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Abstract: Gene expression profiling provides tremendous information to help unravel the complexity of cancer. The selection of the 
most informative genes from huge noise for cancer classification has taken centre stage, along with predicting the function of such iden-
tified genes and the construction of direct gene regulatory networks at different system levels with a tuneable parameter. A new study by 
Wang and Gotoh described a novel Variable Precision Rough Sets-rooted robust soft computing method to successfully address these 
problems and has yielded some new insights. The significance of this progress and its perspectives will be discussed in this article.

Keywords: α depended degree, cancer, classification, gene expression profiling, network, rough sets, soft computing

http://www.la-press.com
http://www.la-press.com
http://www.la-press.com
mailto:yzhang1@bidmc.harvard.edu Tel�: (001) 617 667 0953


Zhang

140 Cancer Informatics 2010:9

Gene expression profiles (GEP) either by microarray 
or by Serial Analysis of Gene Expression (SAGE) 
 provide us with data of unparalleled wealth, but cancer 
as a system failure is still mysterious. Many existing 
methods utilize too many genes to obtain discrimina-
tive features associated with cancer, and are unclear 
or not interpretable at a biological level. Developing 
simpler rule-based models with as few marker genes 
as possible is preferable. Ideally, such hub genes 
could naturally exhibit biological relevance. But good 
research is never simple and requires hard work: there 
is no “free lunch” researchers. However, based on a 
Variable Precision Rough Set (VPRS) core1 with the 
introduction of α depended degree, Wang and Gotoh 
recently developed a simple, efficient and straightfor-
ward method for accurate cancer classification using 
single genes or gene pairs and subsequently inferred 
the direct gene regulatory network.2–4 They first identi-
fied hub genes associated with colon cancer using this 
approach, and subsequently inferred the direct gene 
regulatory network among the identified genes, and 
how these are regulated within the genome. Finally, 
two biologically meaningful findings were obtained.5 
This method is not only user-friendly, simple and 
biologically interpretable, but is cost-effective in a 
clinical setting with single genes or gene pairs.6 The 
method also has the advantages of being relatively 
easy to understand and follow, along with the avail-
ability of programming codes with either open access 
or GNU general public license (GPL).

A Brief Introduction of the  
a Depended Degree Rough  
set soft computing Approach
Firstly, rough set theory neds to be understood. In 
this theory, U is a universe of discourse and R is the 
equivalent relation. The degree of dependency of a 
set of attributes Q on another set of attributes P is 
denoted by γ P(Q) and is defined as:
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the size of the union of the lower approximation of 
each equivalence class in U/R(Q) on P in U, and |U| 
represents the size of U (the set of samples).

If Q is the decision attribute D, and P is a  subset 
of condition attributes, then γP(D) represents the 
depended degree of the condition attribute subset P 
by the decision attribute D; i.e the degree to which 
P can discriminate between the distinct classes of D. 
In this sense, γP(D) reflects the classification power 
of the subset P of attributes. The greater γP(D) is, the 
stronger the classification ability that P possesses. 
The measure of the depended degree becomes the 
basis for selecting informative genes.

For some datasets, it is difficult to detect the dis-
criminative features based on the canonical depended 
degree because of its excessively rigid definition. 
Therefore, Wang and Gotoh introduced α depended 
degree, a generalization form of the depended degree 
sets in their VPRS model,2–5 then utilized the α 
depended degree as the basis for choosing genes. The 
α depended degree of the condition subset P by the 
decision attribute set D is defined by:
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Here |*| denotes the size of set * and U/R(•) denotes 
the set of equivalence classes induced by the equiv-
alence relation R(•). The depended degree is a spe-
cific case of the α depended degree when α = 1. For 
the selection of high class-discrimination genes, the 
lower limit of α has been set to 0.7 in practice.2

Wang and Gotoh created classifiers based on deci-
sion rules. One decision rule in the form of “A ⇒ B” 
indicates that “if A, then B”, where A is the descrip-
tion of the condition attributes and B, the description 
of the decision attributes. The confidence of a deci-
sion rule A ⇒ B is defined as follows: confidence
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 where support (A) denotes

the proportion of samples satisfying A and support 
(A ∧ B) denotes the proportion of samples satisfying 
A and B simultaneously. The confidence of a decision 
rule indicates the reliability of the rule.

For each determined α value, only the genes with 
γ P(D,α) = 1 were selected to build decision rules.2 
The sufficient reliability of the derived decision rules 
as ensured by setting a high threshold for α.2–5
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User-Friendly Theory, practical 
simplicity and Biological 
Interpretability
Biologists generally speak different “languages” from 
mathematicians. Unlike statistical methods, this novel 
method, the Bimodality Index,7 sought to be interpre-
table for biological relevance simple for cancer clas-
sification in both theory and practice. Importantly, this 
method allows a straightforward inference of the direct 
gene regulatory network. All the gene selection, clas-
sification and network construction processes in this 
method correlate with well biologically meaningful 
decision rules, such as tumor vs. normal cells, up- vs. 
down-regulation, and positive vs. negative regulation. 
This contrasts with the process of many other meth-
ods, where the classifying power of the gene expres-
sion level and the biological importance of that gene 
are generally only weakly related and thus many bio-
marker candidates could turn out to be false positives.

This novel method is rooted on the rough sets the-
ory (RS) seminally proposed by Pawlak8 for analysis 
of inconsistent, incomplete, imprecise and precise 
data. The main advantage of RS is that it does not 
need any preliminary or additional information about 
data, e.g. probability in statistics or basic probabil-
ity assignment in Dempster–Shafer theory. RS has 
been successfully applied in the areas of medicine 
and pharmacology.9 Its application in cancer classifi-
cation and prediction has begun.2–5 As the inhibition 
of a single molecular target can alter the morphology 
of tumor cells in lrECM and reduce tumor growth 
in vivo,10 so a few genes, gene pairs or even a single 
gene can become biomarkers.2–5,11 Logically, the low 
complexity classifiers for single genes or gene pairs 
aids interpretability, i.e. they enhance our ability to 
interpret the selected (pair of) genes.

This theory itself may be akin to our routine identi-
fication (or classification) of objects in the real-world 
setting. The rationale is first to filter lots of redundant 
information (i.e. noise) but to retain the critical infor-
mation (i.e. signal). This is followed by making deci-
sion rules based on core information and classifying the 
whole dataset. In order to extract the hidden meaning-
ful rules, we sometimes need to lose some rigid defini-
tions. Thus Wang and Gotoh introduce the flexible α 
depended degree under soft  computing  consideration. 
This allows some single genes or gene pairs to have 
strong class discriminatory power, although they 

would be ignored with the conventional attribute 
depended degree.2 Interestingly, this also enables us 
to infer the networks and modules.

In fact, Wang and Gotoh reject the attribute 
reductions in classic rough set theory due to its high 
com putational expense, uncertainty of predictive per-
formance and non-uniqueness.2 Because of depended 
degree, they use the entropy-based discretization 
method12 for discrete gene expression values within 
datasets.2–5 The stopping point of the recursive step for 
this algorithm depends on the minimum description 
length (MDL) principle and the discretization was 
implemented in the Waikato Environment for Knowl-
edge Analysis (WEKA) package,13 which gives open 
access to a collection of state-of the-art techniques in 
machine learning algorithms for data mining tasks; 
these algorithms can either be applied directly to a 
dataset or called from user’s own Java code, so it is an 
excellent unified “workbench” not only for data pre-
processing, classification, regression, clustering, asso-
ciation rules and visualization but is also well suited 
for developing new machine learning schemes.

This process is more or less streamlined. In the 
discretized decision table, Wang and Gotoh found 
that most genes were unable to distinguish different 
classes and were removable, while some genes can 
distinguish different classes by decision rules.5 They 
achieved very high leave-one-out-cross-validation 
(LOOCV) accuracy for an array of datasets.2–5 The 
reported accuracy is superior to or comparable with 
other established approaches.2–5

In their new work on the colon cancer dataset, 
Wand and Gotoh identified 18 discriminative hub 
genes for cancer. Ten of these (e.g. DES and ACTA2) 
belong to down-regulated genes in a tumor, while 
eight other genes (e.g. IL8, HSPD1, SRPK1) belong 
to up-regulated genes in a tumor. Most, if not al, l of 
these genes are involved in cancerogenesis, as shown 
in published literature. Strikingly, IL8 and DES 
have been identified as cancer hub genes in several 
 independent studies.14

Inference of the Gene Regulatory 
network
Obtaining a direct regulatory network of these 
 discriminative hub genes is of particular interest. 
 Functional entities, such as pathways nad signalling 
networks are more robust descriptors than gene lists.15 
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The similarity measures, such as Pearson’s correlation 
and mutual information16 cannot characterize the 
cause–effect gene regulatory relations in undirected 
networks very well. In contrast, directed gene regula-
tory networks, such as Bayesian networks, Boolean 
networks, Ordinary Differential Equations or IDA17,18 
can explore the cause–effect regulatory relations and 
provide better insights into biological systems than 
the co-expression relation. Moreover, most previ-
ous efforts utilized all gene expression data from 
microarrays so that the authentic gene interactions 
were covert due to many genes that were unrelated 
to cancer. However, it is expected that a few highly 
class-discriminative hub genes could greatly enhance 
the authenticity and confidence of computed gene 
interaction networks.

Following the identification of hub genes, Wang 
and Gotoh investigated the gene regulatory network 
by employing the method described above. The 
details of this method are as follows: one gene instead 
of a class is used as the decision attribute. If “GENE-
I” is substituted for “Class label” in a decision table, 
GENE-I is regarded as the decision attribute with two 
distinct values: up-regulation and down-regulation, 
and a new derivative table can be obtained. Likewise, 
Wang and Gotoh implement the discretization of 
this derivative table to obtain another newly derived 
table. Applying the same learning algorithm to this 
latest derived table, they can induce the decision rules 
linking GENE-I to GENE-II: if the expression level 
of GENE-I in one sample is not greater than value A, 
then GENE-II is down-regulated; otherwise, GENE-
II is up-regulated. In other words, if GENE-I is down-
regulated, then Gene-II is down-regulated; if Gene-I 
is up-regulated, then Gene-II is up-regulated. They are 
not necessarily true in reverse. Therefore, a directed 
regulatory relation of GENE-I to GENE-II, a positive 
one, is established.5

Similarly, Wang and Gotoh regard each of the 18 
identified genes as the decision attribute in turn, and 
examine the regulatory relations that the other genes 
exert on them. They constructed all their network 
graphs using Cytoscape software.19 They analyzed one 
network containing only these 18 genes, and another 
containing genes other than these 18. The first networke 
one orchestrates the core of the latter in the genome. 
Modules constitute the ‘‘building blocks’’ of molecu-
lar networks. To explore the modularity of networks, 

Wang and Gotoh use the Cytoscape plugin MCODE19 
to analyze the network constructed and detected 
two significant modules, one of which forms a feed-
 forward loop. They conclude that the  co-regulation of 
multiple activators could be at least partly responsible 
for the occurrence of tumors.  Further, they chose the 
Cytoscape plugin BiNGO20 to perform a Gene Ontol-
ogy (GO) based enrichment analysis of the two mod-
ules. Other gene functional analysis, such as Gene 
Set Enrichment Analysis (GSEA), could also be use-
ful. Finally, they observed that in colon cancer, the 
gene regulatory network, the up-regulated genes are 
regulated by more genes than down-regulated ones, 
while the down-regulated genes regulate more genes 
than up-regulated ones; secondly, tumor suppressors 
inhibit tumor activators and activate as many other 
tumor suppressors as possible. In contrast, tumor 
activators activate other tumor activators and inhibit 
as few tumor suppressors as possible.5 A fascinating 
question: is it true for other cancers and how about its 
validation of wet-lab experiments?

This method is a new option for cancer classifi-
cation and direct gene regulatory network inference. 
For these processes, it exhibits its inherent biologi-
cal relevance. Finally, this method out-performs or 
at least matches other approaches, though LOOCV 
may have a large variance of accuracy.2–5 Taking into 
account its other merits, especially its simplicity, this 
is a great way to explore the cancerogenesis accord-
ing to Occam’s Razor: the simple theory is preferable 
to the complex one. A scheme of a “free-lunch” tool-
kit for cancer classification and networks is shown in 
Figure 1.

Future Directions
This kind of cause–effect inference could have prac-
tical value in the prioritization and design of pertur-
bation experiments. Of course, only verification via 
follow-up wet-lab studies rather than published liter-
ature could prove that the conclusions from this new 
study are perfectly valid and reliable, though, theo-
retically, the process always demonstrates biological 
relevance, which may have already sparked the curi-
osity and passion of biologists and clinicians.

In the near future, a wide variety of datasets, 
such as subtype or multi-class cancer microarray 
data, microRNA array data, Serial Analysis of Gene 
 Expression (SAGE) data and proteomic data could 
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challenge the “free-lunch” toolkit. Thus far, we have 
identified seven highly discriminative (hub) genes in 
the SAGE breast cancer dataset,21 which has approxi-
mately 2.7 million tags and which has 27 samples, each 
of which are described as lymph node [LN(+)] and 
[LN(-)] primary breast tumors. All identified genes 
have high classification accuracy using this method 
under α = 0.8 (Results are presented in Table 1). These 
seven hub genes are very interesting and informative 
for their biological relevance. First, it is well known 
that the role of the ATF2/AP1 complex and its network 
is at the hub of tumorigenesis22,23 and this has been 
reflected by a high classification accuracy of 88.89%. 
ATF2 communicates with an array of cell signalling 
pathways that are important for mammary tumors, 
e.g. TGFbeta. This emphasizes that comprehensive 
understanding of how ATF2 functions promises to 
provide new avenues for therapeutic intervention 
in breast cancer. CARD10/CARMA3 has a physi-
cal and functional interaction with IkappaKgamma-
NEMO in lymphoid and non-lymphoid cells, is 
required for GPCR-induced NF-kappaB activation24 
and is important in LPA-induced cancer cell in vitro 
invasion.  Secondly , this hub gene list includes mas-
ter regulators in angiogenesis (ATF2, CARD10 and  
VG5Q/AGGF1), the age-related neurodegenerative 
disease (MGRN1 and CARD10; cancer is one disease 

associated with ageing) and the main cell signalling 
pathways for breast cancer, such as the NF-KappaB 
(CARD10) pathway, the IL-6 (PKD1-like) path-
way, the TGFbeta/STAT3/p38alphaMAPK/ATF-2 
pathway, ATM/DNA repair, and the PGE(2)/PKA/
PKC signalling pathways (ATF2). Thirdly, novel 
proteins like CGI-41 and UBLCP1 (MGC10067 
nad the ubiquitin-like domain containing CTD 
phosphatase 1) may point us in a new direction for 
future breast cancer study because CTD phosphatase, 
UBLCP1, has a relatively lower level of expression 
in most normal adult tissues and at a higher level in 
tumor tissues, and it could play a major role in poly-
merase recycling.25

Importantly, the ENCODE project tells us that at 
least 93% of the analyzed human genome is tran-
scribed in different cells into biologically meaningful 
RNAs that could greatly exceed the ∼1.2% encoding 
proteins.26 More and more attention is being given to 
RNA, especially Linc RNAs, microRNAs and anti-
sense RNAs. However, the protein levels and IHC 
staining have a greater variety of available assays 
in the clinical setting. Archimedes once said, “Give 
me a lever long enough and a fulcrum on which to 
place it, and I shall move the world”. Recent advances 
in deep-sequencing application in ChIP-seq, SAGE-
seq, HITS-CLIP27 and MALDI-TOF mass-spec in 

Microarray data Entropy-based discretization MDL

Classifier/decision rule

Hub genes Direct gene regulatory network, or modules

LOOCV validation

Accuracy & confidence 

Visualization of outputs Confirmation of wet-lab experiments 

Personalized cancer medicine: diagnosis, prognosis, prediction and treatment 

WEKA platform

(free access)

“free-lunch” kit codes 

SAGE, miRNA 

Proteomics data 

Simulation of disturbing & reconstruction Superpose other networks, sources 

CytoScape

Figure 1. Scheme of the “free lunch” toolkit for cancer classification at the network level and beyond. Arrow: executed Dash arrow: being executed “Free 
lunch” kit codes: the programming codes for cancer classification, hub gene identification and inference of gene regulatory network under GNU GPL.
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proteomics and the exponential increase of available 
profiling datasets may act as a metaphorical fulcrum. 
The method of Wang and Gotoh, together with others, 
e.g. the Bimodality Index7,29 have made advances in 
the direction of being the lever. Simple, yet power-
ful and reliable techniques like the “free-lunch” tool-
kit could pave the way to unveiling the mystery of 
cancer.

Another direction is to dissect cancerogenesis 
in silico in conjunction with software such as Sort-
ing Intolerant From Tolerant (SIFT),28 Polymor-
phism Phenotyping (PolyPhen)( http://coot.embl.de/
PolyPhen) and Function Analysis and selection tool 
for single nucleotide polymorphisms (FASTSNP) 
(http://FASTSNP.ibms.sinica.edu.tw), or platforms 
such as GenePattern (http://www.broadinstitute.
org/cancer/software/genepattern/) and Metacore,29 
as the mutational load and sequential functional 
module change could generally cause cancer. Most 
importantly, this method could further integrate the 
protein–protein interaction data, published litera-
ture information, siRNA library screen or knockout 
data, and thus construct comprehensive function-
oriented gene, genetic and protein networks.30–33 A 
web-server and visualization module for displaying 
results in the clinical setting could make this toolkit 
even more popular.

The perturbations of gene regulatory networks 
could be essentially responsible for cancinogen-
esis5 and the therapeutic recovery could reflect the 
flexibility and robustness of biological system. It 
will be exciting to perform in silico simulation of 
perturbation of interaction networks and recov-
ery with this toolkit as in10,34 as well as the in vivo 
confirmation of biomedical experiments with drug 
treatment.35
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