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Abstract: Detection of differential gene expression using microarray technology has received considerable interest in cancer research 
studies. Recently, many researchers discovered that oncogenes may be activated in some but not all samples in a given disease group. 
The existing statistical tools for detecting differentially expressed genes in a subset of the disease group mainly include cancer outlier 
profile analysis (COPA), outlier sum (OS), outlier robust t-statistic (ORT) and maximum ordered subset t-statistics (MOST). In this 
study, another approach named Least Sum of Ordered Subset Square t-statistic (LSOSS) is proposed. The results of our simulation 
studies indicated that LSOSS often has more power than previous statistical methods. When applied to real human breast and prostate 
cancer data sets, LSOSS was competitive in terms of the biological relevance of top ranked genes. Furthermore, a modified hierarchical 
clustering method was developed to classify the heterogeneous gene activation patterns of human breast cancer samples based on the 
significant genes detected by LSOSS. Three classes of gene activation patterns, which correspond to estrogen receptor (ER)+, ER- and 
a mixture of ER+ and ER-, were detected and each class was assigned a different gene signature.
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Introduction
The most widely used method for detecting 
 differential gene expression in comparative microar-
ray studies is the two-sample t-statistic. A gene is 
determined to be significant if the absolute t-value 
exceeds a certain threshold c, which is usually 
determined by its corresponding P-value or false 
discovery rate. Recently, Tomlins et al1 introduced 
the cancer outlier profile analysis (COPA) method 
for detecting cancer genes which are differentially 
expressed in a subset of disease samples. Heteroge-
neous patterns of oncogene activation were observed 
in the majority of cancer types considered in their 
studies. Thereafter,  several further studies in this 
direction have been proposed. Tibshirani and Hastie2 
introduced the outlier sums (OS) method, Wu3 pro-
posed the outlier robust t- statistic (ORT), and Lian4 
introduced the maximum ordered subset t-statistics 
(MOST) procedure.

In this study, a simple statistical test named Least 
Sum of Ordered Subset Square t-statistic (LSOSS) 
is proposed for detecting cancer outlier differential 
gene expression. The performance of LSOSS was 
 compared to existing procedures using both simu-
lated and real data sets. Furthermore, we extended 
previous studies by classifying heterogeneous gene 
activation patterns of human breast cancer.

existing statistical methods
Assuming case-control microarray data were generated 
for detecting differentially expressed genes consist-
ing of n samples from a normal group and m samples 
from a cancer group. Let xij be the expression value 
for gene i = (1, 2, …, p) and sample j = (1, 2, …, n) 
in the normal group and yij be the expression value 
for gene i = (1, 2, …, p) and sample j = (1, 2, …, m) 
in the cancer group. In this study, and without loss 
of generality, we are only interested in 1-sided tests 
where the activated genes from cancer samples are 
over-expressed or up-regulated.

The two-condition t-statistic for gene i is defined 
by:
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The t-statistic is powerful when most cancer samples 
are activated.

Tomlins et al1 defines the COPA statistic as
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Where qr(.) is the rth percentile of the expression 
data, and medi is the median expression value for all 
samples

medi = median({xij : 1 # j #n},{yij : 1 # j #m}),

and madi is the median absolute deviation of expres-
sion values in all samples and is given by:

madi =  1.4826 × median({(xij - medi) :  
1 # j #n},{(yij - medi):1 # j # m}).

The COPA statistic uses a fixed rth sample per-
centile, which is determined by users. This limi-
tation was overcome by the OS statistic2 defined 
by:
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where Ri = {  yij : yij . q75({xij : 1 # j # n},{ yij : 1 #  
j # m}) + IQR({xij : 1 # j # n},{ yij : 1 # j # m})} 
and IQR(•) is the inter-quantile range of the expression 
data

IQR({xij : 1 # j # n},{ yij : 1 # j # m})} = q75({xij : 
1 # j # n},{ yij : 1 # j # m}) – q25({xij : 1 # j 
# n}, { yij : 1 # j # m}).

Wu3 modified the OS statistic by proposing the 
ORT statistic which consists mainly in changing the 
definition of Ri as:

Ri =  {  yij : yij . q75({xij : 1 # j # n})  
+ IQR({xij : 1 # j # n})}.
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and replacing medi in OS by medix, which is the 
median expression value in normal samples. Further, 
madi was replaced by

mad median x med j n
y med j

i ij ix
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where mediy is the median expression value in 
 cancer samples. Lian4 argued that OS and ORT 
statistics used arbitrary outliers and proposed the 
MOST statistic which consider all possible val-
ues for outlier thresholds. The MOST procedure 
requires cancer sample expression data be sorted 
in descending order and the following statistic 
calculated:
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µkand δk are obtained from the order statistics of 
m samples generated from a standard normal distri-
bution and are used to make different values of the 
statistic comparable for different values of k.

Methods
The least sum of ordered subset 
variance t-statistic
In our proposed method, least sum of ordered subset 
square t-statistic (LSOSS), mean expression values in 
normal and cancer samples were considered instead 
of median expression values. Our hypothesis was that 
if outliers are present among cancer samples, the dis-
tribution of gene expression values in cancer samples 
will have two peaks. The higher peak corresponds to 
activated samples while the lower peak indicates inac-
tivated samples. Consequently, this outlier issue can 
be addressed through the idea of detecting a “change 
point” or “break point” in the ordered gene expression 
values of the cancer group. A model related to fitting 
least squares should be effective for this goal. For each 
gene, an optimal change point in its expression can 
be detected and could be used to investigate potential 
outliers in cancer samples. To this end, we propose 
the Least Sum of Ordered Subset Square t-statistic 
(LSOSS). The general idea of LSOSS is to use the 

sum of squares of two ordered subsets of cancer 
 samples to estimate the square sum of the t-statistic 
and to use the mean value of the appealing subset of 
cancer samples to estimate the mean value of cancer 
samples of the t-statistic.

The proposed LSOSS method involves the follow-
ing steps:

a) For each gene i, the expression levels in cancer 
samples are sorted in descending order and then 
divided into two subsets:
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b) For the two subsets, the mean and sum of squares 
for each gene i are calculated:
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The only issue left to be solved is the value k 
that divided the two subsets. For that purpose an 
exhaustive search was implemented for all possible 
values ranging from 1 to m-1. The optimum value 
of k is obtained by minimizing the pooled sum of 
squares for cancer samples given by:

arg min ( ).
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c)  The LSOSS statistic for declaring a gene i with 
outlier differential expression in case samples is 
computed as:

LSSV k
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2

, if repressed gene expres-
sion is of interest), where k could be interpreted as the 
number of outlier samples for gene i.

A modified hierarchical clustering method 
for classification of heterogeneous gene 
activation patterns of human  
breast cancer
We developed a modified hierarchical clustering 
method for classification of heterogeneous gene acti-
vation patterns of human breast cancer samples. 100 
permutations were conducted in order to assign a 
P-value for each gene. The top d genes detected by 
LSOSS, at the P-value ,0.05, were selected for fur-
ther analysis. For each gene i, the cancer samples that 
were selected as outliers were marked by 1 and the 
rest were marked by 0:

y iw ' ,
,

.

= {10
1

  if gene has an outlier in sample
  otherwise,

i w

w m≤ ≤

Thus, each cancer sample w can be represented by 
a vector with a rank d consisting of 0 or 1:

z ( )w iwy i d= .', 1≤ ≤

For each cancer sample, the number of 1’s indi-
cates the number of genes with outlier expression 
in that sample compared to other case samples. The 
similarity between any two cancer samples w and v 
was denoted by the number of common outlier 
expression, which can be obtained by counting the 
number of 1’s computed by z zw v

T⋅ . Then, a hierarchi-
cal  clustering method was adopted to cluster cancer 
samples. A bootstrap re-sampling method with 5000 

 replicates was used to assign a P-value to each sub 
tree of the clustering. The common outliers in a 
 sub-tree with a P-value , 0.05 were highlighted. 
Then cancer  samples were re-ordered according 
to the proposed clustering method. These vectors 
of  re-ordered samples formed a d × m two-dimen-
sion array. We used a color image to display this 
array.

Results
Simulation studies
Simulation studies were conducted to compare the 
performance of LSOSS with those of MOST, ORT, 
OS, COPA and the t-statistic. To this end, the R 
source code from Lian4 was used. The simulation 
was conducted assuming equal number of normal 
and cancer samples (n = m = 20) and the expression 
data was generated from a standard normal distribu-
tion. Expression for 2000 genes were simulated, of 
which 1000 genes were assumed to be differentially 
expressed and their data was generated by adding a 
constant, u, to their expression in the first k cancer 
samples.

The receiver operating characteristic (ROC) curve 
was used for evaluating the performance of the dif-
ferent statistical methods. Figure 1 shows the ROC 
curves for different combinations of k and u. When 
k = 10 and u = 2, LSOSS clearly outperforms others 
methods and was second best when k = 5 or 15 and 
u = 2. When k = 20 and u = 2, LSOSS was compa-
rable to ORT and better than OS and COPA. When 
u is decreased to 1 with k = 10, LSOSS is the only 
method comparable to the t-statistic. LSOSS shows a 
low sensitivity when k = 2. However, the case where 
only one or two samples are activated within a large 
number of cancer samples may be less realistic. Over-
all, the performance of LSOSS is appealing in terms 
of detection power.

Application to human breast cancer data
The breast cancer microarray data from West et al5 
is available at http://data.cgt.duke.edu/west.php. The 
data were normalized by the quantile method6 and the 
log transformation of the expression values were used 
for the following analysis. There are in all 7129 genes 
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and 49 tumor samples in this dataset. Among them, 25 
tumor samples have negative lymph nodes (LN-) and 
24 tumor samples have positive lymph nodes (LN+). 
We treated the negative LN samples as the control group 
and the positive LN samples as the cancer group. Genes 

with expression below a certain  threshold (log(10)) 
in at least 20 samples were removed from the analy-
sis. When evaluating LSOSS based on human breast 
cancer data, we studied how many genes among the 
top 25 genes selected separately by  different  statistical 
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Figure 1. RoC curves comparing different statistical methods.
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approaches showed  biological relevance in the lit-
erature. The numbers of breast cancer related genes 
identified by existing methods (Table 1) were 8, 8, 
4, 3, and 2 for MOST, ORT, OS, the t-statistics, and 
COPA, respectively. However, our proposed method 
(LSOSS) has identified 9 breast cancer related genes: 
KCNH2,7 NEO1,8 MAGEA3,9 ENG,10 GABRG2,11 
ATM,12 NUP88,13 CYP3A714 and PMP22.15 Although 
it should not be treated as a golden standard method 
for evaluating different statistical tools, this type of 
analysis generally validates the statistical results 
and highlights their biological relevance.

Application to human prostate  
cancer data
To further assess the performance of LSOSS on real 
data, we downloaded a human prostate cancer  dataset.16 
This dataset, generated by the Affymetrix HG-U95av2 
chip, consists of 52 prostate tumor samples and 50 nor-
mal adjacent samples. The raw data were converted to 
expression values using a robust multi-array average 
(RMA) approach.17 Different statistical methods were 
run on this dataset and their performances was evalu-
ated by the number of genes among the top 25 genes 
selected by each approach known to have biological rel-
evance according to the National Cancer Institute Can-
cer Gene Index, available at https://cabig.nci.nih.gov/
inventory/data-resources/cancer-gene-index/. The 

Table 1. Genes confirmed to be associated with breast 
cancer that are ranked on the top 25 identified using differ-
ent cancer outlier detection approaches.

t cOpA Os ORT MOsT LsOss
ATM 
FRAP1 
Sod2

IL6 
LCN2

IL6 
AgTR1 
PAK1 
CASC3

ATM 
eRBB4 
ThRA 
SMARCA4 
TRAdd 
CTAg1B 
AgTR1 
CASC3

SLC3 A2 
CgA 
MUC5B 
CeNPB 
hdC 
IgFBP5 
FoLR1 
CKB

KCNh2 
Neo1 
MAgeA3 
eNg 
gABRg2 
ATM 
NUP88 
CyP3 A7 
PMP22 

Table 2. Genes confirmed to be associated with  prostate 
cancer that are ranked on the top 25 identified using  different 
cancer outlier detection approaches.

t cOpA Os ORT MOsT LsOss
UBe2e3 
BRCA2

eLF1 
CTCF

eLF1 
CAV2 
CFTR 
CTCF

eLF1 
RB1

eLF1 
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RB1 
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BTg2 
eLF1
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Figure 2. Color image for classification of heterogeneous gene activation patterns of human breast cancer.
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Table 3. Classes and biomarkers of heterogeneous gene activation patterns of human breast cancer.

classes of heterogeneous activation patterns
eR+ eR- Mixture

Involved samplesa 1 (eR+/LN+/Nevins4), 
2 (eR+/LN+/Nevins5), 
3 (eR+/LN+/Nevins6), 
13 (eR+/LN+/Nevins46), 
18 (eR+/LN+/Marks206), 
19 (eR+/LN+/Marks207)

4 (eR-/LN+/Nevins7), 
5 (eR-/LN+/Nevins8), 
6 (eR-/LN+/Nevins9), 
7 (eR-/LN+/Nevins11), 
14 (eR-/LN+/Nevins47)

8 (eR+/LN+/Nevins13), 
9 (eR+/LN+/Nevins19), 
10 (eR+/LN+/Nevins20), 
12 (eR+/LN+/Nevins41), 
15 (eR-/LN+/Nevins98)

gene signaturesb 24 (CyP3A7) 
35 (P2RX4) 
37 (dhFR) 
38 (UBB) 
45 (CTBP1) 
47 (RAB35) 
48 (RAC1) 
53 (SeRPINB6) 
61 (RoS1) 
68 (LRRC14) 
77 (SLC35d1) 
80 (hoXB8) 
84 (STAT5B) 
86 (NgF) 
97 (MAPK14) 
99 (MNAT1) 
103 (CyP2d7P1) 
105 (MSMB) 
107 (ACoT2) 
109 (eRBB3) 
112 (CASP8) 
115 (NPy1R) 
116 (gPR68) 
117 (FBP1) 
118 (ThBS4) 
122 (BRd2) 
125 (KRR1) 
128 (SLC39A6) 
133 (PKLR) 
138 (C11orf58) 
151 (MdS1) 
157 (PSMC5) 
164 (RPL26) 
165 (RPL34) 
169 (CLPS) 
172 (TCeAL1) 
183 (gyPe) 
185 (SeMA3F) 
186 (CyFIP2) 
187 (NdST1) 
191 (eSR1) 
197 (Adh6) 
198 (BRd2) 
210 (ICAM3) 
214 (CoX6C) 
215 (APBB2) 
216 (IRF7) 
221 (NA)

7 (TALdo1) 
11 (Neo1) 
13 (RdBP) 
20 (ATM) 
21 (CLeC10A) 
33 (SRM) 
38 (UBB) 
39 (APBA2) 
41 (SoX3) 
45 (CTBP1) 
50 (gRK5) 
59 (hRK) 
69 (dLg3) 
78 (TAX1BP1) 
80 (hoXB8) 
91 (PTPN1) 
92 (RPL24) 
93 (F2RL1) 
97 (MAPK14) 
98 (KRTAP5–9) 
110 (CALM2) 
115 (NPy1R) 
116 (gPR68) 
120 (ZNF138) 
122 (BRd2) 
125 (KRR1) 
133 (PKLR) 
144 (AdAM3B) 
146 (eRg) 
148 (Myod1) 
151 (MdS1) 
156 (SMPd1) 
158 (SFTPd) 
165 (RPL34) 
169 (CLPS) 
177 (PPA2) 
182 (CTRL) 
192 (BCL2L1) 
202 (gNB2L1) 
210 (ICAM3) 
211 (FgFR2) 
212 (IL8RB) 
228 (KRT4)

27 (gyPA) 
45 (CTBP1) 
51 (WNT5 A) 
57 (PThLh) 
63 (CoPS6) 
69 (dLg3) 
70 (FZd2) 
84 (STAT5B) 
91 (PTPN1) 
97 (MAPK14) 
110 (CALM2) 
114 (LPo) 
115 (NPy1R) 
116 (gPR68) 
117 (FBP1) 
120 (ZNF138) 
122 (BRd2) 
135 (TCL6) 
153 (SLC6A11) 
162 (SMg1) 
166 (PoU2F2) 
168 (UBe2h) 
169 (CLPS) 
173 (MMP11) 
182 (CTRL) 
187 (NdST1) 
191 (eSR1) 
194 (FMo1) 
197 (Adh6) 
210 (ICAM3) 
216 (IRF7) 
221 (NA) 
225 (ASgR2)

notes: adata are shown in the format of “sample index (sample name)”; bdata are shown in the format of “gene ranking (gene symbol)”.
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Table 4. Classification of the cancer samples lacking significant common outliers.

samples probability predicted class
eR+ eR- Mixture

11 (eR+/LN+/Nevins40) 0.328 0.326 0.346 Mixture
16 (eR-/LN+/Nevins99) 0.329 0.332 0.339 Mixture
17 (eR+/LN+/Marks205) 0.348 0.328 0.324 eR+
20 (eR+/LN+/Marks208) 0.333 0.304 0.363 Mixture
21 (eR-/LN+/Marks214) 0.307 0.362 0.331 eR-
22 (eR-/LN+/Marks215) 0.337 0.288 0.375 Mixture
23 (eR-/LN+/Marks216) 0.357 0.261 0.382 Mixture
24 (eR-/LN+/Marks217) 0.300 0.304 0.396 Mixture

comparison of these different statistical approaches 
is summarized in Table 2. LSOSS, which identifies 
5 prostate cancer related genes RB1,18 UBE2E3,19 
BMI1,20 BTG221 and ELF1,22 was the best approach 
with this dataset.

Classification of heterogeneous  
gene activation patterns of human  
breast cancer
Breast cancer is a heterogeneous disease.23,24 Although 
a number of candidate cancer outliers were identified 
by existing tools, the heterogeneous gene activation 
patterns of cancer samples were not addressed after 
the usage of such methods. LSOSS was applied to 
the human breast cancer data set from West et al.5 At 
a P-value cutoff of 0.05, 228 genes were selected for 
further analysis. The hierarchical clustering method 
described in the Methods section was then imple-
mented. Three main classes of heterogeneous activa-
tion patterns of human breast cancer were observed 
(Fig. 2). The samples and common outliers in each 
class are shown in Table 3. Interestingly, we found 
that the first class consists of 6 ER+ samples, the sec-
ond class consists of 5 ER- samples, and the third 
class is a mixture of 4 ER+ and 1 ER- samples. The 
common outlier genes in each class are regarded as 
its genetic signature. It is worth noting that although 
some genes may be part of the genetic signature of 
different classes of cancer samples, each class has a 
unique gene signature. For the remaining 8 cancer 
samples without significant common outliers, their 
classes were assigned according to their coverage 
of the gene signatures for different classes (Table 4). 
Among them, 6 were classified into the mixture 

group and two others were classified into ER+ and 
ER- groups.

Discussion and conclusions
Unraveling the heterogeneous patterns of cancer 
samples is an important goal in medical research, 
especially for clinical diagnosis and the molecular 
understanding of cancer mechanisms. The heteroge-
neous patterns of oncogene activation have been well 
studied and several useful statistical tools have been 
proposed. LSOSS is a reasonable model to detect 
cancer outlier differential gene expression. For each 
gene, LSOSS tries to find an optimal “change point” 
in the ordered expression values of cancer samples. 
If one gene is expressed heterogeneously in cancer 
samples, the variance of gene expression values in 
cancer samples is overestimated by the t-statistic 
while LSOSS gives an appropriate estimate. Further-
more, LSOSS uses the mean value of the appealing 
subset instead of the overall mean value of the cancer 
samples. Thus, LSOSS detects cancer outliers more 
easily. If one gene is expressed homogeneously in 
cancer samples, LSOSS still works well because it 
behaves similarly to the t-statistic because the mean 
values of two subsets are expected to be very close in 
this case.

However, a single oncogene with heterogeneous 
expression cannot fully account for the heteroge-
neous gene activation patterns of cancer samples 
as the synergic and epistatic effects among multiple 
oncegenes should not be neglected. Thus, it is neces-
sary to classify cancer samples and assign each class 
a specific gene signature. This goal, if achieved, will 
definitely facilitate the understanding of different 
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underlying pathologies and genetics for heteroge-
neous cancers. Our proposed scheme could be a 
useful tool toward this goal. Three classes of het-
erogeneous gene activation patterns of human breast 
cancer were detected with specific gene signatures. 
In addition, these heterogeneous gene activation 
patterns may be regarded as the signatures for sub-
types of human breast cancer. Thus, the procedure 
presented could also be useful in detecting and 
classifying breast cancer subtypes. The classifica-
tion of breast cancer subtypes has been well dis-
cussed.25–28 Our approach, however, differed from 
previous studies mainly in that the classification 
is based on different combinational activation pat-
terns of candidate genes instead of clustering their 
expression values. The detection of specific gene 
interactions accounting for heterogeneous gene 
activation patterns of cancers is our next goal in 
this direction.
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