s BeadArray technology,9 where the 
number and locations of replicates of each probe vary 
from array to array, and for which it has become stan-
dard to report summary data.

Illumina BeadArrays have been used in a num-
ber of high-profile cancer studies (eg, for genotyping 
in SEARCH,10 for methylation and copy number in 
TCGA,11 and for expression in METABRIC.)12 and 
it has been shown that the analysis of raw Illumina 
BeadArray data, rather than the default summarized 
data, can be advantageous. However there is no data 
repository oriented towards storing these raw Illumina 
data, and there has been only limited success in storing 
such data in standard repositories.13,14 Researchers have 
thus been largely responsible for hosting their own raw 
data, but the size of those data inhibits this practice, 
and the ability of researchers to access raw data.

Here we present a schema and tool for the compres-
sion of raw BeadArray data, and illustrate the tool on 
recently published breast cancer cell-line data. A cus-
tom scheme offers two key advantages over standard 
compression methods such as zip. Firstly, by using our 
knowledge of the original file structures we can achieve 
smaller files than can unsupervised routines. Secondly, 
our file format permits direct analysis of the raw data 
without the need for a decompression step (although 
we allow for the decompression of our format into the 
original files should that be the user’s preference).

It is tempting, as personal storage becomes ever 
cheaper, to suppose that there is no need for com-
pressed bead-level data. Indeed for a single user 
analyzing a small experiment there may be limited 
benefit, although even here the increase in size of 
experiment that will fit onto a CD or DVD is, if not 
a necessity, at least a convenience. By contrast, for 
institutions running tens of thousands of BeadAr-
rays a year and requiring enterprise-level storage and 
archiving of the data the potential savings are truly 
substantial. The greatest benefit though comes when 
sharing data. The value of tools to facilitate data shar-
ing in the context of cancer microarray experiments 
has previously been noted,15 and in BeadDataPackR 
we present a tool to overcome obstacles to data shar-
ing for raw Illumina BeadArray data.

The nature of bead-level data
Illumina BeadArrays are scanned upon two occa-
sions: once by the manufacturer to decode and iden-
tify the random probe layout, and once by the user 
to generate data. Raw Illumina BeadArray data con-
sist of a .tif image (typically ∼85MB for one HT12 
array), a .txt file that gives bead identities, truncated 
locations and partially processed intensities (typi-
cally ∼30MB), and a .locs file that gives precise bead 
locations in grid order (typically ∼9MB). Other use-
ful raw data files are also produced, but do not con-
cern us here, as they are small files and generated 
per chip not per array. Since the compression of .tif 
files is well-studied,16 we focus on the compression 
of the .txt and .locs files.

We have previously described these file structures 
in detail.17 To summarize: a typical .txt file contains 
four columns of data (seven for two channel arrays) 
with each bead on the array represented by a row. 
Beads that were not decoded by Illumina are not com-
monly included, so the number of lines differs for 
each array. The first column gives the ID for a bead, 
whilst the second contains the background corrected 
intensity of that bead. The third and fourth columns 
store the X and Y coordinates of the bead center. 
These are given to seven significant figures, resulting 
in the fractional parts of the coordinates being given to 
between two and six decimal places, depending upon 
the magnitude of the integer part. If the data are from 
a two channel array, the fifth column contains details 
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of the red  channel intensity, with the sixth and seventh 
holding the coordinate information for that channel.

The array is divided into a number of segments, 
and within each segment the beads are laid out in a 
hexagonal grid, as illustrated in Figure 1. The .locs 
file stores the bead center coordinates for every bead 
on the array, rather than just those that were success-
fully decoded. The coordinates are stored as pairs 
of floating point numbers and are grouped by their 
segments on the array. Within each segment they are 
stored in grid order.

The advantages of a bead-level analysis
The activities that one undertakes with bead-level data 
that show them to be advantageous to summarized 
data are broadly divisible into five categories: Quality 
Assessment (QA), Quality Control (QC), alternative 
preprocessing, including two-channel preprocessing, 
and true bead-level analyses.

If QA is the only activity for which one uses bead-
level data then the ultimate aim is to use Illumina’s 
summarized data, but only after filtering out arrays 
that are flagged as being problematic.18 With QC only, 

the aim is to identify problematic arrays and correct 
identified flaws before re-summarizing in essentially 
the same manner as Illumina and continuing with 
downstream analyses as though the array had been 
perfect. Such steps might include correcting for mis-
registration of the array,17 correcting for gradients 
across the array, or resolving spatial artifacts.19,20

Illumina’s summarization incorporates steps such 
as background correction, outlier identification, 
adjustment for non-specific hybridization and so 
forth. Thus the analyst may find the flexibility offered 
by bead-level data to be advantageous. They may for 
example wish to extract intensities differently,17 use 
alternative background correction methods,21 trans-
form to a different scale before summarization,22,23 
or to normalize the replicate strips of a BeadArray 
separately.24 Moreover, when using two-channel plat-
forms we may wish to use data from a combination 
of channels for steps such as outlier removal, or to 
calculate covariances to feed into summary statistics 
such as the log-ratio.25

Finally, it should be noted that while the high 
number of replicate observations offers good 
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Figure 1. Showing the physical layout of a typical Illumina BeadChip (in this case a Whole Genome 6 expression array). Illustrated are the multiple arrays 
(samples) on the chip, the multiple sections within an array, the multiple segments within a section, and the hexagonal grid structure within the segments 
(only one corner of a segment is illustrated). The ordering of beads within the .locs file is also indicated on the grid.
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estimates of technical variance, and thus uncertainty 
about the summarized value, this information does 
not tend to be successfully propagated through the 
early stages of an analysis (eg, standard forms of 
normalization) and so a true bead-level analysis (eg, 
a hierarchical model.) may be required to capture 
such uncertainty.

The desirable recorded precision of bead 
coordinates
Due to the floating point representation of bead coor-
dinates in the .locs file, the apparent precision recorded 
for bead coordinates is to a fraction of a picome-
ter. This is of course not credible, nor is it actually 
claimed, but we comment upon it to illustrate that one 
should have no qualms about reducing the recorded 
precision. Even the reduced precision recorded in 
the .txt file suggests precision to within a fraction of a 
nanometer which still stretches credibility.

Further, if one examines how the fractional parts of 
the coordinate are used to calculate the bead intensity 
it is clear that such precision is often unnecessary. If 
the coordinates of a bead center in the scanned image 
are given as (314.1592 ..., 271.8281 ...) then Illumi-
na’s foreground value for the bead is calculated as a 
weighted sum of intensities from a 4 × 4 pixel square 
around those coordinates. The central pixels take uni-
form weight and the remaining pixels have weights 
that are calculated as functions of Xf and Yf (the frac-
tional parts of the X and Y coordinates: 0.1592 ... and 
0.8281 ... in our example).

In extreme, albeit unlikely, cases, these Xf and Yf 
values can end up being multiplied by numbers of the 
order of 104, so changes at the fourth decimal place 
of the coordinates can noticeably affect the resultant 
bead intensity. Indeed there exists a scenario where a 
low-intensity bead, with a proximal high-intensity arti-
fact, will be highly sensitive to the precision of loca-
tion, but the presence of an artifact makes such beads 
unreliable.

Beads then fall into two classes: those where the 
degree of precision is not influential, and those where 
it is, indicating that the intensity is not reliable. This 
in itself merits reducing the degree of stored preci-
sion, but coupled with the doubts over whether the 
accuracy of identifying bead centers can warrant 
the claimed precision, one might confidently reduce  

the precision of the stored coordinates to minimize 
the file size. The full precision should only be 
required to recreate Illumina’s reported intensities 
(alternative feature extraction schemes should surely 
not make such demands of precision), and by default 
we preserve these within the file in any case. Should 
the full precision be desired, we retain the option of 
storing it.

We can though anticipate some costs to reduc-
ing the precision. The 16 pixels used to calculate the 
foreground intensity are determined by the bead coor-
dinates, as are 189 pixels used to calculate the back-
ground intensity. A subtle consequence of reducing 
precision is that the ‘correct’ pixels may not be used 
in foreground and background intensity calculations. 
In both cases, there is a threshold in location that (if 
crossed by the bead-center) will result in a different 
set of pixels being used. It is possible that in rounding 
bead-center coordinates, we can cross the threshold 
and the effects of this can be observed when using the 
default Illumina feature extraction rules.

It would be possible to include an option in 
 BeadDataPackR to always round away from the 
threshold in such circumstances (except when there 
are conflicts between the foreground and background 
thresholds). Such an approach shows some marginal 
benefits for the default intensity extraction algorithms 
when near full precision is used (data not shown), but 
is highly detrimental if the precision is too far reduced. 
Thus we do not recommend following such an approach, 
and do not offer this as an option in compression, but 
instead suggest that more robust intensity calculations 
(especially for the background) might be used.17

Answering the question of what level of precision 
should be retained requires knowledge of the intended 
analysis. If the image files are not going to be pro-
vided, then the only value in having the locations 
is to recreate the network of beads and to look for 
spatial trends in values. This would require record-
ing locations only to the nearest pixel. Alternatively, 
the image file may be available, and one may wish to 
extract bead intensities using a bespoke algorithm. In 
this case, no matter the sophistication of the algorithm 
being applied, it is hard to envisage a scenario where 
claiming knowledge of the bead-center to more than 
1/256th of a pixel could be warranted, and much less 
might be tolerable.
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Methods
Compression file structure
For a typical array-section containing approximately 
a million beads, it is clear that reducing storage by a 
byte a bead will reduce the overall file size by 1MB. 
Savings on file sizes are obtained from the trivial 
(removing carriage returns and tabs ∼4MB), the obvi-
ous (only recording coordinates once rather than 
in both the .locs and .txt files ∼8MB), the efficient 
(recording bead IDs only once, along with the origi-
nal number of occurrences ∼4MB) and the fundamen-
tal (representing numbers in binary rather than ASCII 
format ∼11MB). Further savings can be achieved by 
reducing the precision to which locations are stored 
and, for two-color arrays, recording the red coordi-
nates as differences from the green coordinates.

The structure of the compressed file (with exten-
sion .bab) consists of a header for the array followed 
by sequential blocks of data, one for each bead-type on 
the array. The header contains information about the 
whole array, such as the total number of beads, as well 
as the settings used during compression. Each bead-
type block begins with the bead-type ID, followed by 

the number of beads of that type. Following this are the 
bead intensities, one for each bead of this type, stored 
as unsigned 16bit integers. Because image processing 
can sometimes lead to bead intensities that fall outside 
this range, these are followed by a series of 2bit flags 
that effectively allow the values to be stored as signed 
18bit integers, with a range of -131,071 to 131,071.

The next section of data contains the X and Y 
coordinates for each bead, although their exact rep-
resentation is dependent upon the degree of precision 
selected. For a single channel array, rather than stor-
ing the full precision of the two coordinates within 8 
bytes (as they are in the .locs file), the integer parts 
can be stored within 4 bytes and then 3, 2, 1, or 0 
bytes used for the fractional parts. For two color 
arrays, where we now have four coordinates to store, 
the fractional parts can occupy between 7 and 0 bytes 
if we wish to trade off precision for file size.

The final element of each block is an index for each 
bead, defining its location in the .locs file at a cost of 
only ∼1MB. The file structure is illustrated in Figure 2, 
and full details are provided in the  supplementary 
material.

Version
number

Header
Bead-Type 1

data
Bead-Type 2

data

Compressed file (.bab) structure

Header structure

Bead-Type block structure

Bead-Type N
data

Bead-Type
ID

Number of
beads and
bead-types

Number of
beads and
bead-types

Compression
settings

Individual
segment

information
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Figure 2. An overview of the structure of the compressed (.bab) files. The structure consists of a header section followed by several blocks of data (one 
per bead-type). Overviews of the structures of the header and of a ‘bead-type block’ are also given.
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Methods
Coordinate precision details
If reducing precision, one has the choice of round-
ing either to a binary fraction or to a decimal fraction 
(ie, if using 1 byte for each channel one can either 
multiply the fractional part of the coordinate by 256 
and round to the nearest integer, or multiply by 100 
and round to the nearest integer). Naturally the binary 
representation of a fraction is the most efficient way 
to approach the task, offering greatest resolution for 
the cost in storage, however there is one notable merit 
to using a decimal representation.

If the user is planning to reconstruct the .txt file, 
and has used the binary representation, then (except in 
trivial cases) there are two possibilities. Either the .txt 
file will have to abandon the ‘seven significant  figures’ 
format, or there will be a second loss of resolution 
when rounding to seven significant figures. The major-
ity of beads will ultimately be rounded to a resolution 
no greater than if a decimal fraction had been used ini-
tially, and through the compounding of errors may end 
up with the location rounded to a different value than if 
the rounding had taken place in one procedure.

BeadDataPackR allows the user to choose in which 
base to store the fractions, and also whether to round 
the values in the .txt file to have a uniform number of 
significant figures.

Methods
Grid order reconstruction
The two input files not only contain different numbers 
of beads, but the order in which the bead information 
is stored also differs. Thus, to recreate the two input 
files accurately, it is necessary to store some informa-
tion relating to their ordering within the .bab file. In 
grouping the data by bead-type we effectively retain 
the ordering of the input .txt file, meaning that only 
the .locs file ordering needs to be stored.

The most straightforward mechanism for achieving 
this is simply to record an integer index of the .locs 
file, which is used during reconstruction. For our typ-
ical array of approximately a million beads this index 
can be stored using ∼3MB. However, since the .locs 
file already has a rigid ordering based upon the grid 
structure of the array, we can exploit this to utilize a 
smaller index (∼1MB) while still being able to recre-
ate the original file accurately.

The .locs file is broken down by array segments, 
each of which is processed separately. Within each of 
these segments a linear model is fitted to characterize 
the relationship between the coordinates and the row 
and column position of each bead in the grid. Denot-
ing the coordinates of the beads in terms of their grid 
indices as Gx and Gy , and the coordinates of the bead-
centers within the image (in units of pixels) as Px and 
Py we then fit the model.
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where εx and εy are independent normal random 
 variables (so models for Gx and Gy are actually fit-
ted separately). The beta coefficients are then stored 
within the header of the .bab file.

Additionally, we employ a single byte per bead to 
store the row and column of the bead modulo 15 to 
aid reconstruction. During reconstruction of the .locs 
file each array segment is again processed and the 
beta coefficients are used to project to putative grid 
indices Hx  and Hy.
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Hx  and Hy are then corrected to the nearest position 
that would return the correct row and column modulo 
15 as stored in our single byte index. This allows us to 
detect and correct instances where the predicted loca-
tion of a bead is out by up to seven rows or columns 
in either direction. Where there exist beads whose 
identified locations in the image are so far out that 
this approach would fail (ie, they would be more than 
seven rows or columns out), this is identified during 
compression and the full integer index used instead.

We would note that we choose modulo 15 rather 
than 16 not only for reasons of symmetry but because 
we anticipate the potential value in being able to flag 
a bead as having been located in the image extremely 
out of position, although we do not currently exploit 
this. We acknowledge that we do not use the most 
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efficient grid representation, as by representing a 
 hexagonal grid in rectangular coordinates, a half of all 
locations must be empty. Thus an alternative encod-
ing could allow for the correction of beads that are 
identified in the image even further from their antici-
pated grid position than we can currently. In practice, 
though, we have not seen such beads, and if there did 
exist such beads then there would be concerns more 
serious than the matter of data compression.

Methods
R commands
BeadDataPackR is available to download from 
BioConductor.26,27 We provide two functions in the 
BeadDataPackR package for R. The function com-
pressBeadData() takes the raw files and produces a 
.bab file from them, while the function decompress-
BeadData() takes a .bab file and reconstructs the .txt 
and .locs files to the requested degree of precision. 
While the ability to reconstruct the original files is 
useful, given that many existing analysis scripts 
may expect the raw files, this step is not a necessity. 
Indeed, the structure of the file format means data can 
be extracted directly, allowing it to form the primary 
input to analysis tools. This can be advantageous in 
a number of cases, most notably when one wants to 
access data relating to a small number of beads on 
an array. Such a subset of the data can be obtained 
more quickly and with lower memory requirements 
when using the .bab format as opposed to reading the 
original .txt files. If one is performing these actions 
across a large number of arrays the savings can be 
substantial.

Methods
Analysis
We applied the BeadDataPackR compression scheme 
to all of the Illumina array variants to which we have 
access. In each case, the full range of bead-coordinate 
precisions was considered in order that the value in 
reducing that precision might be assessed. For compar-
ison each was also compressed using a standard com-
pression scheme (zip). The only version of Illumina 
BeadArray for which we have not been successful in 
applying the software is an early version of the Illumi-
naWG6-V1 chip. The bead-level data of this type, to 
which we have access, are in a notably different form.

In addition, to assess the impact of reducing the 
stored precision of bead coordinates on downstream 
analyses, we revisit a recently published dataset from 
a breast cancer study.28 As part of an investigation 
into the interaction between retinoic acid receptor-α 
(RARα) and estrogen receptor (ER) in a hormone 
depleted breast cancer cell-line (MCF-7), the authors 
ran 12 gene expression Illumina HT12-V3  BeadArrays 
as three replicates of a 2 × 2 factorial design. The 
two factors being estrogen, and an siRNA targeting 
RARα.

For illustration, we consider only the contrast 
relating to estrogen treatment, and ignore the orthog-
onal data (eg, ChIP-seq) that the authors used in their 
analyses. We compare an analysis of the data with the 
full precision (equivalent to allowing 4 bytes for the 
fractional parts of the coordinates) to analyses where 
precision has been lost.

The original files were compressed on five occa-
sions (using 0,1,2,3 or 4 bytes for the storage of the 
fractional parts of the bead-coordinates) and then 
decompressed to obtain five sets of .txt files, all using 
BeadDataPackR. Intensities were extracted from the 
.tif files and summarized using beadarray29 and a 
standard analysis of a factorial experiment performed 
in limma.30

Results
The compression performance of BeadDataPackR 
for various types of Illumina BeadArray is given in 
Table 1. It can be seen that with full preservation of 
location precision, BeadDataPackR reduces file sizes 
to approximately a third of the originals for all types 
of BeadArray and always outperforms standard com-
pression. This can come down to a quarter (or less) of 
the original file-size if we are willing to sacrifice the 
reported precision in the original files.

The results of the investigation into how the stored 
precision affects downstream analyses are summa-
rized in Table 2. All comparisons are limited to 19443 
probes that have been assessed as being perfect and 
containing no SNPs by a reannotation effort,31 and 
also as having a GC content of between 40% and 70%. 
It is clear that some precision can be sacrificed with 
no noticeable effect on results (eg, when using 2 or 3 
bytes), and that even when using 1 byte,  performance 
can probably be considered satisfactory. Since we 
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Table 1. Showing the performance of BeadDataPackR for four varieties of single-channel array (humanWG6-V2, 
 HumanRef8-V2, HumanWG6-V3, Human HT12), and four varieties of dual-channel array (CNV370-Duo, Infinium II, DASL, 
Human 1M). The sizes of the original files, the zipped files, and the files compressed using BeadDataPackR are given in 
MB for differing degrees of precision in the storage of the bead-coordinates. These values are representative and will show 
small variations between arrays of the same type.

single-colour Two-colour
WG6- 
V2

Ref8- 
V2

WG6- 
V3

HT12 cnV370 Inf. II DAsL 1M

Original 39.0 37.5 38.4 40.2 35.6 66.9 68.6 69.1
Zipped 18.2 

(47%)
17.4 
(46%)

17.9 
(47%)

18.7 
(47%)

17.6 
(49%)

33.9 
(51%)

34.3 
(50%)

34.2 
(49%)
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es 8 12.1 

(34%)
23.6 
(35%)

23.6 
(34%)

23.1 
(33%)

7 10.4 
(29%)

20.3 
(30%)

20.3 
(30%)

20.1 
(29%)

6 9.9 
(28%)

19.1 
(29%)

19.2 
(28%)

19.1 
(28%)

5 9.3 
(26%)

18.0 
(27%)

18.1 
(26%)

18.0 
(26%)

4 12.7 
(33%)

12.3 
(33%)

12.5 
(33%)

12.8 
(32%)

8.7 
(24%)

16.9 
(25%)

17.0 
(25%)

17.0 
(25%)

3 11.6 
(30%)

11.2 
(30%)

11.5 
(30%)

11.7 
(29%)

8.2 
(23%)

15.8 
(24%)

15.9 
(23%)

16.0 
(23%)

2 10.4 
(27%)

10.1 
(27%)

10.4 
(27%)

10.5 
(26%)

7.6 
(21%)

14.7 
(22%)

14.7 
(21%)

15.0 
(22%)

1 9.3 
(24%)

9.0 
(24%)

9.3 
(24%)

9.4 
(23%)

7.1 
(20%)

13.6 
(20%)

13.6 
(20%)

14.0 
(20%)

0 8.2 
(21%)

7.9 
(21%)

8.2 
(21%)

8.3 
(21%)

6.5 
(19%)

12.5 
(19%)

12.5 
(18%)

13.0 
(19%)

Table 2. Impact of reducing the precision of the stored bead-coordinates on the downstream analysis of a 12 array 
 expression experiment. For 19443 well-annotated probes, the mean-squared errors (relative to full precision) for individual 
beads, for summarized gene intensities, and for log-ratios between arrays are presented. The mean variance from 4 sets 
of 3 technical replicates is also presented, as is the ‘correct’ proportion (relative to full precision) of the top 1200 returned 
genes in a differential expression analysis. There are approximately 1200 significantly differentially expressed genes in an 
analysis using the full precision.

number of 
bytes used  
for storage

Mse bead- 
log-intensity

Mse 
summarized 
intensities

Mean variance 
of 3 tech reps

Mse log-ratio  
of two arrays

proportion of  
first 1200 ER-driven 
genes returned

4 0 0 0.0167 0 1.000
3 4.3 × 10-8 9.6 × 10-7 0.0169 1.9 × 10-6 0.999
2 6.4 × 10-6 1.6 × 10-5 0.0169 3.2 × 10-5 0.998
1 1.5 × 10-4 1.8 × 10-4 0.0169 3.6 × 10-4 0.984
0 2.4 × 10-2 2.4 × 10-3 0.0179 4.8 × 10-3 0.931

might distrust results that are not robust to a reduc-
tion in claimed precision, 1 byte may suffice.

Comparing gene lists of various lengths in Figure 3, 
the performance of using 2 or 3 bytes to store location 
coordinates is indistinguishable from full precision in 
terms of the top x-ranked genes returned. Naturally 

if we return 19443 probes (the complete set) in our 
gene-list then the proportion of genes that match will 
be 1. The decline in performance for longer gene lists 
can be attributed to the volatility of what is an effec-
tively random ordering of all of the genes for which 
there is no differential expression.
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This aspect is highlighted when considering not 
only the genes that are on the genelist, but looking 
at agreement beyond chance of the two sets of genes 
(those that are on the gene-list and those that are not). 
Here the performances of the different precision lev-
els become more apparent, but within a length of 
genelist that might be reasonable for this dataset, the 
conclusion that using 2 or 3 bytes to store location 
coordinates has no detrimental effect, and that using 
1 byte has a minimal effect, holds.

Discussion
We have focused on the problem of compressing 
the .txt and .locs files and have ignored the image 
files. Image compression, and in particular that of 
 microarray images is long studied, and we would note 
that the compression of images using standard tools 
works well (image files compressed in either bzip2 or 
gzip format can be read directly using the  beadarray 
package). Also it is entirely reasonable to share the .txt 
and .locs files but not the images, whereas the images 
without these files are of no value.

BeadDataPackR is designed primarily to compress 
bead-level data produced directly from the scanner. 
It is reasonable that a user may wish to compress 
data they have generated themselves (for example 
to include intensities calculated using an alternative 
method or to distribute values for only a subset of the 
beads on an array). Although this is possible by gen-
erating a .txt file in place of that provided by Illumina, 
it would be beneficial to be able to generate a .bab file 
from within standard analysis tools.

The format might also be extended to include 
multiple arrays (perhaps a whole experiment) in the 
same file. This would achieve only minimal savings 
in file size, but due to the file format would allow 
for streamed access of data from large experiments, 
rather than having to have all of the data in memory 
all of the time. Similarly, it may be advantageous to 
store a linear transformation (of full rank) of the inten-
sities in order that quantities such as the mean for a 
bead-type could be read directly from the .bab file 
without increasing file size, yet preserving the ability 
to extract the individual intensities.
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Figure 3. Impact of reducing the precision of the stored bead-coordinates on the downstream analysis of a 12 array expression experiment. For 19443 
well-annotated probes, top gene-lists are compared across analyses based upon full precision and reduced precision. The left-hand panel gives, for vary-
ing lengths of gene list, the proportion of genes from the full-precision analysis that are returned in the reduced-precision analysis. The right-hand panel 
gives, for varying lengths of gene list, Cohen’s kappa score of agreement for the two partitions (one from the full-precision analysis and one from the 
reduced-precision analysis). The full-precision analysis suggests that approximately 1200 probes show differential expression and this length of gene list 
is indicated.
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Our aim is to increase access to raw BeadArray 
data by making it practicable both to share and to 
download experimental data, and this is achieved 
by the BeadDataPackR package. It should be noted 
there is value for the storage of data also. If a typi-
cal single color array generates 125MB of data, we 
can see this reduced to 50MB (with approximately 
25MB of savings coming from BeadDataPackR, and 
50MB coming from the image compression). Insti-
tutes producing and storing terabytes of raw Illumina 
BeadArray data will naturally see substantial savings 
on their storage costs, while for the individual investi-
gator, the size of an experiment that will fit onto a CD 
or DVD is more than doubled.

The savings on size are greater still if we reduce the 
precision stored, and we have seen that there is scope for 
such reduction with no impact on the quality of down-
stream analyses. If there were a move towards storing/
providing only the raw text files and not images, then 
still further savings could be achieved by abandoning 
true locations and storing only relative grid positions 
reducing file sizes for a single array to ∼5MB.
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