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Introduction
Biochemical networks1,2 involving metabolic net-
works, gene regulatory networks and signal transduc-
tion networks in biological systems play important 
roles in diagnosis of disease such as cancer and auto-
immunity. Systems biology2–4 is quite different from 
traditional biology; it has been developed recently 
to understand biological systems from system level. 
Researchers have been devoted to design and con-
struct of biological models by engineering methods 
and molecular biology techniques. The microarray 
technology using high-throughput method to mea-
sure a large number of gene expression states has also 
been attempted in the recent decade. According to the 
measured data it is possible to reconstruct the struc-
ture of biochemical networks, quantitatively analyze 
and systematically design and simulate the system 
behavior in silico.

In the literature,1,5,6 some mathematical models 
suitable for describing behaviors of the biological 
systems have been proposed. That kind of models 
can be classified into two major categories: logical 
model in the discrete-time domain and differential 
equation set in the continuous-time domain. Different 
from the deterministic case, biochemical networks of 
the real biological systems are generally non-ideal 
and are invariably noisy. For modeling accuracy, the 
influence resulting from noise contamination should 
not be ignored. In general, molecular noises involve 
intrinsic noises resulting from molecular birth and 
death and extrinsic noises due to environmental per-
turbations.7 The stochastic model was developed to 
characterize the biological systems with intrinsic and 
extrinsic molecular noises. In,8 the authors have pre-
sented a method for measuring performance robust-
ness and presented two mechanisms to cope with the 
noise and process uncertainties.

With regard to control of biological systems, non-
linear feedback control strategies were applied to 
regulate the steady state of biological systems in.9–11 
Other issues received increasing attention for noisy 
biological systems are development of control strat-
egies while ensuring robust stability and filtering 
ability. In,12,13 a robust filtering circuit design has 
been developed by regulating parameters for gene 
networks to reduce intrinsic and extrinsic molecular 
noises. An adaptive control design method was also 
proposed in.14

Before performing feedback control, the system 
states should all be available. However, the inter-
nal states of most biological systems can only be 
observed partially. Under the situation, a state esti-
mator is appropriate to reconstruct the full state in the 
noisy environment. The Kalman filter (KF)15 is the one 
for the purpose in the filed of engineering which has 
been well applied from system and control to signal 
processing for decades. However, applications of the 
extended KF (EKF) in state estimation of biochemical 
networks are rarely found.16 Until recently, the EKF 
has been attempted to estimate parameters of the gene 
regulatory networks.17 Moreover, a state observer 
was actually established using the EKF, based on the 
fluorescence probe model, a dynamic state model of 
the plant cell bioreactor, and online green fluorescent 
protein fluorescence measurement.18

While there were a few papers dealing with the 
issue of state estimation for biological networks, 
most of the approaches were based on the tradi-
tional Kalman filtering theory which assumed that 
the noise covariances including the process noise and 
measurement noise have been precisely known as a 
priori.16–18 The KF is shown to be the optimal state 
estimator against noise with Gaussian distributions. 
However, in the biological systems, the noise distri-
bution may not be Gaussian, its autocorrelations may 
not be known exactly, or even uneasily to be precisely 
 modeled.19 In this paper, an EKF for robustly filtering 
the states and parameters of the noisy gene networks 
is introduced. Quantitative error analysis for that kind 
of systems is presented in details. On the basis of the 
results obtained one would be able to identify effect 
of the filtering gain and the sizes of noise uncertainties 
to estimation performance. Two numerical examples 
have been conducted to verify the proposed design.

To clarify the notation, throughout this paper, let 
the vector norm of the real vector x ∈ n, denoted 
by ||x||, be defined as x E x xT= ( )  with E(⋅) denot-
ing the operation of expectation.

Lemma 1: The induced matrix norm ||A|| corre-
sponding to the vector norm of x E x xT= ( )  with 
x ∈ n is given by

||A|| = σ1

where σ1 is the maximum singular value of A, ie, 
A A AT= λmax ( ) .
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Proof: By definition, the induced norm of the 
 operator A is defined by

A Ax
x

=
=

sup
1

Let the singular value decomposition of A is given 
by A = U ΣV T where Σ = diag(σ1, σ2, …, σn) with 
σ1 $ σ2 $ … $ 0, the unitary matrices U = [u1 … un] 
and V = [v1 … vn]. Then
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Alternately, if one chooses x' = e1 = [1 0 … 0]T 
which obviously satisfies ||x'|| = 1, then
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From (1) and (2), it can be concluded that 
||A|| = σ1.

problem Formulation
In real biological systems, biochemical networks 
such as signal transduction networks, gene regula-
tory networks, and metabolic networks are invariably 
noisy. As in engineering area of research, the system 
dynamic behavior can be mathematically described 

by stochastic models, which could be further used as 
a basis for the purpose of analysis and control.

system modeling
S-system is a type of power-law formalism and is 
based on a particular type of ordinary differential 
equations in which the component processes are char-
acterized by power-law functions:1,5,6

 
 

   

x x x i ni i j
g

j

n m

i j
h

j

n m
ij ij= - =

=

+

=

+

∏ ∏α β
1 1

1 2, , , ...,     (3)

where x j nj  ( )= 1, ,
  are dependent variables 

such as intermediate metabolites and products, 
x j n n mj  ( )= + +


 1, ,  are independent variables 

such as substrates and enzymes, αi $ 0 and βi $ 0 are 
rate constants which denote, respectively, production 
and degradation effects for dependent and indepen-
dent variables; gij and hij are kinetic orders. Gene j 
will active gene i when the values of kinetic orders 
are positive and gene j will inhibitive gene i when the 
values of kinetic orders are negative. Zero values of 
kinetic orders represent gene j won’t affect gene i.

The system model can be expressed in the follow-
ing generalized nonlinear biochemical dynamics with 
the stoichiometric equation described by

 x t SV x t p( ) ( ( ), )=  (4)

where x(t) ∈ n is a state vector which denotes the 
 concentration of metabolite, mRNA or protein, 
p = p(αi, βi, gij, hij) ∈ m is the parameter vector which 
include rate constants and kinetic orders, S denotes 
the stoichiometric matrix, and V(⋅) is a nonlinear 
function of the reaction rate. It can be expressed in a 
more  general form as

  x t f x t p( ) ( ( ), )=  (5)

where f (⋅) ∈ n is a generalized nonlinear function 
vector.

For biochemical reactions, suppose that there 
are M intrinsic noise sources and an extrinsic noise, 
the nonlinear stochastic dynamical system can be 
described by13

 
x t f x t p g x t n t w ti

i

M

i( ) ( ( ), ) ( ( )) ( ) ( )= + +
=
∑

1

 (6)
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where x(t) ∈ n is the state which may denote a 
 vector of protein concentrations of n genes, f (⋅) and 
g(⋅) are nonlinear function vectors, ni(t) is an intrinsic 
noise source which is the white noise with zero mean 
and standard deviation σi, w(t) is an extrinsic noise 
source with zero mean and standard deviation σw. 
Equation (6) implies that the system is suffered from 
intrinsic noise corruption due to M kinetic parameter 
fluctuations. In gene regulatory networks, the exter-
nal and internal noises occur independently and they 
appear randomly.19 More precisely, it has been pro-
posed that the pattern of protein concentration growth 
is stochastic, exhibiting short bursts of variable num-
bers of proteins at varying time intervals.

Remark: The system with intrinsic noises in (6) 
can also be rewritten as the following Ito stochastic 
equation:

 

dx t f x t p dt g x t p dN t

dW t

i
i

M

i( ) ( ( ), ) ( ( ), ) ( )

( )

= +

+
=
∑

1
 (7)

where Ni and W are standard Wiener processes 
or Brownian motions with dNi(t) = ni(t)dt and 
dW(t) = w(t)dt with the property E[|Ni(t) - Ni(t )|2] = 
σ 2i |t - t | and E[|W(t) - W(t)|2] = σ 2w|t - t |. The 
formulation is widely applicable to the gen-
eral nonlinear gene network with n genes.

After the stochastic differential system in (6) or 
(7) is modeled to mimic the realistic behaviors of the 
object, some design specifications can be proposed 
for robust design of the system so that the desired 
behaviors or products can be achieved in spite of 
intrinsic parameter fluctuations and environmental 
disturbances.

Estimator design
In practice, the internal states of biological systems 
may not be directly accessible. Biochemical process 
for gene regulatory networks is DNA to mRNA by 
transcription, mRNA to protein by translation and the 
generated protein regulates the gene. Not all protein 
concentrations are directly measurable,18 however, 
one could access the status of individual protein by 
utilizing an appropriate state estimator. It is proposed 
here an EKF to estimate the internal states as well as 
the parameters of concern.

Fundamental Kalman Filter
The KF uses measurements for a dynamic system 
observed over time that contain noise, and produce 
estimated values that tend to be closer to the true 
 values of the measurements.

A stochastic linear time-invariant system with 
measurement can be described by

 x t Ax t w tx( ) ( ) ( )= +  (8)

and

 y(t) = Cx(t) + v(t) (9)

where x(t) is the state vector, y(t) is the output, A and 
C are, respectively, system and output matrices, and 
wx(t) and v(t) are, respectively, process and measure-
ment noises which are zero mean Gaussian noises 
with covariance matrices Q and R, respectively.

With regard to the system (8)–(9), which x(t) is to 
be estimated, the corresponding KF is given by15

 [ ]ˆ ˆ ˆ( ) ( ) ( ) ( )x t Ax t K y t Cx t= + -  (10)

where ˆ( )x t  is the estimated state and K is the optimal 
Kalman gain given by

 K = PCTR-1 (11)

where P = PT . 0 satisfies the following Riccati 
matrix equation:

 



 
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P E x x

T T

T

= + + -

= ( )
-1

0 0 0

,
 (12)

with the estimation error state ˆ( ) ( ) ( ).= -x t x t x t

Extended Kalman Filter
For estimation of the stochastic nonlinear systems, the 
commonly applied filtering mechanism is EKF which 
evaluates the partial derivatives at the estimated state 
value and uses nonlinear functions on the estimate 
itself.

Suppose that the nonlinear system with measure-
ment is given by

 ( ) ( ( )) ( )= + xx t f x t w t  (13)

and
 y(t) = h(x(t)) + v(t) (14)
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where f(⋅)and h(⋅) are nonlinear function vectors with 
appropriate dimensions.

The EKF is given by15

 [ ]ˆ ˆ ˆ( ) ( ( )) ( ) ( ) ( ( ))= + -x t f x t K t y t h x t  (15)

where the Kalman gain is

 K(t) = PH T R-1 (16)

with P = PT . 0 satisfying

 


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Estimating states and parameters by EKF
In more general, we consider a generalized represen-
tation of the stochastic nonlinear dynamical model 
described by
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where Px0 = E[(x(0) - x0)(x(0) - x0)
T ], Pp0 = E[( p(0) - p0) 

( p(0) - p0)
T ], p(t) ∈ m denotes the aggregated param-

eter vector, y(t) ∈ r is the measurement output, f(⋅) 
and h(⋅) are nonlinear function vectors. Suppose that 
the uncorrelated extrinsic noise wx(t), parameter noise 
wp(t) and measurement noise v(t) are white noises, 
uncorrelated and satisfy the  following properties:
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where the noise uncertainties satisfy

||Q - Q0|| # ε1, ||R - R0|| # ε2, ||Qp - Qp0|| # ε3 (20)

where Q = QT . 0, Q Qp p
T= > 0  and R = RT . 0 

with Q0, Qp0 and R0 being their corresponding nomi-
nal parts, and ε1, ε3 and ε2 are finite constants char-
acterizing the respective upper bound of the noise 
covariance.

For compactness, the matrix format of (18) can next 
be written in the state-space representation as follows
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where  η ( ) ( ) ( )t w t w tx
T

p
T T

=   . The idea of the 
EKF is that it operates by propagating the mean and 
error covariance of the state through time. The EKF 
for (18) in the matrix form can be represented as
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where ˆ( )x t  is the estimated state, p̂ is the estimated 
parameter, ˆ( )y t  is the estimator output, and K is the 
estimator gain.

Equations (21) and (22) can be further written as

z t g z t t z x p

y t h z t v t

T T T
( ) ( ( )) ( ), ( ) ( )

( ) ( ( )) ( )

= + =  

= +

η 0 0 0  (23)

and the state estimate equation

 

ˆˆ ˆ( ) ( ( )) [ ( ) ( )],

ˆ ˆ( ) ( ( ))

z t g z t K y t y t

y t h z t

= + -

=



 

(24)

where

( )
11

ˆ ˆˆ( ) ( ) ( ) , ( ) ( ) ( ) ,

ˆ ˆ( ( ), ( ))( ), ( )
ˆ( ( )) , ( ( ))

00 ××

   = =   

   
= =   

  

T TT T T T

mm

z t x t p t z t x t p t

f x t p tf x t p t
g z t g z t

 (25)

Estimation of gene networks

Biomedical Engineering and Computational Biology 2010:2 27

http://www.la-press.com


The maximal covariances of the extrinsic, 
parameter and measurement noises can be specified 
by Q0 + ε1In, Qp0 + ε3Im and R0 + ε2In + m, respectively. 
Define the estimation error vector ˆ( ) ( ) ( )z t z t z t= -  
and the error covariance matrix P t E z t z tT( ) [ ( ) ( )]=   . 
It can be proved that the error covariance matrix P and 
 Kalman gain K satisfy, respectively,20


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 K = PH T (R0 + ε2In + m)–1 (27)

where G and H are, respectively, the linearized sys-
tem and output matrices given by
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The linearization is performed around the esti-
mated state ˆ( )x t  and parameter ˆ ( )p t  respectively.

As it can be observed from (26) that the magni-
tude of the Kalman gain K is closely related to the 
amount of measurement noise reflected by the size 
of R0 and the extent of the uncertain noise covari-
ance specified by ε2. The term L accounts for the 
increase of extrinsic noise and parameter noise and 
the term –PH T(R0 + ε2In + m)–1 HP reflects the decrease 
of uncertainty as a result of measurement.

When there is in the absence of extrinsic noise 
and a priori information in the biological system, by 
using the following matrix identity

d

dt
P P PP- - -= -1 1 1



the continuous Riccati matrix equation (26) can be 
written in the linear equation in P-1 as
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Clearly, either large measurement error (large R0) or 
large uncertainty of the measurement covariance (large 
ε2) cause the error covariance P to increase consider-
ably whenever a measurement is utilized. This also 
results in a smaller Kalman gain for small state esti-
mate errors and ease off the updating speed of state.

performance Analysis
It follows from (23) and (24) that the estimation error 
dynamics is given by
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with tr(⋅) denoting the trace operation.
It can be observed from the estimation error 

dynamics (29) that its solution is
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Applying the Bellman-Gronwall inequality further 
yields
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On the basis of the Kalman filtering theory, 
the matrix G - KH will be asymptotically stable if 
(G, H) is detectable around all estimated states ˆ( ).z t  
Therefore, there exist positive constants m, m1 and β 
such that

 ||Φ(t)|| # me-βt, ∀t (32)

and

 ||Φ(t) [I   - K]|| # m1e
-βt, ∀t (33)

with the induced norms specified by Lemma 1, where 
β can be chosen to be min ( )

i
i G KHReλ −  where 

K = K(ε1, ε2, ε3).
To proceed, by taking norms on both sides of (31) 
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That implies that z t( )  wouldn’t be diverged with 
its upper bound specified by

As for the implementation issue, possibility of 
the practical implementation of the estimator can be 
referred, for example, to,18 which utilized the green 
fluorescent protein (GFP) as a reporter for real-time 
bioprocess sensing and GFP concentration and other 

sup ( )
( ) ( ) ( )

( )t

p
z t

m n Q m Q r R

m
 ≤

+ + + +( )
- +

1 1 0 3 0 2 0

1 1 2

ε ε ε

β ρ ρ

tr tr +tr
 (36)

Equations (32) and (35) specifies a crucial condi-
tion for determining convergence of the noisily cor-
rupted system which is determined by the Kalman 
gain K and the values of ρ1 and ρ2. The condition is 
significantly affected by the amount of linearization 
and noise covariances. Inspection of the equations 
describing the behavior of the error covariance matrix 
reveals several observations which confirm engineers’ 
intuition about the operation of the KF. As it can be 
observed from (36) that the estimation error is closely 
related to the upper bounds of the unreduced certain 
process and parameter noises and uncertain measure-
ment noise. The larger the statistical parameters of 
the disturbances as reflected in the sizes of Q and Qp, 
and the more pronounced effect of the disturbances 
as reflected in the size of R, the more rapidly the error 
covariance increases.

Larger Kalman gains will expedite the conver-
gence of the estimation error. However, the estima-
tion error increases considerably whenever there are 
larger noise uncertainties specified by larger εi, i = 1, 
2, 3 and the linearization errors characterized by 
larger ρ1 and ρ2.

When there are process and measurement noises 
and uncertainties of noise covariances, from the 
observation of (26), (28) and (36), one should 
increase the magnitude of K for a larger stability 
margin β so as to assure convergence of the estima-
tion error. However, as it was shown in (28), large 
measurement errors and the small error convari-
ance P result in a small K. Thus, there is always a 
compromise between the optimal state estimation 
and stability robustness while designing the state 
estimator.

important states in bioreactor culture of transgenic 
tobacco cells were successfully estimated. Applica-
tion of the idea to the current estimator design deserves 
more attention and is worthy of further investigation.

simulation study
For demonstration, two examples for a class of noisy 
gene regulatory networks are illustrated.

Example 1: Consider first a two-order system 
model for a real gene regulatory network given as 
follows:6

[ ]

11 12 11 12

21 22 21 22

1 1 1 2 1 1 2

2 2 1 2 2 1 2

10 20

11 12 21 22

11 12

( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )

= 1 1.5 ,
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0.469,  0.

α β
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= +  
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= = =
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T T

i i

x t x t x t x t x t
w t

x t x t x t x t x t

x x

i

g g g g

h h





21 22359,  0.197,  0.281= =h h

and
y = x2 + v(t)

where wx(t) ∼ (0, 0.1), wp(t) ∼ (0, 0.1) and v(t) ∼ (0, 0.2). 
States and parameters are both estimated. The param-
eters including 4 rate constants and 8 kinetic orders 
are treated as the states. Thus the state variables are 
extended from 2 to 14. In this network, for the first 
term of the first differential equation (the rate of 
change of x1), ie, x t x t1

0 268
2

2 26. .( ) ( )−  with unit rate con-
stant α1, shows accumulation of gene product 1. Since 
the variable x2 is raised to the power of the kinetic 
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parameter –2.26 which reveals gene 2 will inhibit 
product of gene 1. On the other hand, for the second 
differential equation, the first term x t x t1

2 739
2
0 155. .( ) ( )  

with unit rate constant α2 reflects accumulation of 
gene product 2. Since the variable x1 is raised to the 
power of 2.739 which reveals that gene product 1 will 
activate gene 2. The second terms −x t x t1

0 469
2
0 359. .( ) ( ) 

and −x t x t1
0 197

2
0 281. .( ) ( )  with unit rate constants β1 

and β2 in the first and second differential equations 
reflecting degradation effect on gene products 1 and 2 
respectively. Figure 1 illustrates the branch pathway 
of the two-dimensional S-system network.

The linearized system matrix ∂f/∂xT based on the 
state estimation is

( )2

1

2

2 1

1
ˆ ( ) ( )

T

i f iT
RMSE x t x t dt

T T
= -

- ∫

where T1 # t # T2, ˆ ( )ix t  is the i-th estimation state 
and xfi(t) is the corresponding noise-free state. The 
RMSE values for the noise-free and estimated states 
and parameters in 0 # t # 5 are listed in Table 1 which 
shows that the estimator is able to filter the extrinsic 
and measurement noises to retrieve the real state and 
parameter values.

Example 2: Consider a nonlinear gene regulatory 
of four genes described and shown in Figure 4:13

x1

x2

Activation

Repression

Figure 1. The gene regulatory network for Example 1.
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and

H = [0 1 01 × 12]

For the initial error covariance P(0) = I14, the results 
of dynamic simulation of the noise-free and estimated 
states and parameters for the noisy gene regulatory 
network using the proposed robust EKF given by (26) 
and (27) are shown as in Figure 2.

Consider next the existence of uncertainties of 
the extrinsic noise and measurement noise with 
ε1 = 0.05, ε3 = 0.05 and ε2 = 0.1. The state and param-
eter responses are shown in Figure 3. The root mean 
square error (RMSE) was used to quantify the  filtering 
 performance with
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where wx ∼ (0, 0.2) and wp ∼ (0, 0.2). The state vari-
ables are extended from 4 to 22 when 18 parameters 
including rate constants and kinetic orders are all 
treated as the state variables. The measurement model 
is given as

y(t) = x2(t) + x3(t) + v(t)

where y(t) is the measurement output and the mea-
surement noise v(t) ∼ N(0, 0.5). For this gene regula-
tory network, gene product 1 activates gene 3, gene 
product 2 activates genes 1 and 3, gene product 3 
represses genes 2 and 4, and gene product 4 activates 
gene 2.
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The linearized system matrix ∂f/∂xT based on the 
state estimation for the EKF design can be obtained as

1.5 2 0.5
3 4 3 4

3 4
ˆ 1 2 1 3

1.5
3 4

1 1 0 0
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x t x t x t x tf

x x t x t x t x t

x t x t

and

H = [0 1 1 01 × 19]

For the initial covariance matrix P(0) = I22, the 
results of dynamic simulation of the noise-free 
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Figure 2. Dynamic simulation of the noise-free and estimated gene states and parameters with P(0) = I14; A) gene states; y-axis is concentration, x-axis 
is time, b–d) parameters.

gene states and the estimated states of the noisy 
gene  network are shown as in Figure 5. As it can be 
seen that the estimator tracked the noise-free case well 
while there were extrinsic noise and  measurement 
noise.
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Figure 3. Dynamic simulation of the noise-free and estimated gene states and parameters with noise uncertainties (ε1 = 0.05, ε3 = 0.05 and ε2 = 0.1); 
A) gene states; y-axis is concentration, x-axis is time, b–d) parameters.

Table 1. Comparison of RMsE values for the system of 
Example 1 with and without noise uncertainties.

state with noise 
uncertainties 
(ε1 = ε3 = 0.05, ε2 = 0.1)

without 
noise 
uncertainties

1 0.065 0.043
2 0.053 0.035
3 0.04 0.028
4 0.03 0.017
5 0.032 0.021
6 0.034 0.021
7 0.018 0.01
8 0.022 0.014
9 0.04 0.027
10 0.032 0.021
11 0.032 0.016
12 0.026 0.017
13 0.009 0.007
14 0.05 0.03

x1 x2

x3 x4

Figure 4. Another example of the gene regulatory network.

Consider next the existence of uncertainties of the 
extrinsic noise and measurement noise with ε1 = 0.1, 
ε3 = 0.1 and ε2 = 0.25. The gene responses are shown 
in Figure 6. As in the previous example, the results 
exhibits larger estimation errors due to added noise 
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uncertainties, however, the deviation is not  significant 
while compared with magnitudes of the nominal state 
or parameter responses.

conclusions
This paper proposes a continuous EKF to estimate 
internal states and parameters of a class of gene net-
works while there are extrinsic and intrinsic noises 
and parametric fluctuations. Quantitative perfor-
mance analysis for state estimation of the EKF is 

presented. Numerical simulations have confirmed 
possibility of the proposed method in designing 
robust EKFs. This shows potential of the presented 
design method in bridging the engineering approach 
to solve for the estimation problem in biological 
systems.
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Figure 5. Dynamic simulation of the noise-free and estimated gene states and parameters with P(0) = i22; A) gene states, y-concentration, x-axis is time, 
b–e) parameters.
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A) gene states, y-axis is concentration, x-axis is time, b–e) parameters.
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