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Abstract: Corticomuscular coupling estimated by EEG-EMG coherence may reveal functional cortical driving of peripheral muscular 
activity. EEG-EMG coherence in the beta band (15–30 Hz) has been extensively studied under isometric muscle contraction tasks. We 
attempted to study the time-course of corticomuscular connectivity under a dynamic target tracking task. A new device was developed 
for the real-time measurement of dynamic force created by pinching thumb and index fingers. Four healthy subjects who participated 
in this study were asked to track visual targets with the feedback forces. Spectral parameters using FFT and complex wavelet were 
explored for reliable estimation of event-related coherence and EEG-EMG correlogram for representing corticomuscular connectivity. 
Clearly distinguishable FFT-based coherence and cross-correlogram during the visual target tracking were observed with appropriate 
hyper-parameters for spectral estimation. The system design and the exploration of signal processing methods in this study supports 
further exploration of corticomuscular connectivity associated with human motor control.
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Introduction
There are at least two neuronal population activities 
that can be observed with electroencephalography 
(EEG) during the production of human voluntary mus-
cle contraction: one is the slow, DC potential starting 
about 1.5 s before movement, the Bereitschaftspoten-
tial or movement-related cortical potential;1,2 another 
is the rhythmic power change observed most obvi-
ously in the alpha (8–13 Hz) and beta (15–30 Hz) 
bands.3,4 The function of the oscillatory activity in 
the sensorimotor cortex associated with human motor 
control is still unclear. Previous studies revealed that 
the amplitude of cortical rhythmic activity decreases 
during the movement of the contralateral hand, which 
has been termed as event-related desynchronization 
(ERD).5 The amplitude of the oscillatory activity in 
the beta band shows a rebound or ‘idling rhythm’ 
after movement, which has been termed event-related 
synchronization (ERS).6 In addition to the rhythmic 
power changes in the sensorimotor cortex, the coher-
ence between cortical rhythms and muscular activ-
ity in electromyography (EMG) has been explored 
during isometric muscle contraction.7–9 The EEG-
EMG coherence may indicate the efficiency of corti-
cal motor drive of peripheral muscles.10 Thus, if the 
oscillatory activity over sensorimotor cortex has a 
functional role in motor control, it should show sys-
tematic variation following a specific motor task. This 
has been previously explored by a precision grip task, 
where coherence between cortical rhythm and EMG 
was assessed during the steady grip of a compliant, 
spring-like load.7,11,12

In this study, we want to explore temporal changes 
in oscillatory synchronization in the beta band 
(15–30 Hz) between human motor cortical activities 
recorded by EEG and hand muscle activities by EMG 
that vary according to the time course of the task and 
the level of compliance of the gripped objects. We 
developed a novel device providing precise measure-
ment of grip force in real-time, where the measured 
force is able to be visually fed back to subjects for 
precise control of finger grip. We also explored better 
hyper-parameters of spectral segment length and win-
dow length to enhance the representation of the time-
course of EEG-EMG coherence and correlogram. At 
the same time, complex wavelet-based coherence was 
also explored and compared with Fourier transform-
based coherence estimation.

Methods
subjects
The experiments were performed on four healthy vol-
unteers (two males and two females), ranging from 
22 to 30 years old. The protocol was approved by 
the institutional review board, and the subject gave 
informed consent.

Device and behavioral task
The self-made device for real-time measurement of 
grip force is illustrated in Figure 1. The subject was 
asked to use the thumb and index finger of his/her right 
hand to grip the button-like force sensors on each end 
of two sliding tracks. The two sliding tracks connected 
with two shafts with a 10 N spring load on the other 
side. The subjects squeezed the two buttons to open 
the spring load. As the compliance provided by the 
spring is proportional to the displacement, maximum 
force is required when moving the two buttons to the 
center, i.e. maximum extension of the spring load.

Before the precise grip task, the subject was asked 
to move the buttons to the center for calibrating the 
maximum force (the visual command is illustrated in 
the upper part of Fig. 1).

Figure 1. Self-made device for finger grip. Two force sensors were 
mounted on the end of two sliding tracks. One position sensor measured 
the displacement when gripping. The force produced by the thumb and 
index finger were recorded and fed back to the subject in the visual 
paradigm.
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After calibration, the subject was instructed to 
squeeze the button in order to keep the feedback force 
(depicted by the green bar in Fig. 2) inside the target 
bars (brown color). The target force was set at two 
levels: 20% and 30% of the maximum force. The sub-
ject needed to control both the thumb and index finger 
so that the green bar indicating squeezing feedback 
forces were within the target bars on both sides (left 
for thumb and right for index finger). During the fin-
ger grip, the subject was asked to maintain gaze at the 
center of monitor and avoid blinks or eye movement.

recordings
Bipolar surface EMG was recorded from first dorsal 
interosseous (1DI), abductor pollicis brevis (APB), 
and extensor digitorum communis (EDC) of the right 
hand and forearm with a bandpass of 0.1–100 Hz. 
EEG was recorded from 29 (tin) surface electrodes 
(FP1, F3, F7, C3A, C1, C3, C5, T3, CP3, P3, T5, O1, 
FP2, F4, F8, C4A, C2, C4, C6, T4, CP4, P4, T6, O2, 
FZ, FCZ, CZ, CPZ, and PZ), attached on an elastic 
cap (Electro-Cap International, Inc., Eaton, OH, USA) 
according to the international 10–20 system.13 EEG 
and EMG Signals from all channels were amplified 
(Neuroscan Inc., El Paso, TX), filtered (0.1–100 Hz), 
and digitized (sampling frequency, 250 Hz).

Analysis
The EMG signals were high passed at 10 Hz and then 
rectified. Both EEG and EMG signal were epoched 

from -3 to 12 s with respect to the start of  squeezing. 
A total of 20 epochs were recorded, and no epoch was 
excluded since blink artifact was controlled. The time-
course of coherence or correlogram was obtained from 
continuous estimation for each sliding time-window.

Figure 3 demonstrates EEG/EMG acquisition and 
the following data analysis. After the signals were pre-
 amplified and filtered at 0.1 to 100 Hz, the analog signals 
were converted to digital signal for processing. EEG-
EMG coherence and correlogram estimation were con-
ducted. With coherence estimation, FFT-based method 
and Wavelet method were adopted and compared. For 
each estimation, different sliding window length was 
investigated in presenting the spectrums.

Coherence that provides a statistical relationship 
between two signals x(t) and y(t) from two sources in 
a certain frequency band was calculated by:

C
P

P Pxy
xy

xx yy
=

2

Pxy is the cross-spectra between x(t) and y(t), and Pxx 
and Pyy the auto-spectra of x(t) and y(t) respectively. 
The magnitude or power of the spectra is denoted as 
|Pxy|. Normalized with the auto-spectra of two signals, 
the coherence Cxy is valued from 0 to 1. The calcula-
tion method for coherence was similar to the method 
provided in.14

The power spectral estimation for coherence was 
explored with different estimation parameters. As the 
time and frequency resolution in time-frequency rep-
resentation are a trade-off with each other, we explored 
a set of sliding time-window lengths resulting in dif-
ferent time-frequency resolution. Another important 
issue for spectral estimation is the estimation variance, 
which is on the other hand, a trade-off with frequency 
resolution. We investigated two segment lengths for 
the power spectral estimation. The cross-spectra and 
auto-spectra were obtained by the average of FFT-
based periodograms from non-overlapped segments.15

The cross-spectra Pxy, auto-spectra Pxx and Pyy 
using averaged periodogram were calculated by:
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Figure 2. The screenshot of the home-made MATLAB-based paradigm 
for visual target tracking. Subject was asked to squeeze his/her fingers 
to the center of the track to measure the maximum force (upper part). 
Then subject performed repeated task: tracking the yellow target by the 
feedback squeezing force to make the narrow green inside the brown 
bar (lower part).
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For each time point in the time-course, data in the 
corresponding sliding time-window was extracted 
from all 20 epochs and was concatenated consecu-
tively, where N is the length of the concatenated data 
i.e. 20 × length of sliding window. The concatenated 
data was segmented without overlap, the length of 
each segment was L, with total N/L (integer) seg-
ments for calculation. The periodogram for each 
segment was calculated and the power spectra was 
obtained by the average of the periodograms, where 
Pxy

AV  denotes the averaged periodogram, and Pxy i
L

,  is 
the periodogram for the i th segment with the length 
of L, similar for Pxx

AV  and Pyy
AV . The significant value 

is determined by:

sig
N
L= -

-
1

1

1
α

Where α is the confidence level and N/L the num-
ber of segments. In the time-frequency representa-
tion, the EEG-EMG coherence was threshold at the 
95% confidence level,16 so that any points below that 
threshold were corrected to zeros.

The wavelet may provide a better temporal resolu-
tion than Fourier transform-based spectral estimation. 
The complex coherence coefficients were estimated 

using complex Gaussian wavelet with the scale from 
2 to 28 and interval of 0.1. The equivalent central 
frequency was ranged about 2–60 Hz. Similar to the 
coherence estimation from the Fourier Transform-
based spectral estimation, wavelet coherence was 
estimated with different length of sliding window.

Cross-correlogram provides another view of rela-
tionship between two signals from two sources. Instead 
of indexing with frequency band, the cross- correlogram 
provides the linear relationship with a certain time 
delay.17 Mathematically, the cross-correlogram is a 
plot of cross-correlation Rxy(m) versus m (time delay). 
Evaluation of the cross-correlation is given by:
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N is the length of the concatenated data i.e. 
20 × length of sliding window.

Before the calculation of correlogram, the EEG and 
EMG signal were bandpass filtered within 15–30 Hz. 
Cross-correlation normalized by auto-correlation was 
calculated for each of the sliding time-windows. As 
the length of the time-window determines the vari-
ance of the estimation, we explored a set of lengths of 
the sliding time-window.

Results
EMg signal during visual target tracking
The exploration of coherence and correlogram was 
performed on the EEG signal from electrode C3 over 
the sensorimotor area and the EMG signal recorded 
from EDC on right forearm. The time-course of EMG 
signal with force feedback control and EEG signal 
from electrode C3 during visual target tracking are 
illustrated in Fig. 4.
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Figure 3. Flow chart of EEg/EMg data acquisition and processing procedures.
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FFT-based EEg-EMg coherence 
estimation
For coherence estimation, the segment length deter-
mines the frequency resolution. We investigated 
the coherence with two different segment lengths; 

128 points or about 0.5 s, and 256 points or about 1 s, 
with the sampling rate of 250 Hz. The resulting cor-
responding frequency resolutions or frequency bin 
width were 2 Hz with segment length of 128 and 1 Hz 
with segment length of 256.

Though the segment lengths for power spec-
tral estimation were different, the FFT length for 
non-parametric spectral estimation was the same 
at 512 points. The 512-point FFT was achieved by 
zero- padding so that the FFT length does not affect 
 frequency resolution.

The time-frequency plot of the coherence esti-
mated with segment length of 128 points for spectral 
estimation is illustrated in Figure 5. The time-course 
of the coherence was calculated continuously from 
sliding time-windows with different length; 32, 
64, 96, 128, 256, 512, 768, and 1024. The increase 
of time interval for the sliding windows was at 1/8 
proportions of the window length. For example, the 
time-course of the coherence estimated from a slid-
ing time-window with length of 32 points, the time 
course of the coherence was calculated on the inter-
val of 32/8 = 4 points or 0.01 s, and for each time 
point, the time-window for coherence estimation was 
extracted from 16 points before and 16 points after 
the corresponding time. The 32 point data from each 
of 20 epochs was extracted and linked together mak-
ing a total length of 32 × 20 = 640 points data for 
coherence or spectral estimation. Therefore, there 
was 4 segments 640/128 -1 = 4 (-1 to exclude the 
final marginal point).

No pattern in the coherence time-course was 
recognizable under smaller lengths of time-window; 
32, 64, 96, 128, and 256, although the temporal 
resolution was better than the longer time-windows. 
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Figure 5. Time-course of FFT-based EEg-EMg coherence during visual tracking with grip force feedback. The segment length for spectral estimation was 
128 points, i.e. frequency resolution was about 2 hz. The coherence was corrected by 95% threshold.
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C3 following the tracking of the visual target.
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It was noticed that the 95% threshold correction 
did not  correct all of the variance of coherence, 
whereas the distribution of coherence with the time-
window length of 32 points was random even after 
the correction. The longer length of time-window 
provided recognizable coherence estimation, though 
with the compromise of lower temporal resolution. 
The clearly recognizable coherence in the high beta 
band around 25 Hz was observed during both 20% 
and 30% maximum contraction, where coherence 
during 30% contraction was larger than that of 20% 
contraction. However, during the transition period 
from 0% to 20% and 20% to 30%, no coherence was 
recognizable. We also noticed that the larger coher-
ence occurring around 3 s was smoothed out when 
applying a longer time-window of 1024.

We also explored higher frequency resolution 
using a segment length of 256 points, providing a 
frequency resolution about 1 Hz. The corresponding 
time-course of the coherence is illustrated in Figure 6. 
Since the length of the segment was increased, the 
number of segments was decreased under the same 
length of time-window. Accordingly, a clearly recog-
nizable coherence was observed under longer length 
of time-window, i.e. 512, 768 and 1024.

The central frequency of the observed coherence 
was the same as that estimated by the segment length 
of 128, where the band width was improved to about 
1 Hz. Similar to the estimation with segment length 
of 128, the coherence was smoothed when estimated 
with longer time-window.

The EEG-EMG coherence for all subjects is illus-
trated in Figure 7. The segment length for power 
spectral estimation was 256 points, and sliding 
time-window length was 512 points. The peak 

frequencies of the coherence were all in the beta 
band from 22 Hz to 28 Hz. The peak coherence 
value of subject 1 was higher than those of the other 
subjects.

Wavelet-based coherence estimation
Higher coherence was seen from the wavelet-based esti-
mation with a shorter length of window, such as 32 or 64. 
However, wavelet-based coherence was not observed 
when a longer window is used. Compared with FFT-
based estimation, beta-band coherence was not elicited 
using complex Gaussian wavelet-based estimation.

EEg-EMg correlogram
The correlogram was also estimated under dif-
ferent lengths of the sliding time-window. Before 
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Figure 6. Time-course of FFT-based EEg-EMg coherence during visual tracking with grip force feedback. The segment length for spectral estimation was 
256 points, i.e. frequency resolution was about 1 hz. The coherence was corrected by 95% threshold.
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calculation of the correlogram, both EEG and EMG 
signal were bandpassed with a 4th order Butter-
worth filter of 15–30 Hz. The data within a certain 
time-window was extracted from all epochs, and 
then they were concatenated for correlation esti-
mation. Under a short length of time-window of 32 
points, the correlogram corresponding to shorter 
delays was observed during most of two contraction 
periods. The duration of recognizable correlogram 
was longer than that of the coherence. Correlogram 
corresponding to longer delays became clear when 
the length of time-window was longer. Similar to 
the coherence estimation, the temporal resolution 
was blurred when the length of time-window was 
longer.

From the correlogram, we also observed that dur-
ing the transition periods when starting to squeeze 
and changing contraction from 20% maximum force 
to 30% maximum force, the time lag of peak correlo-
gram was different from those of steady grip.

Figure 10 shows the EEG-EMG cross- correlogram 
during visual tracking for the four subejcts. The corre-
logram was calculated versus time delay from -0.1 s 
to 0.1 s. Similar to the coherence, the peak  correlogram 
values of subject 2 was higher than those of other 
subjects.

Discussion
spectral variance in coherence 
estimation
The coherence was obtained from the cross-spectra 
normalized by auto-spectra of two signals. FFT-based 
nonparametric spectral estimation may have excessive 
variance in the estimation,15 and as a result, makes the 
coherence estimation inaccurate.

We employed a modified periodogram method; 
the average of periodograms by segmenting the esti-
mated signals. The modified method may blur the 
frequency resolution, but will decrease estimation 
variance. Theoretically, the estimation variance is 
inversely proportional to the number of segments,15 
i.e. the larger the number of segments, the smaller the 
estimation variance for the spectral estimation. The 
variance in the estimation of coherence with a shorter 
time-window length, i.e. a small number of segments, 
is the result of the variance of spectral  estimation. 
Therefore, for accurate coherence estimation, the 
excessive variance in spectral estimation needs to be 
reduced by appropriately segmenting the signal, even 
though the segmentation may decrease the frequency 
resolution.

Although it is important to reduce the estimation 
variance, the temporal resolution in the representation 
of coherence time-course may also be blurred under 
a longer sliding time-window (see Fig. 5 and Fig. 6). 
On the other hand, nonparametric spectral estimation 
requires the signal to be stationary during the whole 
estimation period. However, the signal may no longer 
be stationary for a longer time-window. Therefore, 
better parameters for accurate coherence estima-
tion might be highly data-dependent. Careful study 
of optimal sets of parameters is needed for accurate 
measurement.

Coherence and correlogram
The correlogram was clearly recognizable during 
most of the steady grip period, and even during the 
transition period, whereas coherence was only rec-
ognizable during a very short period in steady con-
traction. We suppose that the estimation variance for 
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correlation and coherence might be the reason for 
the different representation. The variance of spectral 
estimation for coherence is inversely proportional 
to the number of segments, i.e. N/L where N is the 
total length of the concatenated data, and L is the seg-
ment length. The variance for correlation estimation 
is inversely proportional to N - m, where m is the 
index of time delay. When m is not close to N (in most 
cases, this is true), N - m is larger than N/L so that the 
variance of  correlogram is smaller than that of coher-
ence. Therefore, the correlogram might reveal more 
detailed information that coherence can not provide.

The correlogram for larger time delays estimated 
under a shorter length of time-window was not vis-
ible as shown in Figure 7. The reason might be that 
the variance is larger when m is closer to N, where N 
is relatively small so that N - m is small.

During the transition period when the subject 
started contraction until steady contraction, or from 
20% contraction to 30% contraction, we observed rec-
ognizable correlogram under a shorter length of time-
window, although no coherence was recognizable 
during the transition period. We consider that both 
EEG and EMG signals vary greatly during the transi-
tion period, so that the signal can be treated as station-
ary only in a short time-window. For this reason, both 
correlation and power spectral estimation is no lon-
ger appropriate for a longer time-window. Consider-
ing the variance in coherence estimation from a short 
time-window, the correlogram can only be recogniz-
able from the estimation in a short  time-window.

Wavelet-based coherence estimation was proved 
as an efficient tool to elicit corticomuscular connec-
tivity.18 However, the wavelet-based coherence was 

less effective than FFT-based coherence estimation. 
One possible reason was the difference in the para-
digm that we investigated the corticomuscular con-
nectivity during a dynamic movement with visual 
tracking, whereas the previous work investigated the 
coherence during isometric contraction. From the 
FFT-based estimation, we found that the coherence 
presented in a narrow frequency band, indicating that 
FFT-based estimation may be more efficient for nar-
row band activity. However, future investigation of 
different mother wavelets might be required for better 
wavelet-based coherence estimation.

Functional role of beta rhythm
About the functional role of the cortical-motoneuronal 
interaction, early study suggested that the cortical-
muscular coherence is a manifestation of motor 
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binding due to a zero-phase loop incorporating 
descending motor activity and peripheral feed-
back.19 Later research20 which showed that the 
EEG-EMG amplitude correlation suggested a cor-
tical drive mechanism which may be relatively 
independent of peripheral feedback supported the 
findings of McAuley21 who suggested a central ori-
gin of peripheral 20 Hz oscillations which were 
shown to be at least partly independent of periph-
eral feedback. This may attribute to the reason that 
the 20 Hz motor cortex oscillations were thought 
to arise under stationary conditions, i.e. during iso-
metric contraction, no dynamics of motor control 
need to be encoded and therefore the same motor 
commands were continuously sent by motor cortex 
at a regular pace to the muscle.

In contrast, we explored the time-course of EEG 
and EMG coherence as well as cross-correlogram 
under a visual target tracking paradigm, where the 
force contraction was not constant, instead, set at 
two levels with a transition period in between. Both 
estimations demonstrate cortex to muscle connec-
tion in beta band (15–30 Hz) with central frequency 
of 25 Hz. The coherence and cross-correlogram 
provides further evidence of the functional role of 
beta band rhythmic activity in motor control. Under 
varied motor parameters, i.e. the different levels of 
force contraction, both coherence and cross-correl-
ogram indicated dynamic synchronization between 
cortical motor neurons and peripheral muscles, i.e. 
larger coherence and cross-correlogram when mak-
ing larger contraction force. However, we have 
investigated a limited number of subjects; further 
exploration is required for  supporting the functional 
role of beta activity.

As a visual-motor task, the visual processing will 
interfere neural network that makes motor output. 
It is of interest to study how neurons from visual 
areas innervate motor neurons through inter-neuron 
connections. In consistence to previous findings on 
neuromuscular coherence with tonic movement,8 the 
corticomuscular coherence was also focalized on 
motor areas only when performing phasic movement 
as investigated in this study. No significant coherence 
as well as correlogram was found in occipital areas. It 
suggests that the connection of inter-neurons in cor-
tex might function differently from that of cortico-
muscular connections.

conclusion
The developed device is capable for real-time 
measurement of dynamic force to study the time-course 
of corticomuscular connectivity associated with a visu-
al-motor tracking task. We found that  cross-correlogram 
provided better representation of corticomuscular con-
nectivity than FFT-based coherence and wavelet-based 
coherence, though more detailed study with different 
parameters such as wavelet-based coherence with other 
mother wavelets might be required in the future investi-
gation. The system design and the exploration of signal 
processing methods in this study will support further 
exploration of corticomuscular connectivity associated 
with human motor control.
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