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Abstract: Important biological information is encoded in the topology of biological networks. Comparative analyses of biological 
networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological 
function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment 
between two networks using any cost function. We design a cost function based solely on network topology and use it in our network 
alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use 
our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes 
large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the 
aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many 
of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different 
species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking 
resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are 
statistically significant. It does this independent of protein sequence or any other information external to network topology.
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Introduction
Background
Increasing amounts of biological network data are 
becoming available, owing to advances in experimen-
tal techniques such as yeast two-hybrid assay, mass 
spectrometry of purified complexes, genome-wide 
chromatin immunoprecipitation, correlated m-RNA 
expression, and genetic interactions. Examples include 
protein-protein interaction (PPI) networks,1–11 meta-
bolic networks,12 transcriptional regulatory networks,13 
protein structure networks,14,15 and networks summa-
rizing neuronal connectivities.16 Comparative analy-
ses of biological networks are expected to have at 
least as large an impact as comparative genomics on 
our understanding of biology, evolution, and disease. 
As more biological network data is becoming avail-
able, meaningful network comparisons across species 
could be viewed as one of the foremost problems in 
evolutionary and systems biology.17 Such compari-
sons could guide the transfer of knowledge across spe-
cies and give insights into evolutionary conservation 
of protein function, protein interactions, and protein 
complexes. They can also be used to infer phyloge-
netic relationships of different species based on the 
level of topological similarities between their molecu-
lar networks.

Exact network comparisons are computationally 
infeasible due to NP-completeness of the underly-
ing subgraph isomorphism problem, which asks if 
one graph (or network) exists as an exact subgraph 
of another graph.18 Network alignment is the most 
common network comparison method;17 it is the more 
general problem of finding the best way to “fit” a 
graph into another graph even if the first graph is not 
an exact subgraph of the second one. An alignment 
is achieved by constructing a mapping between the 
nodes of networks being compared; the alignment is 
expected to align topologically and functionally con-
served network regions. However, it is unclear how to 
guide the alignment process and construct such a node 
mapping; also, it is unclear how to measure the “good-
ness” of an inexact fit between the aligned networks. 
This is especially true for the biological networks that 
we consider below, due to biological variation, as well 
as noise in the data.19 Thus, heuristic strategies must 
be sought to guide the alignment process, as well as to 
quantify the quality of an alignment.

Analogous to sequence alignments, network align-
ment algorithms can be categorized as either local or 
global. The majority of the existing methods produce 
local alignments of biological networks.20–25 Such 
alignments typically match a small subnetwork from 
one network to one or more subnetworks in another 
network, with the hypothesis that such aligned sub-
graphs are conserved through evolution.21,20 In con-
trast to many-to-many local alignments that can be 
ambiguous, a global network alignment measures the 
overall similarity between two networks by aligning 
every node in the smaller network to exactly one node 
in the larger network, despite this possibly leading to 
suboptimal matchings in some local regions. Global 
network alignment has been applied previously in the 
biological networks domain,26–31 but most existing 
methods incorporate some a priori information exter-
nal to network topology, such as sequence similarities 
of proteins in PPI networks,24,26,28,29,31 phylogenetic 
relationships between species whose networks are 
being aligned,22 or they use some form of learning on 
a set of “true” alignments.27 The best currently avail-
able global network alignment algorithm that is based 
solely on network topology is our recent GRAph 
ALigner (GRAAL),30 which uses a heuristic search 
strategy to quickly find approximate alignments. In 
contrast, here we present a more expensive search 
algorithm guaranteed to find optimal alignments rela-
tive to any fixed, deterministic cost function.

Our contribution
Sequences have been shown to be very valuable 
sources of biological information. It has already been 
shown that non-sequence based sources of biological 
information, such as the secondary or tertiary molecu-
lar structure, might be more appropriate for extracting 
certain types of biological knowledge than sequence-
based ones.32–34 Analogously, there is important bio-
logical information that can be extracted from the 
topology of biological networks and that cannot eas-
ily be extracted from biological information external 
to network topology.35 For example, identical protein 
sequences can fold in different ways under differ-
ent conditions, resulting in different 3-dimensional 
structures and functions.36–39 Since the structure of a 
protein is expected to define the number and type of 
its potential interacting partners in the PPI network, 
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 different structures would also lead to very differ-
ent PPI network topologies.36–39 Moreover, entirely 
different sequences can produce identical pro-
tein structures.40,38 In cases where such proteins are 
expected to share a common function, a sequence-
based function prediction would fail, whereas a net-
work topology-based one would not. Therefore, we 
believe that network topology can uncover important 
biological information that is independent of other 
currently available biological information.35

Hence, unlike the previous local and global net-
work alignment algorithms that depend only implic-
itly or indirectly on network topology, we introduce an 
algorithm called H-GRAAL (Hungarian-algorithm-
based GRAAL)41 that relies solely and explicitly on 
a strong and direct measure of network topological 
similarity. As such, it is easily applicable to any type 
of networks, not just biological ones. In contrast to our 
previous greedy “seed-and-extend” approach that also 
relies solely on network topology,30 H-GRAAL is an 
optimal alignment algorithm (see below for details). 
Note, however, that it is trivial to include sequence 
or other biological information into the cost function 
of our method, as explained in our previous work,30 
but this is out of the scope of the manuscript. Even 
though it is important to use all available sources of 
biological information to try to understand complex 
biological systems, it is as important to understand 
how much biological information can be obtained 
from each source of biological data individually.

We align with H-GRAAL the PPI networks of 
yeast and human and demonstrate that our alignment 
exposes topologically complex and biologically rel-
evant regions of similarity. Since we may know a lot 
about some of the nodes in one network and almost 
nothing about topologically similar nodes in the other 
network, we can transfer the knowledge from one to 
the other to uncover new biology. Hence, we use our 
alignment to predict protein function of unannotated 
proteins in one species based on the functions of their 
annotated alignment partners in the other species. To 
demonstrate effectiveness of topological alignment, 
we validate a large number of our predictions in the 
literature.

Network alignments can also be used to measure 
overall similarity between networks of different species. 
Given a group of such biological networks, the matrix 

of pairwise global network similarities can be used to 
infer phylogenetic relationships. Thus, we apply our 
method to find topological similarities between meta-
bolic networks of different species, and then build phy-
logenetic trees that bear a striking resemblance to the 
ones obtained from sequence comparisons. The signif-
icance of our method is that it uncovers large and dense 
optimal alignments (relative to our cost function) and 
extracts biologically relevant and statistically signifi-
cant meaning solely from network topology, indepen-
dently of any other source of biological information. 
Moreover, it outperforms greedy GRAAL, the current 
best method30 (see Results and Discussion section).

Methods
graphlet degree vectors and signature 
similarities
To build meaningful alignments based solely upon 
 network topology, we match pairs of nodes from dif-
ferent networks using a highly constraining measure of 
their topological similarity, as defined by Milenković 
and Pržulj42 and explained below. We define a graphlet 
as a small, connected, induced subgraph of a larger 
network43,44 (Fig. 1A). An induced subgraph on a node 
set S ⊆ V of G is obtained by taking S and all edges 
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Figure 1. A) All 9 graphlets on 2, 3 and 4 nodes, denoted by G0, G1, 
..., G8; they contain 15 topologically unique node types, called “auto-
morphism orbits,” denoted by 0, 1, 2, ..., 14. In a particular graphlet, 
nodes belonging to the same orbit are of the same shade.44 B) An illus-
tration of the “graphlet Degree Vector” (gDV), or a “signature” of node 
v; coordinates of a gDV count how many times a node is touched by a 
particular automorphism orbit, such as an edge (the leftmost panel), a 
triangle (the middle panel), or a square (the rightmost panel). hence, the 
degree is generalized to a gDV.42 The gDV of node v is presented in the 
table for orbits 0 to 14: v is touched by 4 edges (orbit 0), end-nodes of 
2 graphlets G1 (orbit 1), etc. For an example of gDV of a node for all 73 
orbits  (corresponding to all 30 2-5-node graphlets), see Kuchaiev et al.30
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of G having both end-nodes in S. For a  particular 
node v in a network, we generalize the degree of a 
node, which counts the number of edges that the node 
touches, into the vector of graphlet degrees, counting 
the number of graphlets that the node touches, for all 
graphlets on 2 to 5 nodes (Fig. 1B). The degree of 
a node is the first coordinate in this vector, since an 
edge is the only 2-node graphlet, denoted by G0 in 
 Figure 1A. It is important to distinguish between, for 
example, nodes touching a 3-node path, i.e. graphlet 
G1 in Figure 1A, at an end or at the middle. Hence, the 
notion of automorphism orbits (or just orbits, for brev-
ity) is used: by taking into account the “symmetries” 
between nodes of a graphlet, there are 73 different 
orbits across all 2-5-node graphlets (see Figure 1A for 
an illustration and Przulj44 for details). We number the 
orbits from 0 to 72.44 The full vector of 73 coordinates 
is the signature of a node that describes the topology 
of its neighborhood and captures its interconnectivi-
ties out to a distance of 4 (see Figure 1B for an illus-
tration and Milenković and Pržulj42 for details). This is 
an effective measure, since going to network distance 
of 4 around a node captures a large portion of network 
topology due to the small-world nature of many real-
world networks.45 For this reason, and since the num-
ber of graphlets on n nodes increases exponentially 
with n, we believe that using larger graphlets would 
unnecessarily increase the computational complexity 
of the method.

The signature of a node provides a novel and 
highly constraining measure of local topology in its 
vicinity and comparing the signatures of two nodes 
provides a highly constraining measure of local topo-
logical similarity between them. The signature simi-
larity between two nodes42 is computed as follows. 
For a node u ∈ G, ui denotes the ith coordinate of its 
signature vector, i.e. ui is the number of times node 
u is touched by an orbit i in G. The distance Di(u,v) 
between the ith orbits of nodes u and v is defined as:
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where wi is the weight of orbit i that accounts for dep-
endencies between orbits. For example, the differences 
in orbit 0 (i.e. in the degree) of two nodes will imply 
the differences in all other orbits for these nodes, since 

all orbits contain, i.e. “depend on”, orbit 0.42 Similarly, 
the differences in orbit 3 (the triangle) of two nodes 
will imply the differences in all other orbits that  contain 
orbit 3, such as orbits 10–14, etc. We generalize this to 
all orbits, assigning higher weights to orbits that are not 
affected by many other orbits than to orbits that depend 
on many other orbits.42 By doing so, we remove the 
redundancy of an orbit being contained in other orbits, 
this being a reason why we design our own measure of 
similarity between graphlet degree vectors of two nodes 
instead of using standard metrics such as the Euclidean 
distance; for details, see Milenković and Pržulj.42

The total distance D(u,v) between nodes u and v is 
defined as:
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The distance D(u,v) is in (0,1), where distance 
0 means that signatures of nodes u and v are identical. 
Finally, the signature similarity, S(u,v), between nodes 
u and v is S(u,v) = 1 − D(u,v). Clearly, a higher sig-
nature similarity between two nodes corresponds to a 
higher topological similarity between their extended 
 neighborhoods (out to distance 4).

h-grAAL algorithm
Let V (G) denote the set of nodes of network G. Let 
G1 and G2 be networks and assume without loss of 
generality that |V (G1)| # |V (G2)|. An alignment of 
G1 to G2 is a set of ordered pairs (u,v), u ∈ V (G1) and 
v ∈ V (G2), such that no two ordered pairs share the 
same G1-node or the same G2-node. We will call each 
such ordered pair in an alignment an aligned pair. 
A maximum alignment is one where every G1-node is 
in some aligned pair of the alignment. Unless other-
wise specified, we will henceforth take “alignment” 
with respect to networks to mean “maximum align-
ment”. Note that if G2 has more nodes than G1 then 
for each alignment (maximum or not) at least one 
node in G2 will not be in any aligned pair.

Our algorithm, called H-GRAAL (Hungarian-
 algorithm-based GRAph ALigner), produces an align-
ment of minimum total cost between networks, where 
the total cost is summed over all aligned pairs, and 
the cost of each aligned pair of nodes is computed 
based on their node signature similarity as defined 

http://www.la-press.com


Optimal global network alignment

Cancer Informatics 2010:9 125

above.42 The cost of aligning two nodes u and v is 
modified to favor alignment of the densest parts of 
the networks; the cost is reduced as the degrees of 
both nodes increase, since higher degree nodes with 
 similar signatures provide a tighter constraint than cor-
respondingly similar low degree nodes; α ∈ [0, 1] is a 
parameter that weighs the cost-function contributions 
of the node signature similarity between u and v, and 
1 − α weights the contribution of degrees of the nodes 
u and v. More specifically, if deg(u) is the degree of a 
node u, max_deg(G1) and max_deg(G2) are the maxi-
mum degrees of nodes in networks G1 and G2 respec-
tively, S(u,v) is the signature similarity of nodes u and 
v as defined above, and α is as defined above, then the 
cost of aligning nodes u and v, C(u,v), is given by the 
following formulas:

 T ( ) = ( ) + ( )
( )  + ( )2

u,v deg u deg v
max_deg G max_deg G1

;  

 C u v T u v S u v( , ) = 2 (( ) ( , ) + ( , )).− α × α ×1-   

A cost of 0 corresponds to a pair of topologically 
identical nodes u and v, while a cost close to 2 cor-
responds to a pair of topologically very different 
nodes.

Clearly, most nodes u and v will be of low 
degree, since biological networks G1 and G2 have 
power-law degree distributions and hence T(u,v) 
will be very low; this is because power-law degree 
distributions of G1 and G2 imply the existence of 
a small number of hubs (highly-linked nodes), so 
max_deg(G1) and max_deg(G2) will be much larger 
than deg(u) and deg(v) for most nodes u and v. This 
will give more weight to signature similarity S(u,v) 
even for very small α (e.g. α = 0.1). However, for 
α = 0, the entire weight will be given to degrees.

We use the Hungarian algorithm for minimum-
weight bipartite matching41 to find an optimal align-
ment from G1 to G2 with respect to the cost function 
described above. The Hungarian algorithm is a stan-
dard polynomial-time algorithm for solving the linear 
assignment problem. Details of the algorithm can be 
found in most texts on graph algorithms e.g. West;41 
an excellent outline can also be found in Mills-Tettey 
et al46 as a prelude to the presentation of the dynamic 

Hungarian algorithm. We set up a complete bipartite 
graph with V(G1) and V(G2) as the bipartition and 
each edge (u,v) from V(G1) to V(G2) is labeled with 
the node alignment cost between u and v. H-GRAAL 
then uses the Hungarian algorithm to find an alignment 
from G1 to G2 by minimizing the cost summed over 
all aligned pairs. Note that while there may be more 
than one optimal alignment (with the same minimum 
cost), H-GRAAL initially returns only one such align-
ment. Furthermore, the particular alignment found by 
H-GRAAL is highly dependent on the implementa-
tion details of the underlying Hungarian algorithm. 
For example, the order in which the nodes of G1 
and G2 are presented to the algorithm can influence 
which augmenting paths are found at each stage of 
the algorithm, which in turn determines the ultimate 
matching found. While this potential variability in 
results returned from different implementation of the 
Hungarian algorithm may seem disconcerting at first, 
there are relatively simple and efficient measures 
that can be taken to learn about all possible optimal 
matchings, not just any one matching a particular 
implementation happens to return. These measures 
are described in the following paragraphs.

If we already have an optimal alignment A0, 
such as the one found from an initial invocation of 
H-GRAAL, a simple way to force H-GRAAL to gen-
erate another optimal alignment is to raise the align-
ment cost of a node-pair (u,v) in A0 to +∞ and then 
invoke H-GRAAL on the modified alignment prob-
lem. Artificially inflating the cost of (u,v) guarantees 
that the Hungarian algorithm will never select it as 
part of any optimal alignment, effectively removing 
(u,v) from consideration. We term such a cost modi-
fication of (u,v) a removal of (u,v). So any alignment 
(subsequent to A0) found by H-GRAAL after removing 
(u,v) cannot possibly contain (u,v) and must therefore 
be different from A0. If this subsequent invocation of 
H-GRAAL produces an alignment with the same cost 
as A0, then we have another optimal alignment to the 
original problem. If a costlier alignment is produced, 
then we need to pick another aligned pair from A0 and 
repeat the process. If we have picked all pairs of A0 
without success, then A0 is the only optimal align-
ment possible.

The only problem with this simple procedure is 
one of efficiency. If G1 and G2 have O(n) nodes, the 
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Hungarian algorithm can run in O(n3) time. So each 
invocation of H-GRAAL from scratch will take O(n3) 
time, which can be prohibitive for large networks, 
such as biological networks that we consider below. 
However, recent work on a dynamic version of the 
Hungarian algorithm allows us to solve a derived 
matching  problem obtained by perturbing a small 
number of edge costs in the original problem, for 
which an optimal matching is already known.46 With 
this variant it is possible to efficiently “repair” the 
original matching to yield an optimal matching for 
the derived problem; each modified edge cost takes 
O(n2) time to repair, in contrast to O(n3) time if we 
had to start from scratch with the original Hungar-
ian algorithm. In addition to the usual inputs to the 
original Hungarian algorithm, the dynamic variant 
takes as inputs an optimal alignment A, the final inter-
nal state of the Hungarian algorithm execution that 
produced A, and the set of edge costs to change. The 
internal state comprises, more specifically, the dual 
variables associated with each node in the bipartition. 
The dual variables are used internally by the Hun-
garian algorithm and their precise function need not 
concern us; we only need to preserve this state from 
one run of the algorithm to the next when using the 
dynamic algorithm. For our purposes, after H-GRAAL 
has generated the first optimal alignment, we can use 
the procedure described in the last paragraph, in con-
junction with the dynamic Hungarian algorithm, to 
find subsequent optimal alignments efficiently.

Even with the improved efficiency from using the 
dynamic Hungarian algorithm, network alignment 
problems will typically yield far too many optimal 
alignments to make exhaustive enumeration practi-
cal; yet it would be undeniably useful to somehow 
summarize information about the set of all possi-
ble optimal alignments. To this end, we say that an 
aligned pair is optimizing if it appears in at least 
one optimal alignment. The set of all optimizing 
aligned pairs is clearly the union of all aligned pairs 
from all optimal alignments, which gives a short, 
O(n2)-sized, synopsis of the set of all optimal align-
ments (Fig. 4). Furthermore, the set of optimizing 
pairs can be computed fairly efficiently in at worst 
O(n4) time. The procedure for enumerating opti-
mizing pairs basically uses the same pair-removal 
trick described earlier for generating new optimal 
alignments. The pseudo-code for this procedure 

is shown below, with an explanation for each line 
afterwards.

Note that the procedure for finding optimizing 
aligned pairs can be embarrassingly parallelized by 
partitioning U amongst various processors. Each 
processor would have u loop over a partition Ui and 
the optimizing pairs can be gathered from all proces-
sors at the end.

It is clear that for each u, there will be at least one 
optimizing aligned pair originating from u; some u’s 
may be associated with several optimizing pairs. The 
number of optimizing pairs per u can give us an indi-
cation of how “significant” an aligned pair involving 
u really is. If, for example, u had 10 associated opti-
mizing pairs, and a given optimal alignment paired u 
with some v, we might be inclined to view the (u,v) 
pairing as being rather ambiguous since there are 9 
other possible candidates for v, which would be real-
ized in some other optimal alignments. However, if 
(u,v) were the only optimizing pair for u, then every 
optimal alignment must contain (u,v), which would 
make it highly significant. So it is fruitful to identify 
the set of all such special optimizing pairs, which 
clearly must be a subset of every optimal alignment. 
We call this set the core alignment (maximum or not). 
For our purposes, a large core alignment is clearly 
desirable because it means that no matter what opti-
mal alignment gets returned by H-GRAAL, a large 
proportion of the aligned pairs in that alignment are 
“stable” in the sense that they would still be present 
for a different optimal alignment, so that any one 
optimal alignment would be highly representative of 
all optimal alignments. Ideally, if all optimizing pairs 
belonged to the core alignment, then there would be 
exactly one optimal alignment.

Measures of alignment quality
Given a complete global alignment, we quantify 
the quality of alignments produced by our method 
with three scores: the edge correctness (EC), node 
 correctness (NC), and interaction correctness (IC).30 
EC is a percentage of edges in one graph that are 
aligned to edges in the other graph. The prerequisite 
to be able to measure NC and IC is to know the “true 
alignment,” i.e. the correct node mappings between 
two networks. Then, NC is a percentage of nodes in 
one network that are correctly aligned to nodes in 
the other network with respect to the true alignment. 
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IC is the percentage of interactions that are aligned 
correctly with respect to the true alignment; we say 
that an interaction A–B is aligned correctly if two con-
nected nodes A and B from one network are aligned 
with their correct alignment partners (with respect to 
the true alignment) and if their partners interact in the 
other network. Thus, IC is a stricter measure than EC, 
since EC does not require that the alignment partners 
of nodes A and B be the correct ones with respect to 
the true alignment.

In real applications, such as those involving 
biological networks, we do not usually know the 
true alignment and can therefore only measure EC. 
However, it is possible for two alignments to have 
similar ECs, one of which exposes large, dense, 
contiguous, and topologically complex regions of 
network similarity, while the other fails to do so. Thus, 
in addition to counting aligned edges, it is important 
that the aligned edges cluster together to form large 
and dense connected subgraphs, in order to uncover 
such regions of similar topology. By “dense” we mean 
that the aligned subgraphs share many edges among 
their nodes as opposed to many isolated edges. To this 
end, we define a common connected subgraph (CCS) 
as a connected subgraph (not necessarily induced) 
that appears in both networks. Note that it might not 
be clear which criterion reveals better alignment; 
ideally, both high EC and large and dense CCSs are 
desirable. Our algorithm produces both large CCSs 
and dense global alignments, as demonstrated below, 
owing probably less to the details of the algorithm 
and more to our strong measure of nodes’ topological 
network similarity.

Statistical significance
Statistical significance of H-GRAAL’s 
alignments
Random alignment of real-world networks: 
Given H-GRAAL’s alignment of two networks 
G1(V1, E1) and G2(V2, E2), we compute the proba-
bility of obtaining a given or better EC at random. 
For this purpose, an appropriate null model of ran-
dom alignment is required. A random alignment is a 
random mapping f between nodes in two networks 
G1(V1, E1) and G2(V2, E2), f : V1 → V2. H-GRAAL 
produces global alignments, so that all nodes in the 
smaller network (smaller in terms of the number of 

procedure 1. Find all optimizing aligned pairs of nodes for 
networks G1 and G2 where U = V (G1), V = V (G2) and C0 is 
the matrix of node alignment costs between U and V.

procedure Find-All-Optimizing-pairs (U, V, C0)

 1: A0, M0 ← h-grAAL (U, V, C0)
 2: Cmin ← Alignment-Cost (A0)
 3: S ← φ
 4: for all u ∈ U do
 5:  A ← A0, M ← M0, C ← C0
 6:  while Alignment-Cost (A) = cmin do
 7:   v ← A[u]
 8:   S ← S ∪ {v}
 9:    A, M ← Dynamic-h-grAAL (U, V, C, A, M, {((u, 

v), +∞)})
10:  C[u][v] ← +∞
11:  end while
12: end for
 Line 1:  Invoke the non-dynamic, original h-grAAL with 

inputs U, V and C0. return an initial alignment 
A0 and the corresponding internal state M0 of 
the underlying hungarian algorithm.

 Line 2:  Compute the minimum alignment cost cmin from 
alignment A0.

 Line 3:  Initialize the set S of optimizing aligned pairs to 
the empty set φ.

 Line 4:  Loop over all nodes u in U. Procedure terminates 
when we have looped over all nodes in U.

 Line 5:  Initialize working variables A, M, and C for 
alignment, internal state and cost matrix 
respectively. These change with each iteration 
of the while loop in line 6.

 Line 6:  Loop while alignment A has cost Cmin. If A 
is costlier than Cmin, then we have found all 
optimizing pairs with U-node u and so we move 
on to the next node u from U.

 Line 7:  v = A[u] is the node in V that was paired with u 
in alignment A.

 Line 8:  Add the aligned pair (u,v) from alignment 
A to S. note that we could also add the rest 
of the aligned pairs from A to S but that would 
not change the asymptotic efficiency of the 
procedure, which remains at O(kn2) time, where 
k is the number of optimizing pairs.

 Line 9:  Invoke the dynamic version of h-grAAL with 
inputs U, V, C, A, M and the set {((u,v), +∞)} 
consisting of one node-pair cost-change. The 
cost-change is for (u,v) and raises the cost to 
+∞. In practice, the cost is set to a sufficiently 
large positive number so that the hungarian 
algorithm will not select the corresponding pair. 
return an alignment A and the corresponding 
internal state M of the underlying  hungarian 
algorithm. Note that for a fixed u, A is 
guaranteed not to have a (u,v) pair for the 
present v and all previous v ’s encountered 
within the while loop.

Line 10:  Adjust the (u,v) entry of the cost matrix C to +∞.
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nodes) are aligned with nodes in the larger network. 
In other words, f is defined ∀v ∈ V1. This is equiva-
lent to aligning each edge from G1(V1, E1) with a 
pair of nodes (not necessarily an edge) in G2(V2, E2). 
Thus, we define our null model of random alignment 
as a random mapping g: E1 → V2 × V2. We define 
n1 = |V1|, n2 = |V2|, m1 = |E1|, and m2 = |E2|. We also 
define p n n= −2 2 1 2( ) /  as the number of node pairs 
in G2, EC = x% as the edge correctness of the given 
alignment, and k = [m1 × EC] = [m1 × x] as the num-
ber of edges from G1 that are aligned to edges in G2. 
Then, the probability P of successfully aligning k or 
more edges by chance (i.e. p-value) is the tail of the 
hypergeometric distribution:
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H-GRAAL’s alignment of random model networks: 
Now we describe how to estimate the statistical sig-
nificance of the amount of topological similarity that 
H-GRAAL finds by aligning two real-world PPI net-
works. To do that, we need to estimate how much 
similarity one would expect to find with H-GRAAL 
between two random networks. For each of the ana-
lyzed models, we align with H-GRAAL 25 pairs 
of model networks of the same size as the data and 
average ECs over the 25 runs. Then, we apply the 
following form of the Vysochanskij—Petunin inequal-
ity: P | X −( ) ⋅µ λσ λ| /  4 9 2  Since the model 
networks that are aligned have the same number of 
nodes and edges as the data, it is reasonable to assume 
that the distribution of their ECs is unimodal. Thus, we 
use the Vysochanskij—Petunin inequality, since it is 
more precise than Chebyshev’s inequality for unimodal 
distributions. For more details, see Kuchaiev et al.30

Statistical significance of shared GO terms
As a biological validation of H-GRAAL’s alignments 
of PPI networks of different species, we find the 
number of aligned protein pairs sharing a Gene Ontol-
ogy (GO) term.47 Next, we compute the statistical 
significance of this result, i.e. the probability that the 
same or higher number of protein pairs would share 
a GO term in a random alignment of our real-world 

networks. We use the standard model of sampling 
without replacement (i.e. hypergeometric distribution 
as described in above), where p is the number of all 
possible G1-to-G2 node pairs in which both proteins 
are annotated with at least one GO term, m2 is the 
number of pairs out of p pairs in which both proteins 
share at least one common GO term, m1 is the number 
of pairs in our alignment in which both proteins are 
annotated with at least one GO term, and k is the 
number of pairs out of m1 pairs in which both proteins 
share at least one common GO term.

Statistical significance of functional enrichments 
in the aligned subnetworks
As an additional biological validation of our align-
ments, we compute the functional enrichment of the 
subnetworks aligned across species. We compute 
the statistical significance of an enrichment, i.e. the 
probability that the same or higher number of pro-
teins in a subnetwork would be involved in function 
F by chance, using the same formula for hypergeo-
metric distribution described above. For this pur-
pose, p is the number of all annotated proteins in the 
entire network, m2 is the number of proteins out of 
p proteins that have function F, m1 is the number of 
annotated proteins in the aligned subnetwork, and k 
is the number of proteins out of m1 proteins that have 
function F.

Statistical significance of our phylogenetic trees
We generate phylogenetic trees based on ECs produced 
by H-GRAAL when aligning metabolic networks of 
different species. To measure the probability of obtain-
ing our trees by chance, we repeat the same procedure 
to generate “random trees” (defined below). Then, we 
compare the “distance” (defined below) between “ran-
dom trees” and between our phylogenetic and “ran-
dom trees.” Clearly, we expect to obtain a significantly 
higher distance between our phylogenetic trees and the 
corresponding “random trees” than between “random 
trees” alone. A “random tree” is created based on ECs 
produced by H-GRAAL when aligning model net-
works of the same size as the data. Since all analyzed 
metabolic networks are bipartite graphs, we use the 
bipartite random graph model with the same degree 
distribution as the data. Once model networks are gen-
erated for all metabolic networks, we use H-GRAAL 
to align all pairs of these networks and we generate the 

http://www.la-press.com


Optimal global network alignment

Cancer Informatics 2010:9 129

phylogenetic tree from the obtained alignment scores 
in the same way we generate the phylogenetic trees for 
real metabolic networks; we call the resulting tree the 
“random tree”. To take into account the randomness of 
the model, we repeat this procedure 30 times, resulting 
in 30 instances of “random trees”.

Next, we compare each pair of “random trees”. 
Additionally, we compare our phylogenetic trees with 
all 30 corresponding “random trees”. To compare 
two phylogenetic trees, we use the patristic distance.a 
After we find the average pairwise distance between 
all pairs of 30 “random trees” and the correspond-
ing standard deviation, as well as the average distance 
between the real phylogenetic tree and the 30 “random 
trees”, we compute the upper bounds of p-values by 
using Chebyshev’s inequality:

 P |
2

2X −( ) ⋅µ α σ
α

|   

For details, see Kuchaiev et al.30 

Results and Discussion
Method validation
To measure the performance of H-GRAAL and bench-
mark it against other network alignment methods, we 
first analyze the largest connected component of the 
high-confidence yeast S. cerevisiae PPI network by 
Collins et al.10 We align this network with the same 
network augmented with interactions from the lower-
confidence data set described by Collins et al.10 We 
analyze different noise levels, by adding 5%, 10%, 
15%, 20%, and 25% of lower-confidence interac-
tions; we add higher-confidence interactions first. For 
each noise level, we produce alignments by varying α 
from 0 to 1, in increments of 0.1 (Methods section). 
Since the networks being aligned are defined on the 
same set of nodes and differ only in the number of 
edges, we know the true alignment, i.e. the correct 
node matching. Thus, we report all three alignment 
quality scores: NC, EC, and IC.

Depending on the noise level, H-GRAAL achieves 
NC of up to 84%, EC of up to of 94%, and IC of up 
to 79% (Fig. 2); this demonstrates that our algorithm 
is capable of producing high-quality alignments with 
high NC, EC, and IC. Clearly, with increased level 

of noise, the performance deteriorates. The statistics 
do not differ much for α between 0.1 and 1 at the 
same noise level. However, the alignments are very 
bad for α of 0, i.e. when only node degrees are used 
in the cost function, without any contribution of node 
 signatures. This indicates that node degrees alone 
are not an appropriate measure of network topology. a http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.html
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Figure 2. Comparison of h-grAAL with grAAL with respect to A) node 
correctness, B) edge correctness, and c) interaction correctness, for 
noise levels of 5%, 10%, 15%, 20%, and 25%, and for α between 0 
and 1, in increments of 0.1. note that h-grAAL always produces better 
alignments than grAAL for all values of α, and that using only degrees 
(α = 0) gives bad results. This tells us that graphlet-based signatures are 
far more valuable than a measure based on degree alone.
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The reason for very similar statistics for all non-zero 
values of α at a given noise level is due to the cost 
function giving a contribution of degree only to 
 high-degree nodes, which are rare due to scale-free 
degree distributions in these networks (see Methods 
section).

We compare the performance of H-GRAAL with 
the performance of GRAAL, a state-of-the-art algo-
rithm for global network alignment that is based 
solely on network topology.30 GRAAL has already 
been shown to outperform all other methods capable 
of using only network topology as a cost function,30 
including IsoRank.26 Both H-GRAAL and GRAAL 
are based on the same cost function, namely simi-
larity of nodes’ graphlet degree vectors. However, 
GRAAL is a greedy “seed and extend” approach 
analogous to the popular BLAST48 algorithm for 
sequence alignment: it first chooses a single “seed” 
pair of nodes (one node from each network) with 
high signature similarity and then it expands the 
alignment radially outward around the seed as far as 
is practical using a greedy algorithm (see Kuchaiev 
et al30 for details). On the other hand, H-GRAAL 
finds an optimal alignment with respect to the cost 
function, at the expense of a longer running time. For 
example, H-GRAAL takes about 2 days of CPU time 
to produce alignment of yeast and human PPI net-
works described below, compared to GRAAL’s CPU 
time of several hours on the same hardware. Note 
that alignments found by H-GRAAL (or GRAAL) 
will not necessarily be optimal with respect to EC, 
even though they will be optimal with respect to the 
cost function.

When aligning the above mentioned data sets, 
H-GRAAL outperforms GRAAL for all noise lev-
els, all α between 0.1 and 1, and with respect to all 
three alignment quality scores (Fig. 2). For α = 0, 
GRAAL’s statistics are better; this is expected, due 
to GRAAL’s “seed and extend” principle explained 
above, which results in alignments of contiguous 
network regions; this is not the case with H-GRAAL 
(see Methods section for details about H-GRAAL). 
However, GRAAL’s statistics for α = 0 are much 
worse than GRAAL’s statistics for any other ana-
lyzed α (and are thus worse than H-GRAAL’s sta-
tistics as well), again implying that node degrees 
are not constraining enough measure of network 
topology.

Pairwise alignment of PPI networks  
of yeast and human
Next, we apply our algorithm to pairwise align-
ment of PPI networks of different species. We align 
the yeast PPI network by Collins et al10 consist-
ing of 16,127 interactions amongst 2,390 proteins 
and the human PPI network by Radivojac et al49 
consisting of 41,456 interactions amongst 9,141 
proteins. Due to its ease of genetic manipulation, 
yeast has been one of the most extensively stud-
ied organisms. Other organisms, such as fruitfly 
and worm, have been significantly less studied, 
and available networks for these organisms con-
tain relatively higher levels of noise. Although the 
human PPI network is also still incomplete, study-
ing this network is of a great interest and impor-
tance as it can give valuable insights into complex 
diseases. Note, however, that the analyzed human 
PPI network combines physical interactions from 
numerous data sources and thus is of large size 
and high coverage. Additionally, the same net-
works have already been analyzed with GRAAL,30 
which makes the comparison of our results easier. 
For these reasons, we choose to align the yeast and 
human PPI networks.

Since we are aligning two networks of differ-
ent  species with different sets of proteins, we do 
not know their “true alignment”, and therefore, 
we only report EC. We report an optimal yeast-
human alignment produced for α of 0.5, since this 
α resulted in the alignment with the highest EC 
of 10.92% over all α between 0 and 1. Note that 
although we choose α so that it maximizes EC, 
the choice of this parameter and its  influence on 
the resulting alignments is the subject of future 
research. In the analyzed optimal alignment, 
EC of 10.92% corresponds to aligning 16,127 * 
10.92% = 1,761 edges amongst 796 proteins in the 
yeast network to 1,761 edges amongst 796 proteins 
in the human network. The aligned interactions are 
not randomly distributed in the yeast and human 
networks; instead, they form common connected 
 subgraphs (CCSs), the largest one having 1,290 
interactions amongst 317 proteins (Fig. 3), and the 
second largest one having 57 interactions amongst 
20 proteins. Beyond these two components, there 
are additional 11 components on 5 or more nodes, 
and 166 components on 2–4 nodes.
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We find the core alignment present across 
all optimal alignments for α = 0.5; it is large, 
consisting of 1,738 out of 2,390 possible yeast-
human pairs, i.e. 72.2%, of them (Fig. 4). More 
than 95% of the nodes in each of the two largest 
CCSs in the entire H-GRAAL’s analyzed opti-
mal alignment for α = 0.5 are present in the core 
alignment.

Although GRAAL produces slightly higher EC 
of 11.72% compared to H-GRAAL when aligning 
the same yeast and human networks, H-GRAAL’s 
 largest CCS with 1,290 interactions amongst 
317  proteins is larger than GRAAL’s largest CCS, 
which has 900 edges between 267 nodes. Thus, 
although GRAAL aligns slightly more edges that 
H-GRAAL does, H-GRAAL’s alignment is more 
contiguous and denser. Moreover, we find that 
H-GRAAL’s largest CCS contains the majority of 
nodes from GRAAL’s first and second largest CCSs 
combined.

Even though the detailed node pairings are differ-
ent for H-GRAAL and GRAAL, the alignments are 
in fact quite similar at a coarse-grained level. Indeed, 
although only 170/2,390 = 7.1% of aligned yeast-
 human pairs match exactly for the two algorithms, we 
find that 1,596/2,390 = 66.8% of human proteins that 
are in H-GRAAL’s alignment are present in GRAAL’s 

alignment as well; in the core part of H-GRAAL’s 
alignment, the same is true for 1,088/1,738 = 62.6% 
human proteins. (Note that since yeast is the smaller 
network, all yeast proteins are present in alignments 
produced by both methods.) Additionally, there is a 
significant overlap between the largest CCS of the 
two alignments: 222/267 = 83% of yeast proteins that 
were in the largest CCS in GRAAL’s alignment are 
also in the largest CCS of H-GRAAL’s alignment; the 
same is true for 175/267 = 66% of human proteins. 
(As mentioned above, 95% of nodes in the two largest 
CCSs of H-GRAAL’s alignment are in H-GRAAL’s 
core alignment, so the statistics for core part of 
H-GRAAL’s alignment are very similar.) The rela-
tively small exact overlap of 7.1% between GRAAL’s 
and H-GRAAL’s alignments might not be too surpris-
ing, given that the nature of the two algorithms is dif-
ferent, and given that there might exist a large number 
of different alignments all of which may have compa-
rable topological and biological quality. For example, 
it is possible that topologically identical subgraphs 
in two networks are aligned both by GRAAL and by 
H-GRAAL, but the actual aligned protein pairs differ 
for the two algorithms; this could happen, for exam-
ple, when two cliques (complete graphs having all 
possible edges between the nodes) of the same size 
are aligned between the two networks, due to exis-

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
1 2 3

Number of optimized pairs per protein

H-GRAAL’S core alignment

%
 o

f 
p

ro
te

in
s 

al
ig

n
ed

 t
o

 a
 g

iv
en

n
u

m
b

er
 o

f 
o

p
ti

m
iz

ed
 p

ai
rs

4 5 6 7-48

Figure 4. Statistics of H-GRAAL’s core yeast-human alignment for α = 0.5. 
We present the percentage of yeast proteins, out of 2,390 of them, that 
participate in n “optimizing pairs” (defined in Methods), for n = 1, 2, ..., 6, 
7–48. recall that an aligned pair is optimizing if it appears in at least one 
optimal alignment. hence, when we examine all optimal alignments, we 
compute the percentage of yeast proteins that are aligned to n human 
proteins by optimal alignments. Around 72% of all yeast proteins have a 
unique human protein that they are aligned to by every optimal alignment. 
These yeast-human protein pairs form H-GRAAL’s core alignment.

Figure 3. The largest common connected subgraph resulting from the 
alignment of the yeast and human PPI networks, consisting of 1,290 
interactions amongst 317 proteins. An edge between two nodes means 
that an interaction exists in both species between the corresponding pro-
tein pairs. Thus, the displayed network appears, in its entirety, in the PPI 
networks of both species.
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tence of multiple topologically equivalent alignments 
for cliques.

Statistical significance of H-GRAAL’s  
yeast-human alignment
First, we judge the quality of our alignment com-
pared to a random alignment of these two partic-
ular networks. Given a random alignment of the 
yeast and human PPI networks, the probability of 
obtaining EC of 10.92% or better ( p-value) is less 
than 7 × 10−8 (Methods section). The probability 
of obtaining a large CCS would be significantly 
smaller, so this represents a weak upper bound on 
our p-value.

Second, we comment on the amount of topological 
similarity uncovered by H-GRAAL’s alignment of 
yeast and human by comparing it to H-GRAAL’s 
alignment of random model networks. If we align 
with H-GRAAL networks drawn from several dif-
ferent random graph models50 that have the same 
number of nodes and edges as the yeast and human 
networks, we find that EC between random networks 
is statistically significantly lower than EC of our 
yeast-human alignment. We analyze the following 
network  models: Erdös-Rényi random graphs, 51 ran-
dom scale-free graphs, i.e. random graphs with the 
same degree distribution as the data,52 3-dimensional 
geometric random graphs,53,43,44 scale-free gene dupli-
cation and mutation model networks,54 and geometric 
gene duplication and mutation model network.55 For 
each model, we align 25 pairs of random graphs of the 
same size as the data and average ECs over the 25 runs. 
Alignments of random graphs drawn from these mod-
els result in ECs of only 0.23 ± 0.05%, 0.23 ± 0.05%, 
0.89 ± 0.1%, 2.83 ± 0.36%, and 6.25 ± 0.36%, 
respectively, with p-values of 9.7 × 10−6, 9.7 × 10−6, 
4.5 × 10−5, 8.8 × 10−4, and 3.2 × 10−2, respectively 
(Methods section). Accepting geometric gene dupli-
cation and mutation model as the best available null 
model having the highest EC over all analyzed mod-
els, i.e. the worst case scenario for estimating the 
statistical significance of H-GRAAL’s yeast-human 
alignment, the p-value of H-GRAAL’s yeast-human 
alignment is 3.2 × 10−2 (Methods section). This tells 
us that yeast and human, two very different species, 

enjoy significantly more network similarity than 
chance would allow.

Biological significance of H-GRAAL’s  
yeast-human alignment
To quantify the biological significance of our yeast-
human alignment, we count the number of aligned 
yeast-human protein pairs that share at least one com-
mon Gene Ontology (GO) term.47 For this analysis, we 
consider the complete GO annotation data set, contain-
ing all GO annotations, independent of GO evidence 
code. The associations between gene products and GO 
terms were downloaded from the Gene Ontologyb in 
September 2009. We do this for the entire alignment 
between yeast and human PPI networks, as well as for 
the core alignment. We also evaluate the biological 
quality of our alignment against GRAAL’s.

Across the entire H-GRAAL’s alignment, 45.38%, 
14.54%, 4.55%, and 1.3% of aligned protein pairs 
share at least 1, 2, 3, and 4 common GO terms, 
respectively, with p-values of 4.68 × 10−8, 2 × 10−5, 
8.43 × 10−5, and 4.71 × 10−2, respectively (Methods 
section). In GRAAL’s alignment, these percentages 
are 45.10%, 15.60%, 5.06%, and 2.02%. Across 
H-GRAAL’s core alignment, 47.4%, 16.01%, 5.21%, 
and 1.59% of aligned protein pairs share at least 1, 2, 3, 
and 4 common GO terms, respectively, with p-values 
of 2.77 × 10−8, 1.25 × 10−7, 3.25 × 10−6, and 7.2 × 10−3, 
respectively. Thus, H-GRAAL produces biologically 
meaningful and statistically significant alignments, 
and these are comparable to those of GRAAL.

We additionally validate the biological quality of 
H-GRAAL’s yeast-human alignment. We find that 
H-GRAAL aligns network regions of yeast and human 
in which a large and statistically significant percent-
age of proteins perform the same biological func-
tion in both species. Specifically, H-GRAAL aligns 
a 317-node subnetwork between yeast and human in 
which 10.2% of annotated yeast and 11.9% of anno-
tated human proteins are involved in splicing. This 
result is encouraging, since splicing is known to have 
been conserved even between distant eukaryotes.56–58 
Additionally, it aligns a 14-node subnetwork in which 
92.7% of annotated yeast and 76.9% of annotated 
human proteins are involved in transcription. Further-
more, it aligns a 13-node subnetwork in which 92.3% 
of annotated yeast and 45.5% of annotated human 
proteins are involved in translation. Also, it aligns bhttp://www.geneontology.org/gene-associations/

http://www.la-press.com


Optimal global network alignment

Cancer Informatics 2010:9 133

an additional 6-node subnetwork in which 100% of 
annotated yeast and 100% of annotated human pro-
teins are involved in transcription. Finally, it aligns a 
5-node subnetwork in which 100% of annotated yeast 
and 100% of annotated human proteins are involved 
in transport. The p-values for all of the above pre-
sented functional enrichments in the corresponding 
yeast and human subnetworks are in the 10−4 to 10−11 
range (Methods section).

Application to protein function prediction
Given that we demonstrated high topological and 
biological quality of H-GRAAL’s yeast-human 
 alignment, we transfer annotation between aligned 
proteins across the two networks. In particular, we 
predict from H-GRAAL’s alignment the biological 
characteristics (i.e. GO molecular function (MF), 
 biological process (BP), and cellular component 
(CC)) of unannotated proteins based on the character-
istics of their annotated aligned partners.

We make predictions with respect to two different 
sets of GO annotation data: the complete set described 
above, containing all GO annotations, independent of 
GO evidence codes, and a biologically-based set, con-
taining GO annotations obtained by experimental evi-
dence codes only.47 Many terms in the complete GO 
annotation data set were computationally assigned to 
proteins (e.g. from sequence alignments), and thus, it is 
biologically less confident than the biologically-based 
one. We identify proteins with unknown function whose 
aligned partners are annotated with a known MF, BP, or 
CC GO term, with respect to both the complete and 
biologically-based GO annotation data sets, and we 
assign all known MF, BP, or CC GO terms to the unan-
notated protein (see Kuchaiev et al30 for details).

With respect to the complete GO data set, we pre-
dict MF for 22 human and 299 yeast proteins, BP 
for 27 human and 105 yeast proteins, and CC for 
37 human and 29 yeast proteins. We attempt to vali-
date all of our predictions using the literature search 
and the text mining tool CiteXplorer.59 We success-
fully validate at least one MF, BP, and CC prediction 
for 44.4%, 42.9%, and 51.6% human proteins, and 
49.8%, 4.7%, and 11.8% yeast proteins, respectively; 
by “successfully validate”, we mean that this tool 
finds at least one article mentioning the protein of 
interest in the context of at least one of our MF, BP, 
and CC predictions for that protein, respectively. We 

call the above percentages the “validation hit-rate”. 
In summary, we successfully validate at least one MF, 
BP, or CC prediction for 59% of human and 46% of 
yeast proteins.

With respect to the biologically-based GO data 
set, we predict MF for 15 human and 163 yeast pro-
teins, BP for 22 human and 24 yeast proteins, and CC 
for 34 human and 15 yeast proteins. Our validation 
“hit-rates” with CiteXplorer for MF, BP, and CC are 
25%, 23.5%, and 20.7% for human, and 55.5%, 0%, 
and 9.1% for yeast, respectively. Hence, in summary, 
we validate with CiteXplorer at least one MF, BP, or 
CC prediction for 29% of human and 52% of yeast 
proteins.

Note that, since a protein can (and is expected to) 
perform multiple functions, and since indications on 
the biological function of unannotated proteins in the 
literature are limited, it is possible that more of our 
predictions for human and yeast proteins are correct 
than we have been able to validate.

Our validation results are mostly better than those 
for GRAAL: with respect to the complete GO data 
set, GRAAL’s validation hit-rates for MF, BP, and CC 
are 34.1%, 43.4%, and 46.2% for human, and 42.1%, 
3.2%, and 13% for yeast, respectively; with respect to 
the biologically-based GO data set, GRAAL’s valida-
tion hit-rates for MF, BP, and CC are 10%, 4.8%, and 
20% for human, and 48.1%, 0%, and 0% for yeast, 
respectively.

reconstruction of phylogenetic trees 
by aligning metabolic pathways across 
species
Additionally, we apply our approach to recover phy-
logenetic relationships between species by finding 
 topological similarities between their metabolic net-
works. Although related attempts exist,60–63 they all 
use some biological or functional information such 
as sequence similarities, structural similarities, or 
enzyme commission numbers, to define node similar-
ities and derive phylogenetic trees from pathways. On 
the other hand, we rely solely on the network topology 
to define node similarity, as was done with GRAAL.30 
Thus, our information source is  fundamentally dif-
ferent from the information sources used in related 
approaches and our algorithm recovers phylogenetic 
relationships (but not the evolutionary timescale of 
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species divergence at this time) in a completely novel 
and independent way from all existing methods for 
phylogenetic recovery.

We analyze the entire metabolic networks of 
Eukaryotic organisms with fully sequenced genomes. 
There are 17 such species in the KEGG pathway 
database,12 seven of which are protists, six are fungi, 
two are plants, and two are animals. We focus on 
aligning protists and fungi due to lack of more data 
on plants and animals. Moreover, it has been shown 
that PPI network structure has subtle effects on the 
evolution of proteins and that reasonable phyloge-
netic inference can only be done between closely 
related species.64 For each of the two groups of 
organisms, protists and fungi, we extract the union 
of all metabolic pathways from KEGG. We find all-
to-all pairwise H-GRAAL’s alignments between the 
 corresponding metabolic networks, using the same 
α of 0.5 that we used for yeast-human alignment. 
We create a phylogenetic tree by using the nearest 
distance (single linkage) algorithmc with pairwise 
EC as the distance measure. We compare our results 
to published phylogenetic trees that contain organ-
isms that we analyze,65–67,d as well as to topologically 
derived phylogenetic trees produced by GRAAL.

The phylogenetic tree constructed for protists 
using ECs produced by our method is very similar to 
the tree obtained from the literature,65,66 as well as to 
that produced by GRAAL (see Fig. 5A). Both our and 
GRAAL’s tree differ from the sequence-based one in 
α single branch: Plasmodium falciparum (PFA) is 
misplaced in our tree, whereas Entamoeba histolytica 
(EHI) (or Dictyostelium discoideum (DDI)) is 
misplaced in GRAAL’s tree. We can estimate the 
statistical significance of our tree by measuring how 
it compares to trees built from random networks of 
the same size as the metabolic networks (see  Methods 
section and Kuchaiev et al30 for details); we find that 
the p-value of our tree is less than 1.6 × 10−3. Our 
H-GRAAL-based phylogeny reconstruction shows 
that the topologies of entire metabolic networks of 
Cryptosporidium  parvum (CPV) and Cryptosporidium 
hominis (CHO) are very similar, since these species 
are grouped together in the tree. Since these organisms 

are two morphologically identical species of Apicom-
plexan protozoa with 97% genetic sequence identity, 
but with strikingly different hosts68 that contribute to 
their divergence,69,70 this validates our approach.

Given that H-GRAAL’s phylogenetic tree, as 
well as GRAAL’s tree, is slightly different from the 
sequence-based one, and given that H-GRAAL’s 
tree is slightly different from GRAAL’s one, there is 
no reason to believe that the sequence-based tree or 
GRAAL’s one should a priori be considered the cor-
rect one. Sequence-based phylogenetic trees are 
built based on multiple alignment of gene sequences 
and whole genome alignments. Multiple alignments 
can suffer from a number of problems: they can be 
misleading due to gene rearrangements, inversions, 
transpositions, and translocations that occur at the 
substring level. Also, different species might have 
an unequal number of genes or genomes of vastly 
different lengths. Furthermore, whole genome phy-
logenetic analyses can be misleading due to non-
contiguous copies of a gene or non-decisive gene 
order.71 Moreover, the trees are built incrementally 
from smaller pieces that are “patched” together 
probabilistically,65 so probabilistic errors in the tree 
are expected. H-GRAAL’s and GRAAL’s trees suf-
fer from none of these problems, but they may suffer 
from other problems, such as noise and incomplete-
ness of PPI networks.

We also construct a phylogenetic tree for 
fungi. Our tree for fungi is much more similar to 
the sequence-based one than the tree produced by 
GRAAL (see Fig. 5B): unlike in GRAAL’s fungi 
tree, only a single branch, Candida albicans (CAL), 
is misplaced in our tree compared to the sequence-
based one. The p-value of our phylogenetic tree 
for fungi is less than 4.5 × 10−3. We can see that 
Encephalitozoon cuniculi (ECU) of the Microspo-
ridia group is grouped next to Schizosaccharomy-
ces pombe (SPO) of the Ascomycetes group. This 
result is encouraging since it has been shown that 
Microsporidia consistently falls not only within fun-
gal diversification but also close to Ascomycetes,67 
even though for a long time it has been difficult to 
resolve the evolutionary relationship between the 
microsporidia and other eukaryotes.

Note that in addition to metabolic networks of pro-
tists and fungi, our method might need to be tested on 

chttp://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.html
dhttp://fungal.genome.duke.edu/
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other data sets before it can be widely used for phylo-
genetic tree reconstruction. Also note that some parts 
of the metabolic networks that we analyze are derived 
experimentally, while others are obtained by network 
reconstructions based on orthology relationships 
between species. These orthology relationships are 
based on alignments of protein (enzyme) sequences. 
Therefore, the striking resemblance between our phy-
logenetic trees and sequence-based ones explicitly 
validates our method. Furthermore, given that differ-
ent source of sequence data is used for reconstruct-
ing phylogenetic trees in the literature (alignments of 
mitochondrial proteins or ribosomal RNA are used) 
and for reconstructing metabolic networks (protein 
sequences of enzymes are used),30 the phylogenetic 
trees obtained from our network alignments might 
already be viewed as new and independent sources of 
phylogenetic information. Our results will only gain 
in biological significance when purely experimentally 
obtained networks become available.

Comparison with other methods
The current best global alignment algorithm is 
GRAAL which has been shown to produce by far the 
most complete topological alignments of biological 
networks to date that are statistically significant and 
biologically valid.30 Therefore, since GRAAL has 
been shown to outperform other network alignment 
methods,30 we compare the results of H-GRAAL’s 
alignment only to those of GRAAL. We demon-
strate that H-GRAAL’s alignments are comparable or 
superior to those of GRAAL. First, H-GRAAL out-
performs GRAAL when aligning high-confidence to 
high- + lower-confidence yeast PPI networks10 with 
respect to all three NC, EC, and IC, all non-zero α, 
and all noise levels (see Fig. 2). Second, although 
H-GRAAL’s yeast-human alignment has slightly 
lower EC than GRAAL’s, it is more contiguous and 
denser, with bigger largest CCS. Third, H-GRAAL 
produces biologically meaningful and statistically 
significant alignments, which are comparable to those 
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ments (middle), and GRAAL’s metabolic network alignments (right). The following abbreviations are used for species: CHO—Cryptosporidium hominis, 
DDI—Dictyostelium discoideum, CPV—Cryptosporidium parvum, PFA—Plasmodium falciparum, EHI—Entamoeba histolytica, TAN—Theileria annulata, 
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of GRAAL. Fourth, with respect to protein function 
prediction by H-GRAAL and GRAAL, literature 
validation hit-rates are higher for H-GRAAL’s pre-
dictions. Finally, H-GRAAL’s fungi phylogenetic 
tree is much more similar to the literature-based one 
than GRAAL’s fungi tree (Fig. 5B). This is likely 
due to the fact that H-GRAAL produces an optimal 
alignment with respect to the cost function, whereas 
GRAAL does not. However, it does so at the expense 
of running time (e.g. H-GRAAL takes about 2 days 
to align yeast and human PPI networks analyzed in 
this study, compared to several hours that GRAAL 
takes to align them on the same hardware; also see 
Methods).
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