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Abstract: The kynurenine pathway (KP) is a major degradative pathway of tryptophan ultimately leading to the production of 
 nicotinamide adenine dinucleotide (NAD+) and is also one of the major regulatory mechanisms of the immune response. The KP 
is known to be involved in several neuroinflammatory disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, AIDS 
dementia complex, Parkinson’s disease, schizophrenia, Huntington’s disease and brain tumours. However, the KP remains a relatively 
new topic for the field of multiple sclerosis (MS). Over the last 2–3 years, some evidence has progressively emerged suggesting that the 
KP is likely to be involved in the pathogenesis of autoimmune diseases especially MS. Some KP modulators are already in clinical trials 
for other inflammatory diseases and would potentially provide a new and important therapeutic strategy for MS patients. This review 
summarizes the known relationships between the KP and MS.
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Introduction
Multiple Sclerosis
Multiple sclerosis (MS) is characterized by the for-
mation of sclerotic plaques in various areas of the 
central nervous system (CNS). These plaques are 
the result of an inflammatory response most likely 
caused by activation of autoimmune Th-1 cell target-
ing oligodendrocytes and the myelin sheath together 
with activated monocytic cells. These highly immu-
nologically active areas subsequently progress to 
form “scarring” plaques.1 Symptoms and signs 
vary depending on the location and severity of the 
plaques.2 MS is a complex disease that can exist in 
various clinical subtypes but generally has a relaps-
ing-remitting (RRMS) course often developing into 
secondary progressive MS (SPMS). A less common 
subtype, primary progressive MS (PPMS) has no 
remissions from onset. It has been suggested that the 
adaptive immune system drives the early stages of 
MS and the innate immunity drives the progressive 
stage.3

In the next few sections, we will discuss how the 
KP interplays with both the adaptive (T-cells) and 
innate immunity (mainly macrophages and  microglia) 
that have been associated with the detrimental effects 
in MS progression.

The kynurenine pathway (KP)
The KP is a metabolic pathway leading to the pro-
duction of NAD+ from the degradation of the essen-
tial amino acid tryptophan (TRP).4 Over the last 
two decades the KP has been studied across vari-
ous species and has been associated pathologically 
with several neurological diseases. Paradoxically, 
KP metabolites can exhibit both neuroprotective 
and neurotoxic  properties.5,6 In this section we will 
briefly highlight some key metabolites and enzymes 
in the KP.

Indoleamine 2,3 Dioxygenase
Activation of the KP can be achieved through one of 
its first rate-limiting enzymes, indoleamine 2,3 dioxy-
genase (IDO)-1, tryptophan dioxygenase (TDO)7,8 and 
the recently discovered IDO-2.9 While little is known 
of the significance of IDO-2, extensive  studies have 
been performed in understanding the role of IDO-1 in 
neuroinflammation.

IDO-1 is a key regulator of the immune response.10 
Munn and co-workers showed that in the placenta, 
activation of IDO-1 was important in preventing 
rejection of the allogenic foetus.11 The mechanism 
is most likely related to IDO-1 mediated catabolism 
of TRP leading to depletion of local TRP needed for 
adjacent maternal T-cell proliferation thereby caus-
ing T cell apoptosis.12–15 Our studies in conjunction 
with others have shown that human IDO-1 expres-
sion can be up regulated by many factors such as the 
interferons, tumour necrosis factor (TNF)-α, platelet 
activating factor (PAF), amyloid beta peptide 1–42, 
as well as the HIV-1 proteins Nef and Tat.16–20 More 
recently, studies using animal models have shown 
that the combination of TNF-α and IFN-γ play a key 
role in up regulation of IDO-1 in response to bacterial 
infection.21

Kynurenic acid (KYNA)
In the CNS, KYNA is synthesised from kynurenine 
by the enzymes kynurenine aminotransferases (KAT) 
I and II. Rodents have an additional enzyme KAT III, 
which has a similar gene structure to KAT I, and which 
can function as a compensatory enzyme in KAT II 
knockout mice.22,23 KAT III has not been detected in 
humans. KYNA is one of the early metabolites of the 
KP and is generally considered as a neuroprotective 
compound. KYNA is capable of blocking glutamate-
induced excitotoxicity via its antagonistic effects on 
several subtypes of ionotropic glutamate receptors24 
such as N-methyl-D-aspartate (NMDA), kainate and 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptors. KYNA has a higher affinity 
for the glycine site of the NMDA receptors than glu-
tamate.25 More importantly in the context of the KP, it 
can also effectively attenuate the excitotoxicity of the 
downstream KP metabolite, quinolinic acid (QUIN).26 
Despite the antagonistic properties of KYNA towards 
QUIN, during disease the concentrations of KYNA 
are usually too low to make this clinically signifi-
cant. Lekieffre and co-workers demonstrated that it 
required three times more KYNA to antagonize the 
excitotoxic effect exerted by the same amount of 
QUIN.27 Furthermore, it has been repeatedly shown 
that levels of KYNA are decreased in several major 
neurological diseases including amyotrophic lateral 
sclerosis (ALS), HIV-dementia, chronic brain injury 
and even MS28 suggesting that the neuroprotective role 
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of KYNA had been compromised in these  diseases. 
Ironically, KYNA in some circumstances may be 
detrimental. High levels of KYNA have been associ-
ated with other disorders such as schizophrenia29 and 
epilepsy.30 Depending of its relative concentrations, 
KYNA seems to have a Janus’s face within the CNS 
that still needs to be studied and clarified.

3-Hydroxykynurenine (3-HK)
3-HK is increasingly being considered for its role in 
neurotoxicity. Elevations in 3-HK levels have been 
found to be associated with numerous neurological 
diseases including Huntington disease,31 HIV demen-
tia32 and Parkinson’s disease33 The pathogenetic 
nature of this association was initially suggested by 
3-HK’s ability to mediate cytotoxicity in a neuronal 
cell line.34,35 However, the concentrations were supra-
physiological leading to its dismissal as a neuro-
toxin.36 Nonetheless, it is now known that 3-HK can 
generate ROS leading to neuronal cell death at patho-
physiological concentrations.37 Furthermore, 3-HK 
acts synergistically with QUIN to mediate excitotoxic 
damage.38

Quinolinic Acid (QUIN)
QUIN is likely to be one of the most significant KP 
metabolites in terms of biological activity. It is an 
agonist of the NMDA receptor and as such is con-
sidered an endogenous excitotoxin.39 In physiological 
conditions, QUIN is a crucial substrate for produc-
tion of a key molecule for cell survival, NAD+. We 
showed that at physiological concentrations (50 nM), 
QUIN facilitates the production of NAD+ in both 
human primary astrocytes and neurons which is 
crucial for energy homeostasis and cellular repair.40 
However, elevated QUIN concentrations have been 
found in several major neuroinflammatory diseases 
such as Alzheimer’s disease, Parkinson’s disease, 
HIV dementia and more recently in ALS.41–43 The 
exact roles of QUIN in these various neurological dis-
eases have not been fully defined but several mech-
anisms for QUIN-induced cell toxicity have been 
identified:44 1) QUIN can activate NMDA receptors 
in pathophysiological concentrations that results in 
excitotoxicity;45 2) QUIN is capable of increasing the 
release of glutamate by neurons and decreasing gluta-
mate uptake by astrocytes and can also inhibit astro-
glial glutamine synthetase46 consequently leading to 

the accumulation of glutamate in the microenviron-
ment and excitotoxicity;47,48 3) QUIN can kill astro-
cytes resulting in neurotoxicity because of the loss 
of astrocytic detoxifying function 4) QUIN is asso-
ciated with lipid peroxidation. Some studies have 
also shown that QUIN can potentiate oxidative stress 
through generating and working synergistically with 
ROS in the mitochondria.49 This leads to lipid per-
oxidation and energy depletion that ultimately results 
in cell death.49–51 5) More recently, we have demon-
strated that QUIN can induce tau hyperphosphoryla-
tion in human neurons that is likely to contribute to 
microtubular dysfunction with consequent neuronal 
dysfunction.52

Direct evidence of Kp  
Involvement in Ms
Tryptophan degradation and KP 
activation in MS
The first evidence dated back to the early eighties, 
when Manaco A. reported a decrease in TRP in the 
plasma and CSF of MS patients.53 Then Fuchs and 
co-workers54 suggested that the KP may be involved 
in MS based on the correlation of the adaptive 
immune system and KP activation. This was later 
not supported by a study showing no significant dif-
ference in TRP concentration in serum and CSF of 
MS patients compared to controls.55 However, with 
a better understanding of the KP and the develop-
ment of more  efficient methods to quantify the KP 
metabolites and KP enzyme expression, its involve-
ment in MS has been re-evaluated. More recent stud-
ies have shown that patients with chronic MS have 
low TRP concentrations in serum and CSF suggesting 
 activation of the KP.56,57

Abnormality in KP metabolism in MS
Other evidence comes from analysis of human MS 
ex vivo samples. Rejdak et al showed that the lev-
els of KYNA are decreased in the CSF of patients 
with MS.58 These results are supported by another 
study by Baran et al showing that the expression of 
KAT I and II (enzymes responsible for the produc-
tion of KYNA) is decreased in post-mortem MS brain 
 sections.59  Kepplinger et al60 however, found the oppo-
site, that there is an increased in the KYNA levels in 
CSF samples of MS patients. This was supported by 
Hartai et al61 who found that KAT I and II activity 
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was increased in red blood cells and plasma from 
MS patients. These contradictory results probably 
relate to the differences in the time of collection of 
the samples during the course of the disease. Indeed, 
when Rejdak et al. quantified KYNA in active MS 
patients, their results are in agreement with the data 
from Hartai et al The conflict between the earlier and 
later studies of Rejdak et al (2002) and the later study 
(2007) were likely resolved because the samples 
obtained from MS patients in the earlier study were 
in the chronic inactive phase of the disease while the 
later study used MS patients with an exacerbation.62 
Thus the KP is induced during the active phase of MS 
leading to increased production of KYNA but as the 
disease progresses the KP profile changes resulting in 
decreased KYNA levels implicating the shift of the 
KP towards neurotoxicity. 

Indirect evidence for Kp Involvement 
in Ms using in Vitro Models
Microglia and macrophages
Previous studies have shown that only monocytic 
cells including activated microglia and macrophages 
are capable of producing QUIN in excitotoxic con-
centrations within the CNS.17,63 However, the amount 
of QUIN produced by microglia is significantly lower 
(20–40 times less) compared to macrophages.63,64 
We previously showed that this is likely to be due 
to different levels of expression of three of the KP 
enzymes (See Table 1) between human microglia and 
macrophages.65 It is very likely that KP activation in 
both perivascular macrophages and microglia may 
contribute to the neuropathology of MS.64,66 Indeed, 

one of the hallmarks of MS lesions is the presence 
of activated microglia and perivascular macrophages 
along the boundary of the lesion site.67 The pres-
ence of these activated cells is likely to be associ-
ated with the production of QUIN in concentrations 
sufficient to induce brain cell death at the site of 
lesion. These monocytic cells will also release some 
pro-inflammatory cytokines that can activate the KP 
resulting in an amplifying feedback mechanism lead-
ing to further production of QUIN and exacerbation 
of neuro- and gliotoxicity (discussed in section I-B.4). 
In addition, these same cytokines will also activate 
inducible nitric oxide synthase (iNOS) leading to 
an increased production of reactive oxygen species 
that would further exacerbate the neurodegenerative 
mechanisms involved in MS. Although speculative, 
we believe that both oxidative stress and the KP are 
playing a crucial role in MS pathology, which is fur-
ther discussed in section V.

Astrocytes
Astrocytes represent the most abundant cell type in 
the CNS. Their representation in the CNS reflects 
their importance in critical roles such as glutamate 
recycling, cellular homeostasis, providing trophic 
and metabolic support, participating in the blood 
brain barrier  cohesion and immune regulation within 
the CNS. We previously characterized the profile 
of the KP in human astrocytes (See Table 1) and 
showed that this cell type lacks the enzyme, kynuren-
ine hydroxylase and hence, is unable to synthesize 
downstream KP metabolites, particularly QUIN.68 
Interestingly, primary monocultures of human astro-

Table I. Summary of KP enzymes expression in human neurons and glial cells.

Kp 
enzymes

Macrophages + 
IFn-γ (Guillemin 
et al 2001a)

Microglia + 
IFn-γ (espey 
et al 1997)

Astrocytes + 
IFn-γ (Guillemin 
et al 2001b)

neurons +  
IFn-γ (Guillemin  
et al 2007)

Oligodendrocytes +  
IFn-γ (Lim 
et al 2007)

IDO + + + + -
TDO + + + + -
KAT-I + + + + +
KAT-II + + + - -
KMO + + - + +
KYNU + + + + +
3-HAO + + + + +
QPRTase + + + + +

+, enzyme expressed; -, enzyme not expressed.
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cytes, under  cytokine stimulation generate large 
amounts of kynurenine (KYN) and subsequently 
lead to the production of the neuroprotective KYNA 
(see Fig. 1). Furthermore, Rejdak and colleagues 
showed an increased activation of astrocytes based 
on the astrocytic marker—S100β—that correlates 
with increased production of KYNA in CSF of MS 
patients.62 This suggests that astrocytes probably 
play a neuroprotective role in MS. This fits well 
with the neuroprotective role of astrocytes under 
physiological condition or early pathologic stages 
of the disease to provide compensatory  mechanisms 
against  neurotoxicity. In  pathological conditions 
especially where innate immunity is involved for 
example in MS, activated microglia and perivascu-
lar macrophages at the inflammatory site can take 
up and metabolise the large amounts of astrocyte-
derived KYN as extra substrate to produce QUIN.68 
Furthermore, we have previously demonstrated that 
only small amounts of QUIN can be catabolised by 
human astrocytes due to the low saturable activity of 
quinolinate phospho- ribosyltransferase responsible 

for QUIN  degradation.68,69 Moreover, our previous 
studies demonstrated QUIN at pathophysiological 
concentrations of 500 to 1200 nM can induce apopto-
sis in up to 14% of human astrocytes.43 Finally, QUIN 
can impair the function of glutamine  synthetase 
thereby augmenting glutamate related toxicity.46,70

Neuron
Apart from oligodendrocyte death and demyelin-
ation, neuronal loss is another pathological feature 
of MS.71,72 Although the exact mechanism for axonal 
injury in MS is not well understood, there have been 
studies supporting the idea of monocytic cells and/or 
glial cells playing a role in producing inflammatory 
mediators leading to axonal loss at the site of active 
lesions.73–75 Glutamate excitotoxicity is a likely can-
didate because glutamate antagonists reduce axonal 
damage, the effect is not significant: neither lesion size 
nor course of inflammation is affected.76 Thus an alter-
native toxin appears more significant. As monocytic 
cells produce QUIN, it is biologically plausible that it 
might exert independently, or synergistically act with 
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Figure 1. Simplified diagram of the kynurenine pathway.
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glutamate, to alter neuronal cytoskeleton52 ultimately 
leading to axonal loss.

We have recently characterized the KP in human 
neurons (See Table 1), showing that cytokine stimula-
tion can lead to the production of two neuroprotective 
KP metabolites, KYNA and picolinic acid (PIC).77 It is 
likely that neurons will produce neuroprotective and 
anti-inflammatory (for PIC) compounds in the inflam-
matory areas in MS brains. Similar to astrocytes, 
neurons can also produce KYNA at the low micro-
molar range, which is unlikely to be sufficient (see 
B2, page 5) to completely antagonize the excitotoxic 
effects of QUIN produced by surrounding microglia 
and macrophages. Schwartz and co-workers have 
previously shown that acute administration of QUIN 
can induce axon sparing lesions at pathophysiological 
concentrations in a rat brain slice.78 Similarly, chronic 
exposure to QUIN in the rat striatum leads to cogni-
tive deficit.79 We have previously shown that chronic 
exposure of human primary neurons to QUIN at nano-
molar concentrations is sufficient to induce neuronal 
cell death.80,81 This suggests that minute amounts of 
QUIN present in the human CNS may be involved in 
the chronic progression of axonal loss in MS.

Oligodendrocytes
We have recently characterized the KP in purified 
primary cultures of human oligodendrocytes iso-
lated from foetal brain tissue.82 Our data indicate that 
human foetal oligodendrocytes are among the rare 
cell types lacking IDO expression. This finding is 
potentially important for MS because the lack of IDO 
expression in human oligodendrocytes suggests that 
these cells have a lesser ability to protect themselves 
from activated T cell attack in the early stages of MS 
where adaptive immunity is important. However, 
this remains speculative, as IDO expression in adult 
oligodendrocytes is still unknown. Until recently, it 
was believed that oligodendrocytes only expressed 
AMPA/kainate receptors but not NMDA receptors.83–85 
However, in 2005 Salter and Fern demonstrated that 
NMDA receptors are present on oligodendrocyte 
 processes whereas AMPA/kainate receptors were 
localized on the cell somata.86 This further defined a 
new role for QUIN toxicity in MS, as QUIN, which 
is also an agonist of the NMDA receptor is likely 
to activate the oligodendrocyte NMDA receptors 

leading to excitotoxicity, cell death and demyelin-
ation. Furthermore,  inhibition of the AMPA/kainate 
 receptor with NBQX (2,3-dioxo-6-nitro-1, 2, 3, 
4-tetrahydrobenzo [f] quinoxaline-7-sulphonamide) 
had no effect on the lesion size and no reduction of 
inflammatory response in EAE mouse brain.76 This 
implies that glutamate excitotoxicity may actually 
play only a limited role in the loss of oligodendro-
cytes. QUIN produced during the primary inflamma-
tion response, might lead to an even more significant 
excitotoxic effect on oligodendrocytes (see Fig. 2). 
This is further supported by data showing that com-
plete rescue of oligodendrocyte injury requires the 
blocking of both AMPA/kainate and NMDA recep-
tors.86 Furthermore, Cammer showed that in vitro, 
QUIN induces up to 30 and 50% apoptotic cell death 
of oligodendrocytes upon 48 h of 0.1 and 1mM 
QUIN exposure, respectively.87 This study strongly 
supports the potential involvement of QUIN toxic-
ity in oligodendrocyte injury and death via apopto-
sis during MS. However, the concentration of QUIN 
used in this study was above the pathophysiologi-
cal concentrations found during neuroinflammatory 
conditions.16,28

Indirect evidence of Kp Involvement 
in Ms Using experimental 
Autoimmune encephalomyelitis  
(eAe) Animal Model
EAE is a commonly used animal model to study 
MS.88 Several studies with the EAE model have pro-
vided relevant information concerning the involve-
ment of the KP in MS. Kwidzinski and co-workers 
demonstrated the importance of IDO-1 in the modu-
lation of the immune response in EAE.89 The study 
showed that inhibition of IDO-1 activity using 
1-methyl-tryptophan (1-MT) resulted in a signifi-
cant exacerbation of the disease status, implying 
that IDO-1 can down-regulate neuroinflammation 
Sakurai and co-workers showed that the proliferative 
response of the T cells was increased when IDO-1 
was inhibited by 1-MT.90 More recently, Matysiak 
and co-workers demonstrated that IDO-1 induction 
in the presence of dendritic cells led to T cell inhi-
bition while 1-MT abolished this effect.91 Flanagan 
et al showed that the levels of the excitotoxin QUIN 
are elevated in the spinal cord of EAE rats.92 Another 
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neurotoxic KP metabolite, 3-HK has also been found 
increased in EAE rat.93

current speculations and 
Hypothetical Model of Kp  
Involvement in Ms
Activation of KP in MS — Good or Bad?
It is unclear whether KP activation is detrimental or 
beneficial in the context of MS as both neuropro-
tectant and neurotoxin compounds can be produced 
through this pathway. Interferon-β1, a current treat-
ment for MS, can activate the KP and possibly limit 
the benefit of the treatment.94 Hence, the following 
hypothetical model can be raised: The KP may be 
beneficial in the early stage of the disease because 
adaptive immunity is thought to be important and as 
previously mentioned activation of the KP via IDO-
1 can down regulate T cell proliferation. However, 
prolonged activation of the KP may lead to chroni-
cally elevated levels of QUIN and other neurotoxins 
produced by perivascular macrophages. This would 
lead to further neurological deficits and as such 

would be expected to be a feature of the later stages 
of MS.

As mentioned above (I-B.4), QUIN  facilitates gluta-
mate release by neurons and inhibits  glutamate uptake 
by astrocytes leading to an accumulation of  glutamate 
in the microenvironment and excitotoxicity.47 Oligo-
dendrocytes are constitutively involved in glutamate 
clearance from the white matter.95 Although specu-
lative, it is likely that QUIN also inhibits glutamate 
uptake and recycling by oligodendrocytes. It is impor-
tant to mention that glutamate is a potent inhibitor of 
KYNA synthesis in oligodendrocytes and that AMPA 
but not NMDA can potentiate such an inhibitory 
effect by decreasing KYNA production.96 Hence, dur-
ing neuroinflammatory conditions such as MS, over 
production of QUIN by activated monocytic cells 
will lead to 1) an increase in glutamate levels; and 
2) a decrease of neuroprotective KYNA, both phe-
nomena in combination leading to an exacerbation of 
excitotoxicity (see Fig. 2). Apart from its involvement 
in the disturbance of the glutamine- glutamate cycle, 
QUIN is also likely to induce directly neurotoxicity 
and gliotoxicity.43,97
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Figure 2. expression of the KP enzymes in human primary neurons, astrocytes, macrophages, microglia, and oligodendrocytes.
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Based on our data,82 it is likely that the KP in 
oligodendrocytes will lead to production of neuro-
protective molecules during MS. We have shown 
that human foetal oligodendrocytes can express 
one of the KYNA producing enzymes, KAT I, but 
not KAT II. This is supported by a previous study 
showing that the rat oligodendrocyte cell line 
OLN-93 expressed both KAT I and II that results 
in KYNA production when KYN was added to the 
cell culture.96 We obtained similar results showing 
that the human oligodendroglial cell line MO3.13 
express both KAT I and II. Nonetheless, we still 
need to show that human primary adult oligo-
dendrocytes also express KAT I and/or KAT II in 
before unequivocally concluding their neuropro-
tective functions.16,77,98 It is tempting to speculate 
that, as for neurons,77 human oligodendrocytes 
are more likely to synthesize KYNA as a com-
pensatory mechanism against the excitotoxicity of 
QUIN production by activated monocytic cells and 
again similar to neurons they are able to take up 
and metabolise at least some of this QUIN. Braidy 
et al recently showed that human primary neu-
rons and astrocytes can catabolise QUIN as sub-
strate to produce NAD+ providing more energy to 
the cell and promotion of the enzymes involved in 
DNA repair.81 This is likely to happen in human 
oligodendrocytes as they also express the QUIN-
catabolising enzyme quinolinate phosphoribo-
syltransferase (QPRT) (see Fig. 1 and Table 1). 
However additional experiments are needed to 
demonstrate that QPRT in human oligodendrocytes 
is fully functional.

KP and oxidative stress in MS pathology
Emerging data suggests that oxidative stress plays a 
major role in the pathogenesis of MS.99,100 Inflamma-
tory cytokines inducing IDO-1 also activate iNOS, 
especially in monocytic lineage. INOS activation leads 
to production of nitric oxide (NO), which plays an 
important role in both oxidative stress and regulation 
of IDO-1 activity.101 NO has a bidirectional effect on 
the activity of IDO-1 with an inverse relation between 
NO concentration and IDO-1 activity.102 Studies had 
indicated that iNOS is up regulated in EAE and MS.103–

105 Patients with active MS have significantly higher 
NOS activity and NO concentration in the CSF.106

As we mentioned previously, at the early stages 
of the disease, KP/IDO-1 activation is crucial for 
the immunosuppression of T cells and the presence 
of high levels of NO might suppress IDO-1 activ-
ity and thus promote MS progression. Furthermore, 
 production of QUIN from activated macrophages, 
also producing ROS and NO, further potentiates 
oxidative stress and irreversible cell death. Then a 
question could be: if NO suppresses IDO-1, where is 
the source of QUIN? As mentioned, even if IDO-1 is 
down regulated, activated astrocytes are capable of 
producing large amounts of KYN that are taken up 
by macrophages as substrate for QUIN production.107 
In the chronic progressive form of MS with a mod-
erate and constant activation of the KP, production 
of neurotoxic KP metabolites, such as QUIN, 3HK 
together with ROS might further amplify the neu-
rodegenerative processes.50 The possibility of those 
neurotoxic KP metabolites fuelling oxidative stress 
further highlights the importance of regulating the 
KP in MS.

conclusion
In this review we have tried to combine and discuss 
known and potential links between the KP metabo-
lites and the neuropathogenesis of MS. While it is 
still unclear whether KP activation is beneficial or 
detrimental, it seems likely that the KP would be 
more beneficial in the short term and become detri-
mental in the long term. Further studies are necessary 
to characterise KP components at different stages of 
MS to determine whether the hypotheses raised in 
this manuscript are valid.
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