
Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Cancer Informatics 2010:9 197–208

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

LTR: Linear cross-platform Integration of Microarray Data

Paul C. Boutros
Informatics and Biocomputing Platform, Ontario Institute for Cancer Research, Toronto, Canada, M5G 0A3,  
416-673-8564. Corresponding author email: paul.boutros@oicr.on.ca 

Abstract: The size and scope of microarray experiments continue to increase. However, datasets generated on different platforms or 
at different centres contain biases. Improved techniques are needed to remove platform- and batch-specific biases. One experimental 
control is the replicate hybridization of a subset of samples at each site or on each platform to learn the relationship between the two 
 platforms. To date, no algorithm exists to specifically use this type of control. LTR is a linear-modelling-based algorithm that learns 
the relationship between different microarray batches from replicate hybridizations. LTR was tested on a new benchmark dataset 
of 20  samples hybridized to different Affymetrix microarray platforms. Before LTR, the two platforms were significantly different; 
 application of LTR removed this bias. LTR was tested with six separate data pre-processing algorithms, and its effectiveness was 
independent of the pre-processing algorithm. Sample-size experiments indicate that just three replicate hybridizations can significantly 
reduce bias. An R library implementing LTR is available.

Keywords: microarrays, algorithms, normalization, data pre-processing, data integration

Cancer Informatics

O R I G I n A L  R e s e A R C h

Cancer Informatics 2010:9 197

http://www.la-press.com
http://www.la-press.com
mailto:Paul.Boutros@oicr.on.ca
http://www.la-press.com


Introduction
The profiling of mRNA abundances using 
microarray technologies has become a fundamental 
part of molecular biology, used to identify drug 
mechanisms,1 measure mRNA metabolism,2 predict 
clinical outcomes,3,4 and discover new pathways.5,6 In 
parallel with these new applications, the technologies 
used have evolved significantly. The relative merits 
of different platforms7–9 and analytical techniques10–13 
remains controversial, and these debates have 
intensified with the continued development of 
technologies and algorithms.

One key technological development has been a 
dramatic increase in the density of oligonucleotides 
placed on a single glass substrate. This increased 
number of available probes has been used to create 
arrays that interrogate larger numbers of genes or 
splice-variants. For example one of the most popular 
microarray platforms is the human Affymetrix 
HG-U133A array, of which 24,306 records have 
been deposited in the GEO repository at NCBI at the 
time of writing. A superset array (HG-U133 Plus 2.0) 
and a version optimized for smaller sample volumes 
(HG-U133A 2.0) have subsequently been developed 
based on the original platform. These two new array 
platforms have been deposited 42,531 and 4,310 
times into the GEO database, respectively. Thus, in 
total, three array platforms covering 22,277 identical 
genes have been hybridized at least 71,147 times.

There is therefore a frequent need to merge 
information across different versions of a microarray 
platform. Several approaches to solve this problem 
have been considered. Several groups have 
demonstrated that sequence-based matching of plat-
form probes can improve reproducibility.14,15 These 
approaches are particularly applicable when different 
platforms represent a single gene, but using different 
oligonucleotides. Other groups have sought improved 
analytical techniques specialized for meta-analysis of 
microarray data.16–18

These techniques rely on statistical techniques 
to infer the relationship between different datasets. 
In many situations, such as large multi-institutional 
studies,19,20 it is possible to have a subset of samples 
hybridized multiple times at different sites or on 
different platforms. Accordingly, to complement 
existing statistical methods, I describe here LTR, 

a computationally-efficient approach to merging 
multi-platform datasets based on linear-modeling. 
The algorithm is tested on a new dataset of 20 rat liver 
samples drawn from four rat strains and hybridized to 
two distinct Affymetrix microarray platforms. LTR 
significantly reduces platform bias as demonstrated 
by unsupervised machine-learning and statistical 
analyses. Further, I estimate the number of replicate 
samples required to reduce bias using permutation 
techniques.

Methods
Algorithm motivation
Animal-handling and microarray hybridization 
of these samples has been described elsewhere.21 
Briefly, four rat strains/lines were selected: Long-
Evans (Turku/AB) (LE), Line-C (LnC), Han/Wistar 
(Kuopio) (HW) and Line-A (LnA). Background 
information on the H/W and L-E strains22 and the A 
and C lines23 has been given elsewhere. Animals of 
each strain were obtained from the breeding colo-
nies of the National Public Health Institute, Divi-
sion of Environmental Health, Kuopio, Finland; they 
were fed and housed under identical conditions in 
this facility. All animals were males 10–12 weeks 
old. Liver was harvested between 08:30 and 11:00 
from rats treated by gavage with corn oil vehicle 
for 19 hours. The oral gavage procedure may have 
introduced modest changes in mRNA expression.24 
All animal study plans were approved by the Animal 
Experiment Committee of the University of Kuopio 
and the Provincial Government of Eastern Finland. 
Total RNA was extracted from rat livers using Qia-
gen RNeasy kits according to the manufacturer’s 
instructions (Qiagen, Mississauga, Canada). Total 
RNA yield was quantified by UV spectrophotom-
etry and RNA integrity was verified using an Agi-
lent 2100 BioAnalyzer (Agilent Technologies, Santa 
Clara, CA). RNA was hybridized to Affymetrix 
RAE230A and RAE230-2 arrays by The Centre for 
Applied Genomics (Toronto, Canada). Raw and pre-
processed microarray data has been deposited in the 
GEO repository under accession GSE16458.

Data pre-processing
Microarray data were divided according to array 
platform (RAE230A vs. RAE230-2) and separately 
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pre-processed. Three common pre-processing 
algorithms were used: RMA,25 MAS5,26 and 
GCRMA.27 For each algorithm, the summarization 
step was performed both with the default ProbeSet 
mappings and with an alternative Entrez Gene-based 
mapping.14 The MAS5 and RMA algorithms were 
implemented in the affy package (v1.26.1) and the 
GCRMA algorithm in the gcrma package (v2.20.0) 
both of the BioConductor library for the R statistical 
environment (v2.11.1). MAS5 data were log2-
 transformed prior to model fitting.

LTR model
To determine the relationship between each ProbeSet 
on the RAE230-A and RAE230-2 arrays I employed 
a linear-modeling approach. I restricted ourselves to 
ProbeSets present on both array platforms and for each 
of these fitted to the identical samples the linear model 
Y230-2 = x0 + x1 Y230-A where Y230-2 is signal intensity for 
this ProbeSet on the RAE230-2 array and Y230-A is the 
signal intensity on the RAE230-A array. After fitting 
was performed using replicate hybridizations the coef-
ficients (x0 and x1) were stored and used to calculate 
adjusted signal intensities for all RAE230-A arrays. 
Thus this procedure first calculates a linear transfor-
mation between RAE230-A signal-intensity space and 
RAE230-2 signal-intensity space based on replicate 
hybridizations. Next, all RAE230-A data is transformed 
into RAE230-2 space—including those samples with no 
replicate RAE230-2 hybridizations. R functions imple-
menting model-fitting and application are provided as 
an R library in Supplementary Material.

Model testing
LTR was tested in three ways. First, unsupervised 
machine-learning (clustering) was employed before 
and after LTR normalization. The divisive hierarchical 
clustering algorithm DIANA was used, as implemented 
in the cluster package (v1.12.0) for the R statistical 
environment (v2.8.1). Scaling was not performed, 
and Pearson’s correlation was used as the distance 
metric. Second, a direct statistical analysis was used to 
compare heterogeneity of signal-intensities between 
platforms. Six biological replicates from the Han/
Wistar rat-strain were available: four were hybridized 
to the RAE230-A platform only and two to the 
RAE230-2 platform only. Importantly none of these 

were replicate hybridizations, making them suitable 
for model-evaluation. Significantly differentially 
expressed ProbeSets between the two platforms were 
identified using ProbeSet-wise t-test analysis followed 
by a false-discovery rate adjustment for multiple-
testing.28 This analysis was repeated before and after 
scaling. Third, the stability of LTR to the number 
of replicate hybridizations was assessed by subset-
analysis (ie, jack-knife sampling). There were eight 
replicate hybridizations; therefore all possible subsets 
containing two through seven hybridizations were 
extracted. The linear transformation from RAE230-A 
to RAE230-2 spaces was calculated for each subset 
and applied to the overall dataset. The number of 
differentially expressed ProbeSets between the two 
platforms was determined and boxplots of the distri-
bution as a function of subset-size generated.

Data visualization
All visualization was done in the R statistical 
environment (v2.11.1) using the lattice (v0.18-8) 
and latticeExtra (v0.6-11) packages. Density 
plots employed a Gaussian kernel with default 
parameterizations.

Results
Algorithm motivation
Integration of microarray studies performed by 
different groups,16–18 on different platforms,3,8,20,29 
or at different times16,30–32 is a common challenge 
in bioinformatics. While several computational 
techniques have been developed, the most natural 
experimental control is to select a subset of samples 
that can be hybridized by both groups, on both 
platforms, or at both times. To exploit these replicate 
hybridizations it is necessary to use them to learn a 
relationship between the signal-intensity space of 
two experimental platforms or batches, A and B. For 
the i-th microarray measurement (probe) with signal-
intensities YA and YB on the two platforms we wish to 
learn a mapping function F such that:

 YA,i = F(YB,i) (1)

And this approach can be trivially extended to mul-
tiple experiments {A1, …,An} by learning mapping 
functions F1 to Fn-1 where the j-th mapping function 
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maps Aj into the signal-intensity space of An. The 
shape of Fj is not known a priori, and in theory can 
differ for each Probe. However, I test here a simple 
linear transformation on real experimental datasets. 
That is, I model the i-th probe as:

 YA,i = x0,i + x1,i YB.i (2)

where YA,i is the intensity of the i-th probe in 
signal-intensity space A, YB.i is its intensity in 
signal-intensity space B, and x0,i and x1,I are probe-
specific mapping parameters. From hereon in this 
approach is termed “Linear Transformation of 
Replicates” (LTR). Figure 1 presents an example of 
the type of analysis LTR facilitates.
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Figure 1. LTR is intended to facilitate the integration of different microarray datasets. A) The dataset on the left (blue boxes) is made up of nine microarrays 
of tumour samples. The dataset on the right (red boxes) contains three normal samples and six tumour samples. A researcher may wish to gain additional 
power by integrating the two datasets and having 15 tumour and 6 normal samples. However, platform- and experiment-specific biases in the array data 
prevents this integration. B) If three tumour samples are replicated between the two datasets (samples connected by green arrows) then these replicate 
hybridizations can be used to learn a mapping function, F, to link the signal intensities of the two experiments. c) Once this mapping function has been 
learnt, the two experiments can be merged and a more highly powered tumour-normal comparison may be made. LTR calculates a linear probe-specific 
mapping function, F.
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Description of test dataset
To test the LTR method, a new dataset was generated. 
In previous studies of rat liver21 (and Boutros et al 
submitted) Affymetrix RAE230-A arrays had been 
used to profile four separate strains of rats. Two strains, 
Long-Evans(Turku/AB) and Han/Wistar(Kuopio), 
have been well-characterized22 and are abbreviated 
here as LE and HW. The other two strains, termed 
Line-A (LnA) and Line-C (LnC), are F2 products of 
LE x HW crosses.23 For each of these four strains, 
four biological replicates had been arrayed. To create 
a dataset for this analysis eight of these samples 
were hybridized to RAE230-2 arrays. Identical RNA 
preparations were used for both hybridizations. 
Additionally, four animals that had not been assessed 
previously were hybridized to RAE230-2 arrays. 
This created a total dataset of 28 arrays representing 
20 animals. The RAE230-2 array is a superset of the 
RAE230-A array. All hybridizations were performed 
in the same facility and with the same RNA extraction 
and labeling techniques.

Many approaches for pre-processing Affymetrix 
microarray data exist,25–27,33–35 and substantial disagree-
ment remains regarding the optimal approach.33,36–39 
To ensure that LTR performs well independently of 
the pre-processing technique selected, all analyses 
were repeated with data pre-processed by three of 
the most common algorithms: MAS5,35 RMA,25 
and GCRMA.27 Additionally, several groups have 
shown that sequence-based ProbeSet-remapping 
improves the concordance of individual microarray 
experiments.14,15,40 Therefore each of the three 
 pre-processing algorithms was executed with both 
the standard Affymetrix mappings and with an 
alternative mapping that linked each 25 bp Probe to a 
unique Entrez Gene ID.14 Thus in total the dataset was 
analyzed six different ways: two Probe-mappings, 
each with three separate pre-processing algorithms. 
LTR was applied to each of these six datasets.

Pre-processing was performed separately for the 
RAE230-A and RAE230-2 arrays, and common 
ProbeSets were extracted and subjected to unsupervised 
machine-learning (Fig. 2 and Supplementary Fig. 1). 
Independent of the pre-processing algorithm or Probe-
mapping used, samples hybridized to RAE230-2 
arrays (labeled in black) clustered distinctly from 
samples hybridized to RAE230-A arrays (labeled in 
red). Within each platform, however, samples did 

cluster according to the strain of rat. Taken together, 
these data indicate that the dominant signal in the 
dataset is the platform of origin, but that a significant 
strain-signal is also present. From a graphical per-
spective, the goal of LTR is to remove the platform-
bias and to allow animals from the same strain to 
cluster together. Note that MAS5, a single-array 
scaling algorithm believed to be useful in reducing 
batch-variability, still leaves very large batch-bias 
(black vs. red clusters, Figure 2B). These data were 
confirmed with multiple clustering algorithms (data 
not shown).

Characteristics of the  
linear-modelling fit
The LTR method was applied to the eight samples 
hybridized to both platforms. Both the intercept 
(Fig. 3A) and slope (Fig. 3B) have a large range, but 
are unimodally distributed around five (for intercept) 
and zero (for the slope). These values are imminently 
reasonable: an intercept of five reflects the background 
noise of the arrays used41 and a slope of zero indicates 
that the average ProbeSet shows no platform bias. The 
transformed and untransformed RAE230-A values 
are highly correlated (Fig. 3C), further emphasizing 
that for the majority of ProbeSets the platform-bias 
is relatively small, but that severe exceptions exist. 
Given that RAE230-2 is a superset of RAE230-A, 
this is a sensible result. Further, the fits account for 
the majority of variation in the dataset, with residu-
als being inversely proportional to signal intensity 
and less than one log2 unit (Fig. 3D). These trends 
are broadly replicated for the other five combinations 
of pre-processing and sequence-mapping algorithms 
(Supplementary Figs. 2–6).

To determine if the large platform-biases present 
in the raw data (Fig. 2) were removed by LTR, 
I performed unsupervised machine-learning on 
the LTR-transformed data. For all datasets, sam-
ples now clustered by strain (biology) rather than 
platform (Fig. 4 and Supplementary Fig. 7). In fact, 
replicate-hybridizations performed on different plat-
forms now clustered together (ie, the two replicate 
hybridizations for sample LA17 are adjacent to one 
another in all heatmaps in Fig. 4). A few extreme 
outliers in the GCRMA-normalized data led to 
improved, but not-perfect strain-separation (compare 
Supplementary Figs. 1 and 7). The tendency of 
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GCRMA-processing to yield many ProbeSets with 
invariant signal intensities appears to hinder the LTR 
method, and can be removed by introducing a data 
pre-filtering step.41

These unsupervised results show that LTR- 
transformation reduces platform-bias and improves 
biological homogeneity. However, because the sam-
ples used in model-fitting are included in clustering, 
unsupervised methods are non-conservative. There-
fore, a rigorous statistical analysis was performed. 
Of the six H/W rats included in this study four are 
on RAE230-A arrays and two on RAE230-2 arrays. 
Because these animals are biological replicates we 
anticipate modest basal biological differences in 

their mRNA levels.42 ProbeSet-wise t-tests a with 
false-discovery rate adjustment were used to iden-
tify differential signal-intensity between the two 
platforms. The distribution of P-values was assessed 
before and after LTR-transformation (Fig. 5 and 
Supplementary Fig. 8). In all cases the untrans-
formed data (blue curve) is profoundly skewed 
towards lower P-values than transformed data (red 
curve). Indeed prior to transformation the major-
ity of ProbeSets exhibit statistically differential 
intensities between the two batches of arrays, inde-
pendent of the pre-processing methodology used. 
Thus LTR effectively removes platform-dependent 
biases.
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Figure 2. Data were pre-processed with either the RMA (A and c) or MAs5 (B and D) algorithms using either default (A and B) or updated (c and D) 
Probe-mappings. Probesets not found on both the RAe230-A and RAe230-2 were excluded, and the remaining data were subjected to unsupervised 
hierarchical clustering using the DIAnA algorithm. each row is a sample; each column is a gene. The colour-bar on the right of each heatmap has two 
columns. The first column indicates the platform (black, RAE230-2; red, RAE230-A). The second column indicates the rat strain (blue, HW; yellow, LE; 
light-green, LnC; dark-green, LnA). In all cases animals cluster primarily by platform (black vs. red), not by strain.
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Both unsupervised and supervised techniques 
demonstrate that LTR removes platform-specific bias. 
However, in 8/20 samples in this dataset were subject 
to replicate hybridization. It would be a major financial 
advantage to reduce the number of replicate hybrid-
izations necessary. Therefore, all possible jack-knife 
samples of 2–7 animals (of the eight with replicate 
hybridizations) were created. The LTR model was fit 
to each sampling and then applied to the entire dataset. 
A t-test analysis was used to compare the RAE230-A 
and RAE230-2 H/W samples (none of which were 
amongst the 8 replicate hybridizations). Boxplots 
of the number of differentially expressed genes are 
given in Figure 6 and Supplementary Figure 9. In the 
absence of LTR (0 duplicated samples) the majority 

of genes are differentially expressed. Application of 
LTR with just two replicated samples dramatically 
reduces platform bias. Addition of a third replicated 
sample was beneficial, but additional samples beyond 
that led to more modest improvements. These data 
indicate that LTR can remove the vast majority of 
inter-experiment bias based on only three replicate 
hybridizations, at least in this dataset.

Discussion
Biomedical research projects frequently extend 
across many years and multiple locations. Recent 
years have seen the rise of large, multi- centre 
microarray-based projects, such as a recent 
study of 442 lung adenocarcinomas at four 
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Figure 3. Following pre-processing using the RMA algorithm with default Probe-mappings, the LTR transform was fit to the eight samples hybridized to 
both RAe230-A and RAe230-2 arrays. The majority of Probesets had small intercepts (A) and near-zero slopes (B) indicating that platform effect is not 
large for most ProbeSets. The actual and fitted values across all ProbeSets are highly correlated (c). Residuals from the fit are generally small, and are 
highest for low signal-intensity (ie, putatively unexpressed) genes (D).
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independent sites.19 In other cases it is necessary 
to integrate data from different platforms, such as a 
recent lung cancer study where 589 microarray pro-
files from 8 different studies (5 distinct platforms) 
were integrated.3 In both these types of studies it is 
well-established that batch-effects can hinder the 
analysis.43,44

Linear Transformation of Replicates (LTR) is a 
simple algorithm for removing bias from platform-
specific microarray experiments. Its uses replicate 
hybridizations of a small number of samples, which 
requires pre-planning. LTR works well with multiple 
pre-processing methods, and indeed could be used in 
combination with reference-normalization techniques 

to further reduce pre-processing variability.45 LTR is 
also not a replacement for ProbeSet re-mappings,14,15 
but rather supplements them. LTR is tested here in a 
multi-platform integration study, but in theory could 
be used for any multi-batch array study if identically 
hybridized samples are available. However, it is 
likely that there will be greater noise in inter-platform 
studies, especially when the platforms are more 
dissimilar than the two versions of Affymetrix arrays 
used here.

The LTR technique can be extended in several 
ways. First, should a larger number of replicate 
hybridizations be available, non-linear fitting could 
be attempted. For example use of loess-smoothers 
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Figure 4. Data were pre-processed with either the RMA (A and c) or MAs5 (B and D) algorithms using either default (A and B) or updated (c and D) 
Probe-mappings. Probesets not found on both the RAe230-A and RAe230-2 were excluded. The remaining data were subjected to LTR transformation, 
then unsupervised hierarchical clustering using the DIAnA algorithm. each row is a sample; each column is a gene. The colour-bar on the right of each 
heatmap has two columns. The first column indicates the platform (black, RAE230-2; red, RAE230-A). The second column indicates the rat strain (blue, 
HW; yellow, LE; light-green, LnC; dark-green, LnA). In all cases animals cluster primarily by strain, not by platform, indicating that the LTR transformation 
successful removed the platform-bias evident in Figure 2.
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might reduce bias further, although at the expense 
of requiring a larger number of samples. Second, the 
current implementation transforms signal-intensity 
at the level of a complete ProbeSet, representing an 
individual transcript or gene. It is possible, especially 
for superset arrays, to perform the LTR at the Probe-
level, thereby allowing each individual sequence to 
have its own unique relationship between the two 
platforms or datasets. This approach would be com-
putationally much more expensive, as there are ~11 
Probes per ProbeSet on Affymetrix arrays, but may 
reduce variability even further for array platforms 
that contain identical Probes.

The LTR model is limited in at least three ways. 
First, it is inherently linear. It is of possible that a non-
linear transformation will better capture platform-
specific differences. However, in the case explored in 
depth here, a linear transform obviated essentially all 
bias (Fig. 6). Second, the model requires the existence 
of probe-wise relationships between the two groups. 
If there is no relationship at all, then a fit will still be 
forced despite the very high residuals and resulting 
noise. This makes it critical to evaluate residual plots 
(Fig. 3), and suggests that there may be a benefit 
to performing an iterative model-selection for each 
probe if sufficient replicate samples are available. 
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Third, it is unclear if the linear relations learned 
between platforms in this experiment are fixed or if 
they need to be refitted for each experiment. It would 
be advantageous to groups around the world if hybrid-
izations could be performed with a known subset of 
samples that are widely available—the four mixtures 
generated by the MAQC Consortium’s Phase I proj-
ect would be ideal candidates for human arrays.20 It is 
unclear if the replicate samples used in LTR need to 
be substantially similar to the experimental samples 
for accurate model fitting. Currently no datasets with 
sufficiently diverse and numerous samples exist to 
evaluate this question. Based on preliminary studies it 
appears that absolutely identical samples are required 

for LTR-fitting, but these may not need to be highly 
similar to the remainder of the dataset.

As the number of microarrays deposited in 
public repositories grows, the development of 
appropriate techniques for integrating diverse 
datasets becomes increasingly important. The LTR 
technique described here provides a computational 
technique that greatly reduces inter-experimental 
variability and that should motivate the inclusion of 
replicate hybridizations across experiments where 
possible. When combined with reference-normal-
ization methods and ProbeSet-remapping techniques 
LTR might facilitate the successful integration of 
microarray experiments.

A)

N
u

m
b

er
 o

f 
p

ro
b

es
N

u
m

b
er

 o
f 

p
ro

b
es

Replicate samples

Replicate samples

104

103

102

101

100

104

103

102

101

100

0 2 3 4 5 6 7 8

B)

C) D)

N
u

m
b

er
 o

f 
p

ro
b

es

Replicate samples

104

103

102

101

100

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

N
u

m
b

er
 o

f 
p

ro
b

es

Replicate samples

104

103

102

101

100

0 2 3 4 5 6 7 8

Figure 6. Data were pre-processed with either the RMA (A and c) or MAs5 (B and D) algorithms using either default (A and B) or updated (c and D) 
Probe-mappings. Probesets not found on both the RAe230-A and RAe230-2 were excluded. The remaining data was subjected to LTR transformation. 
For each ProbeSet a two-tailed, heteroscedastic t-test was used to compare the signal intensities of HW samples from the RAE230-A platform to those 
from the RAE230-2 platform. Importantly, none of these samples were used in the LTR fitting. P-values were subjected to a false-discovery rate adjustment 
for multiple testing. This procedure was then repeated using smaller numbers of replicate hybridizations for LTR-fitting. All possible subsets of size two 
through seven were tested and boxplots of the number of genes with Padjusted , 0.01 are depicted.
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