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Abstract 
Introduction: While central nervous system serotonin has been implicated in a variety of problematic impulsive behaviors,  biological 
manipulation of brain serotonin using acute tryptophan depletion for studying changes in impulsive behavior has received little 
attention.
Methods: Using identical treatment conditions, we examined the effects of reduced serotonin synthesis for each of three matched groups 
using acute tryptophan depletion. Thirty healthy men and women (ages 18–45) were assigned to perform one of three tasks assessing 
 different types of behavioral impulsivity: response initiation, response inhibition, and consequence sensitivity (N = 90).  Participants 
 completed two experimental days during which each consumed either a tryptophan-depletion or balanced-placebo amino-acid  formulation 
and completed 5 sessions of their respective tasks at 0.25 h before and 1.5, 4.0, 5.0, and 6.0 h after beverage consumption.
Results: During peak effectiveness (5.0 h to 6.0 h following amino-acid consumption), depletion produced selective differences depend-
ent on the type of impulsivity being tested. Specifically, relative to baseline testing (pre-depletion), response initiation impulsivity 
was significantly increased during the peak effects of depletion. And, when compared to placebo control, both response initiation and 
consequence sensitivity impulsivity were increased during the peak effects of depletion.
Conclusion: Though response initiation and consequence sensitivity impulsivity were affected by tryptophan depletion, response 
 inhibition impulsivity was not, suggesting that other biological processes may underlie this specific component of impulsivity. Future 
research in other populations or using different pharmacological agents is warranted to further examine the biological processes 
 underlying these components of impulsivity.
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1. Introduction
Substantial evidence from both human and animal 
studies highlights the role that serotonin plays in the 
expression of impulsive behaviors. Indeed, research-
ers have found that reduced central serotonin function 
in humans is associated with a wide variety of prob-
lematic conditions involving impulsive behaviors, 
including drug and alcohol misuse,1–6 suicidality,7–10 
aggressive and violent behavior,11–15 and borderline 
personality disorder.16 Despite strong evidence that 
markers of serotonin synthesis are correlated with 
impulsive behaviors, data from these kinds of associa-
tive studies cannot be used to make causal inferences. 
Preclinical studies have reported similarly robust asso-
ciations between serotonin functioning and impulsive 
or impulsive-aggressive behaviors in various animal 
species.17,18 Unlike the associative studies in humans, 
preclinical studies have the ability to examine causal 
relationships of serotonin on impulsivity by manipu-
lating, sometimes permanently, the serotonin system. 
The methods used in preclinical research have not 
been widely adopted in human research for various 
reasons including lack of effectiveness (e.g. dietary 
restriction19), poorly tolerated side effects (e.g. the 
use of parachlorophenylalanine20), or ethical concerns 
(e.g. gene knock outs related to serotonin). Effective 
and tolerable experimental methods to manipulate 
serotonin in humans have been available for the last 
25 years, although they have only recently gained 
popularity. While dietary and selective inhibition 
methods used to reduce serotonin synthesis in humans 
have met with some success,19 the most effective and 
popular method for serotonin manipulation is acute 
tryptophan depletion.20–23

Acute tryptophan depletion produces a temporary 
reduction of the availability of serotonin’s sole precur-
sor, the essential amino-acid tryptophan.24  Reducing 
brain serotonin using acute tryptophan depletion is 
accomplished by consumption of an amino-acid for-
mulation containing 50 g or 100 g of 15 amino acids 
in a beverage that is devoid of  tryptophan. This ulti-
mately results in the reduction of brain serotonin 
synthesis via two primary mechanisms. Briefly, con-
sumption of a tryptophan-free amino-acid formulation 
delivers a bolus dose of amino acids, which results 
in: 1) increased protein synthesis and incorporation of 
endogenous tryptophan that  substantially decreases 

circulating plasma tryptophan;20,24–28 and 2) decreased 
plasma tryptophan reduces the effectiveness of com-
petition with other large neutral amino acids (i.e. iso-
leucine, leucine, phenylalanine, tyrosine, and valine) 
for transport across the blood brain barrier.19,24,29 
Together, these two mechanisms produce a significant, 
though transient, depletion of plasma tryptophan that 
reaches the maximal depletion effects (e.g. –77% to 
–94%25) approximately 5 to 6 hours following inges-
tion, which then results in a significant reduction of 
brain serotonin  synthesis.30 Alternatively, a balanced-
placebo formulation is used as control condition to 
maintain normal levels of circulating tryptophan (and 
thereby maintain normal levels of serotonin synthesis). 
This control condition contains the same amino acids 
as the depletion formulation; however tryptophan is 
included in a proportionate amount (1.15 g in a 50 g 
beverage) to the other amino acids which prevents the 
depletion of endogenous tryptophan. The balanced 
placebo also provides a control for potential effects 
that result simply from consumption of the amino-
acid beverage (e.g. poor palatability of amino-acid 
beverages). These formulations, which are a safe19 
and effective30 means for testing the effects of pro-
nounced reductions in serotonin synthesis in humans, 
have enabled researchers to examine the causal rela-
tionships of reduced serotonin synthesis and behav-
ioral outcomes such as impulsivity in humans.

However, human impulsivity is a complex multidi-
mensional construct that has historically been difficult 
to measure. This complexity is exemplified by a defi-
nition that characterizes impulsivity as “a predisposi-
tion toward rapid, unplanned reactions to internal or 
external stimuli without regard to the negative conse-
quences of these reactions to the impulsive individual 
or to others”31 (p. 1784). In an effort to advance the 
study of impulsivity, researchers have dissected this 
complex definition into multiple independent aspects 
of the impulsivity construct. For instance,  Dougherty 
and colleagues32 have proposed that impulsivity 
includes at least three testable components: 1) rapid 
responses that occur prior to complete processing 
and evaluation of a stimulus (i.e. response initiation); 
2) failures to inhibit an already initiated response 
(i.e. decreased response inhibition); and 3) persistent 
reward-directed choices for smaller rewards  delivered 
sooner, despite an equal  availability of larger rewards 
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delivered later (i.e. consequence sensitivity). These 
components can be assessed with laboratory mea-
sures that have been developed to capture different 
aspects of impulsive behavior.32 Furthermore, these 
laboratory tasks are sensitive to state fluctuations in 
impulsivity that would be expected as a result of acute 
tryptophan depletion and are appropriate for use in 
healthy samples as well as those with psychiatric and 
behavioral problems that often feature impulsive-type 
symptoms (e.g. conduct disorder, bipolar disorder, 
suicidality, substance abuse, aggressive behaviors, 
criminality).25,32–50

Few studies have examined the effects of tryp-
tophan depletion on impulsive responding in 
healthy controls, and findings have generally been 
 inconsistent. Experimental manipulation of serotonin 
in healthy individuals is beneficial in that it permits 
examination of the impact of reduced serotonin on 
the expression of impulsive behaviors without poten-
tial confounds (e.g. psychopathology) that may affect 
interpretation of study findings in impaired popu-
lations. Based on the preliminary studies that have 
used tryptophan depletion to test impulsivity among 
healthy individuals, there is some evidence that tryp-
tophan depletion results in increased response initia-
tion impulsivity,40,51–53 response inhibition impulsivity 
(i.e. decreased response inhibition),54,55 and conse-
quence sensitivity impulsivity.56 However, increased 
impulsive responding has not been a universal find-
ing,54,57 and results have often varied according to 
differences in sample characteristics (e.g. gender53). 
Furthermore, previous studies have typically included 
only one measure of impulsivity; consequently, the 
various components of this complex multidimensional 
construct have not been adequately assessed in prior 
research studies. In general, the methodologies used 
and the populations tested have varied considerably, 
making it difficult to compare across these studies or 
draw broad conclusions about the effects of tryptophan 
depletion on different components of impulsivity.

For these reasons, the goal of the current study 
was to examine the effects of tryptophan depletion 
on components of behavioral impulsivity in three 
groups of healthy individuals matched for gender, 
age, ethnicity, education, and intelligence. Partici-
pants were assigned to one of three task groups that 
corresponded with each of the three components of 

impulsivity outlined previously by Dougherty and 
colleagues:32 increased response initiation, decreased 
response inhibition, and decreased consequence sen-
sitivity. All groups underwent identical tryptophan 
depletion procedures, thereby allowing for parallel 
comparison of the effects of tryptophan depletion on 
each of the components of impulsivity. The primary 
aims were: 1) to determine the extent to which trypto-
phan depletion would produce changes in impulsivity 
relative to baseline  performance (prior to experimen-
tal manipulation); and 2) to determine whether tryp-
tophan depletion would produce differential effects 
on the individual components of impulsivity being 
tested. While results from previous literature have 
been somewhat inconsistent, we hypothesized that 
tryptophan depletion would increase impulsivity rel-
ative to both baseline and the balanced-placebo for-
mulation for all three types of impulsivity measured 
by the tasks.

2. Methods
2.1. participants
A total of 90 healthy adults (45 men and 45 women) 
were recruited through community advertisements 
and thoroughly screened prior to being offered partic-
ipation in the study. Volunteers calling in response to 
advertisements targeted at healthy adults were initially 
screened using a brief telephone interview, and those 
appearing to meet study criteria were invited to the 
laboratory to complete an in-depth screening inter-
view. Onsite screening included a health history, 
physical exam, and a psychiatric screening using 
the Structured Clinical Interview for DSM-IV psy-
chiatric disorders (SCID-IV58).  Volunteers had to 
meet the following inclusion criteria: (a) being from 
18 through 45 years old; (b) having an IQ  80 
(estimated using the Wechsler Abbreviated Scale 
of Intelligence59); (c) reporting the absence of any 
DSM-IV Axis I  psychiatric disorder; (d) using no 
 prescribed medications within the previous three 
months; (e) reporting no regular use of over-the-
 counter medications; (f) smoking  one pack of ciga-
rettes per day; and (g) having good physical health.

Volunteers meeting inclusion criteria were offered 
study participation and assigned to one of three 
experimental task groups (n = 30 each) including the 
Immediate Memory Task (IMT), GoStop  Impulsivity 
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Paradigm (GoStop), and Single Key Impulsivity Par-
adigm (SKIP). Groups were closely matched for age, 
gender, education, and race. Prior to study participa-
tion, volunteers provided written informed consent and 
all study procedures were reviewed and approved by 
our Institutional Review Board. This study was con-
ducted in accordance with the Declaration of  Helsinki 
and FDA guidelines for Good  Clinical Practice.

2.2. experimental design and procedure
The study required four days of participation: two 
 performance stabilization days followed by two 
experimental days. The performance stabilization days 
allowed participants to become familiar with the study 
procedures and environment and provided time for the 
participants’ task performance to stabilize. On these 
days, participants completed five  sessions of their 
assigned behavioral impulsivity task across the day in a 
manner similar to experimental days. On experimental 
days, participants consumed one of two  different types 
of amino-acid beverages, either tryptophan depletion 
or balanced-placebo control (see Section 2.3). All par-
ticipants experienced the two amino-acid beverage 
conditions on two different experimental days, and 
the order of the two beverages was counterbalanced. 
A minimum of 48 hours separated experimental days 
to avoid potential carry over effects of the amino-
acid manipulations.40,60,61 The daily testing schedule 
on experimental days included a baseline pre-drink 
testing session (8:15 am) followed by administration 
of the amino-acid beverage and 4 subsequent testing 
sessions at 1.5 h (10:30 am), 4.0 h (1:00 pm), 5.0 h 
(2:00 pm), and 6.0 h (3:00 pm) after consuming the 
amino-acid beverage. The schedule of behavioral test-
ing was selected to be consistent with the identified 
time-course changes in plasma tryptophan  following 
the 50 g tryptophan depletion administration.25 The 
behavioral testing sessions were conducted in a sound-
attenuated chamber equipped with a 17-in computer 
monitor and a computer mouse. Between testing 
 sessions, participants were permitted to read, watch 
television, or relax (but not sleep) in an assigned wait-
ing lounge. Participants were monitored by research 
staff using closed-circuit television monitors.

All testing days began at 8:00 am and ended at 
5:00 pm. Upon arrival, the experimenters  administered 
a breathalyzer test (AlcoTest® 7110 MKIII C,  Draeger 

Safety Inc., Durango, CO) and obtained a urine sam-
ple for drug screening (THC, cocaine, benzodiaze-
pines, opiates, and amphetamines; Panel/Dip Drugs of 
Abuse Testing Device, Redwood Biotech, Santa Rosa, 
CA). For women, the urine sample was also used to 
conduct a pregnancy test each day of  participation. 
Based on findings that nicotine withdrawal affects 
laboratory-measured behavior,62 one smoking break 
was provided at noon during which participants were 
permitted one cigarette.

2.3. Amino-acid administration procedure
Standardized procedures were used to administer the 
tryptophan depletion and balanced-placebo  beverages. 
Amino-acid formulations contained approximately 
50 g of 15 amino acids;22,25 the only difference between 
the two formulations was the amount of tryptophan in 
the drink (depletion = 0.0 g, balanced placebo = 1.15 g; 
see Table 1). Consistent with previous studies, these 
amino acids were combined with 240 ml of water and 
flavored with one packet of saccharin sweetener 
and powdered raspberry-lemonade flavoring.25 To 
increase the palatability of these amino-acid bever-
ages, L- cysteine and L-methionine were  administered 
in gelatin capsules. The drinks were consumed 

Table 1. Amino acids contained in the 50 g tryptophan 
depletion and balanced-placebo formulations.

L-tryptophan formulations
 L-tryptophan depletion 0.00
 L-tryptophan balanced placebo 1.15
15 amino acids
 L-alanine 2.75
 L-arginine 2.45
 L-cysteine 1.35
 glycine hydromonochloride 1.60
 L-histidine 1.60
 L-isoleucine 4.00
 L-leucine 6.75
 L-lysine 4.45
 L-methionine 1.50
 L-phenylalanine 2.85
 L-proline 6.10
 L-serine 3.45
 L-threonine 3.25
 L-tyrosine 3.45
 L-valine 4.45
Depletion, total grams 50.00
Balanced-placebo, total grams 51.15
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between 8:35 and 9:00 am, and were administered in 
a double-blind fashion. This timing allowed for their 
peak effects to be achieved by the afternoon testing 
sessions (Sessions 4 and 5). Lastly, participants were 
instructed to fast after midnight the night before each 
of the experimental days to avoid potential dietary 
interference with the amino-acid manipulation. Par-
ticipants were provided a meal after completing their 
behavioral testing sessions.

2.4. Measures of impulsivity
As indicated above, study participants were assigned 
to one of the three types of behavioral impulsivity 
testing paradigms, and each were read a set of stan-
dardized instructions prior to their first stabilization 
session.33,36,37 The paradigms are described below.

2.4.1. Immediate Memory Task (IMT)
The IMT is a continuous performance test that can 
be used to measure response initiation impulsivity.63 
In this 10-min task, a series of 5-digit numbers are dis-
played on a monitor screen in black and centered on 
a white background. The numbers (2.3 cm in height) 
are randomly generated and appear for 500 msec at a 
rate of one per second. The participant is instructed to 
respond (mouse click) when the 5-digit number they 
see is identical to the one that preceded it. While this 
task yields a wide variety of data, there are three main 
dependent variables: 1) correct detections, where the 
participant correctly responds to a 5-digit number that 
is identical to the preceding number; 2) commission 
errors, where the participant incorrectly responds to a 
5-digit number that differs from the preceding number 
by only one digit (its position and value determined 
randomly); and 3) response latencies, which is the 
time in milliseconds between stimulus presentations 
and the participant’s recorded responses. The IMT 
Ratio is the primary dependent measure of impulsiv-
ity for this task (i.e. the proportion of commission 
errors relative to the correct detections32,63).

2.4.2. gostop impulsivity paradigm (gostop)
The GoStop is a stop-signal task that measures 
response inhibition aspects of impulsivity.39 In this 
12-min task, a series of 5-digit numbers are  displayed 
for 500 msec with a 1,500 msec inter-stimulus 
interval. Like the IMT above, 5-digit numbers appear 

in series, and some of these numbers are identi-
cal to the immediately preceding 5-digit  number. 
 Participants are instructed to respond to these match-
ing numbers (matching numbers are considered the 
go signal). In this task, however, some of these match-
ing numbers are first presented in black and then turn 
red. This is a stop signal cue, and the participants are 
instructed to withhold responding to any matching 
numbers that turn red. The timing of these stop sig-
nals varied across the testing session (e.g. 50, 150, 
250 and 350 msec). The two dependent measures of 
interest were: 1) correct responses, where the partici-
pant responds to a number that matches the preced-
ing number (and the number remains black); and 2) 
response inhibition failures, where the participant 
fails to withhold responding to a matching number 
when a stop signal has appeared. The primary depen-
dent measure is the GoStop Ratio,32 which is calcu-
lated as the number of response inhibition failures 
(i.e. incorrect responses to stop trials) relative to the 
number of correct responses (i.e. go trials). The GoS-
top Ratio has been validated as a measure of the abil-
ity to inhibit an already initiated response, and data 
from the 150 msec stop delay typically provides the 
best group discrimination.26

2.4.3. single Key Impulsivity paradigm (sKIp)
The SKIP37 is a consequence sensitivity measure 
of impulsivity that assesses an individual’s prefer-
ence for rewards of different delays and magnitudes 
(e.g. preference for smaller-sooner over larger-later 
rewards). This is a free-operant task where the par-
ticipant may respond as often as desired by clicking 
a computer mouse to accumulate points. During the 
session, two point counters appear on the computer 
monitor: one presents feedback about the delay con-
tingency on a point counter at the bottom of the moni-
tor in the form of a 2-sec display of the points earned 
for the most recent response; the other counter is a 
constant display at the top of the monitor showing 
the total accumulation of earnings throughout the 
session. Participants are provided general instruc-
tions that the task will last about 20 minutes, during 
which time they may respond as often as they wish 
and the longer they wait between responses, the more 
points that response will be worth. Participants must 
infer specific reward contingencies from the feedback 
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provided for each response. Individual responses pro-
duce a reward that increases exponentially and is cal-
culated using the number of seconds that have elapsed 
since the previous response. The formula used in 
this task was [the number of seconds elapsed + (3 × 
the number of seconds elapsed2)]/1000. One exam-
ple using this formula is that after a 60-sec delay a 
response would earn 10.86 points, but after a 300-sec 
delay a response would earn 270.3 points. The second 
response was only 5 times longer than the first, but 
the reward was 25 times larger. While this task yields 
a wide variety of data, there are three primary types: 
1) the average response interval gives information 
about the reward-delay tolerance; 2) the total num-
ber of responses is another indicator of preference for 
smaller-sooner rewards; and 3) the longest response 
delay recorded during a testing session is an indica-
tor of a participant’s willingness to delay responses 
to obtain rewards of larger magnitude. The primary 
dependent measure used in this study was the longest 
delay (i.e. the longest elapsed time between two con-
secutive reward responses39), which reflects the maxi-
mal delay that an individual is willing to tolerate for 
a larger reward.

2.4.4. Barratt Impulsiveness scale (BIs-11)
The BIS-1164 is a 30-item questionnaire where individ-
uals rate the frequency of several common impulsive 
(e.g. “I do things without thinking”) or  non-impulsive 
(“I am self-controlled”) behavioral traits on a scale 
from 1 (“rarely/never”) to 4 (“almost always/always”). 
Scores range from 30 to 120, with higher scores indi-
cating more impulsiveness. The BIS-11, which was 
completed only once, was used to characterize the 
groups’ self-reported trait impulsivity.

2.5. compensation
To maximize effortful performance, participants 
received a performance-based monetary bonus at 
the end of each day. Each of the paradigms gener-
ated points based on performance, and the bonus was 
determined by comparing the sum of each day’s points 
to the sum of points earned on the first day of partici-
pation (Performance Stabilization Day 1). The per-
formance bonus was computed as a proportion of the 
first baseline day performance such that points earned 
equivalent to Day 1 resulted in a payment of $15. 

Points earned above Day 1’s performance resulted 
in earning more money (up to $20 maximum) and 
points earned less than Day 1’s performance resulted 
in earning less money (down to a $10 minimum). 
These earnings were added to a daily payment of $60, 
so that on average, participants were compensated 
between $70–80 per day.

2.6. Data analyses
Analyses were conducted to examine differences in 
both demographic and performance data between 
and within the three impulsivity task groups (i.e. 
IMT, GoStop, and SKIP). Participant characteristics 
(i.e. age, education, IQ, and BIS-11) were compared 
among the task groups using univariate analyses of 
variance (ANOVA), and within-group differences 
between men and women were tested using two-
tailed independent t-tests. Chi-Square tests were 
used to compare the racial/ethnic distribution of 
men and women within each group and to compare 
the distribution across the three tasks. Differences 
in laboratory behavioral impulsivity performance 
were tested between men and women within each 
task group to examine whether the effects of tryp-
tophan manipulations differed by gender. Results of 
preliminary 2 × 2 × 5 (Gender × Amino-acid Drink × 
Time of Testing) ANOVAs conducted separately for 
each task type showed there were no main effects 
or interactions related to Gender, therefore task data 
were collapsed across gender in subsequent analy-
ses. SKIP data were transformed using a reflection 
strategy to correct the non-normal negative skew 
prior to analyses.65 As  recommended when using 
these transformations, median scores are used in the 
graphical presentation of these data (Fig. 1, bottom 
panel). Individuals with performance data more than 
2 standard deviations from the session mean at two 
or more testing times on performance stabilization 
and experimental days were considered outliers and 
excluded from analyses, resulting in 26 individuals 
in the IMT group and 27 individuals in the GoStop 
group. For the SKIP task, all individuals were retained 
for the primary analyses; however, four outliers were 
excluded from analyses of one of the supplementary 
variables (Total Responses). In all cases, removal of 
outliers enhanced interpretability without changing 
the direction of results.
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Omnibus analyses were conducted separately for 
each of the three primary behavioral task  variables 
(i.e. IMT Ratio, GoStop 150 msec Ratio, and SKIP 
Longest Delay) using a 2 × 5 (Amino-acid Drink × 
Time of Testing) repeated-measures ANOVA. Within-
group planned comparisons of the behavior observed 
at 5.0 h and 6.0 h following amino-acid administra-
tion (i.e. peak depletion effects) were conducted with 
two-tailed paired t-tests to determine the extent of 
behavioral changes: 1) resulting from each of the 
amino-acid formulations when compared to their 
respective baseline pre-drink performance; and 2) 
resulting from tryptophan depletion relative to the 
balanced placebo. Analysis of pre-drink baseline test-
ing between tryptophan depletion and the balanced 
placebo showed no performance differences for any 
of the task groups (P  0.05). PASW© version 17.0.2 
(SPSS, Inc., Chicago, IL) was used for all data analy-
ses, and the significance criterion for all comparisons 
was set at P  0.05.

3. Results
3.1. participant characteristics
Characteristics of participants in each of the three 
impulsivity task groups (i.e. IMT, GoStop, and SKIP) 
are presented in Table 2. Participants in the three 
impulsivity task groups were similar (p’s  0.05) 
in their demographic characteristics (i.e. age, educa-
tion, IQ) and a self-report measure of trait impul-
sivity (Barratt Impulsiveness Scale-11). Within each 
task group, there were no significant gender differ-
ences on any of these variables (P’s  0.05).

3.2. The effects of amino-acid 
manipulations on primary measures  
of behavioral impulsivity
The effects of the amino-acid manipulations on behav-
ioral impulsivity tasks were of specific interest in this 
study. Consistent with previous studies,25,40 we exam-
ined the data in two ways. First, we examined changes 
in behavioral impulsivity over time from the baseline 
pre-drink testing session to later testing sessions when 
the tryptophan manipulation was at the peak effects 
(5.0 h and 6.0 h following amino-acid drink adminis-
tration25). Second, we examined differences between 
the two amino-acid drink conditions at the later testing 
sessions. The results of analyses for the primary impul-
sivity variable from each task are described below.

3.2.1. Immediate Memory Task (IMT)
Impulsivity increased during the peak effects of 
 tryptophan depletion. This was shown by a  significant 
interaction between the amino-acid condition and 
time of testing (F4,100 = 3.05, P = 0.020). As expected, 
when comparing changes in behavioral impulsivity 
from the baseline testing session to later testing sessions, 
there was a significant increase in impulsive respond-
ing at both 5.0 h (Session 4) and 6.0 h (Session 5) post-
drink testing relative to baseline performance for the 
tryptophan depletion condition (Session 4: t25 = 2.62, 
P = 0 .015; Session 5 t25 = 3.02, P = 0 .006; Fig. 1, 
top panel). However, no performance differences were 
observed between the baseline testing session and 
later testing sessions for the  balanced-placebo condi-
tion (P  0.05). When comparing depletion effects 

Table 2. Demographic characteristics and trait impulsivity between and within task groups.

characteristics

IMT Gostop sKIp
Men Women Men Women Men Women

Mean sD Mean sD Mean sD Mean sD Mean sD Mean sD
Age (yrs) 27.3 6.0 26.9 8.1 32.5 9.6 28.9 10.4 29.5 8.9 27.2 7.5
education (yrs) 14.9 2.4 14.7 2.3 14.4 1.7 15.2 2.5 13.8 1.8 14.7 2.0
WAsI (Total) 102.5 10.9 102.8 6.1 103.4 10.7 102.4 14.9 98.7 11.0 104.7 12.6
BIs-11 (Total) 62.1 8.9 56.7 6.5 59.9 8.9 54.9 5.5 57.7 9.3 59.7 8.4
cigarettes/Day 1.7 5.5 0 0 1.9 3.8 0.3 1.3 2.9 5.9 0.7 2.6
ethnicity n n n n n n
 AA/cauc/hisp 6/7/0 8/5/0 8/6/0 7/5/1 8/6/1 8/6/1
notes: AA, African American; cauc, caucasian; hisp, hispanic; BIs-11, Barratt Impulsiveness scale (Version 11); WAsI, Wechsler Abbreviated scale  
of Intelligence.
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to placebo, impulsivity was significantly greater fol-
lowing depletion. This was indicated by differences in 
impulsivity between the two amino-acid drink condi-
tions at the two later testing sessions (Session 4: t25 = 
2.13, P = 0.044; and Session 5: t25 = 2.51, P = 0.019).

3.2.2. gostop
In contrast to IMT performance differences described 
above, impulsivity (i.e. GoStop Ratio) increased 
over the course of the day regardless of the drink 
condition. This was indicated by a significant main 
effect for time of testing (F4,104 = 4.39, P = 0.003). 
As might be expected from the results of the omni-
bus analysis, planned comparisons of the behavioral 
changes from the baseline testing session to later 
sessions showed that impulsive performance was 

elevated at the later sessions for both the depletion 
and balanced-placebo conditions (middle panel). 
 Specifically, impulsivity was elevated at 5.0 h post-
drink testing (Session 4) following tryptophan 
depletion (t26 = 2.22, P = 0.036) and, contrary to 
our hypothesis, impulsivity was also elevated at 6.0 
post-drink testing (Session 5) for the balanced-pla-
cebo condition (t26 = 2.82, p = 0.009). There were 
no significant differences in impulsivity between the 
two drink conditions at either 5.0 h or 6.0 h follow-
ing drink administration (P  0.05).

3.2.3. single Key Impulsivity paradigm (sKIp)
Similar to the IMT, tryptophan depletion increased 
impulsivity on the SKIP. This was indicated by a main 
effect for amino-acid drink (F1,116 = 4.32, P = 0.047). 

Figure 1. The effects of two amino-acid conditions on IMT (top panel), gostop (middle panel), and sKIp (bottom panel) performance across pre-drink 
baseline and post-drink testing times (mean ± SEM). For the SKIP, data were transformed using a reflection strategy to correct non-normal negative 
skew.
*Indicates significant differences between Trp depletion and the balanced placebo.
§Indicates a significant difference from pre-drink baseline performance.
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There were no significant differences in impulsivity 
between the baseline testing session and later testing 
sessions for either drink condition (P  0.05). Although 
impulsivity did not differ between the two drink con-
ditions at 5.0 h post-drink testing (P  0.05), there 
was a significant difference between the two drink 
conditions at 6.0 h post-drink testing (Session 5: t29 = 
2.44, P = 0.021; Fig. 1, bottom panel). That is, par-
ticipants in the tryptophan depletion condition showed 
significantly less tolerance for delaying responses (i.e. 
 Longest Delay between consecutive responses became 
shorter) relative to the balanced placebo.

3.3. The effects of amino-acid manipulations 
on additional dependent measures
In addition to analyses of the primary variables of 
 interest (presented above), we examined the peak 
effects of the amino-acid manipulations on all of the 
main outcome variables for each of the three impu-
lsivity tasks. Specifically, paired t-tests were used to 
compare behavioral responses in the tryptophan deple-
tion and the balanced-placebo conditions at 5.0 h (Ses-
sion 4) and 6.0 h (Session 5) post-drink administration. 
Parallel to the findings reported above, there was a sig-
nificant difference between the two amino-acid drink 
conditions on indices of behavioral impulsivity, but not 
on dependent variables reflecting attention (e.g. correct 
detections) and reaction speed (e.g. response latencies). 
The results of these analyses are presented in Table 3.

4. Discussion
The purpose of this study was to determine how 
changes in the underlying biological state of healthy 
adults affect performance on behavioral measures of 
impulsivity. One important aspect of this study was 
to test how serotonergic dysregulation would affect 
impulsivity in matched samples of healthy adults 
with low/normal trait impulsivity. A second important 
aspect was the use of multiple measures of behavioral 
impulsivity to test the effects of acute tryptophan 
depletion across multiple time points under identi-
cal treatment conditions. These two points address 
a number of methodological limitations of previous 
studies that have tested the relationship between sero-
tonin and impulsive behaviors.

While numerous studies have examined the relation-
ships of serotonergic deficits among clinical samples 

with impulsive characteristics,3–10,12,14 far fewer studies 
have been conducted that experimentally examine the 
effects of tryptophan depletion on behavioral impulsiv-
ity measured in the laboratory. Furthermore, compari-
sons across studies are difficult because of differences 
in methodologies and important sample characteris-
tics, such as age, gender, and pre-existing psychopa-
thology. For instance, prior studies have examined the 
effect of tryptophan depletion among men at risk for 
development of alcohol or substance use disorders,56,57 
aggressive adolescent boys,66 boys with attention-
deficit/hyperactivity disorder,67 and aggressive adult 
psychiatric patients.68 In these cases, the effects of 
tryptophan depletion on impulsive behavior are con-
founded by the influence of the sample characteris-
tics. Collectively, given the variety of clinically and 
behaviorally impaired samples that have been tested, 
reaching a consensus regarding the possible underly-
ing behavioral and biological mechanisms responsi-
ble for the different aspects of impulsivity has not yet 
been possible. This underscores the importance of the 
present study in which we tested matched samples of 
normal healthy adults with a low-normal range of self-
reported impulsivity.  Differences in impulsivity found 
in this study of healthy participants can be more confi-
dently attributed to the effects of tryptophan depletion 
and changes in brain serotonin.

Although some prior studies of the effects of 
tryptophan depletion on impulsivity have controlled 
sample characteristics and limited testing to healthy 
adult men and women,40,52,56 methodological con-
straints among these studies prevent clear under-
standing of the effects of serotonin manipulations on 
 impulsivity. One of the most prominent methodolog-
ical limitations in studies of impulsive behavior has 
been the restriction of testing to a single measure of 
 impulsivity. One criticism of impulsivity assessment 
is that researchers have frequently relied on single 
methodologies used in isolation, and often among 
different clinical or high-risk populations.31,69,70 Stud-
ies using isolated measures have produced conflict-
ing results, which can lead to inaccurate conclusions 
about the role of serotonin in impulsive behavior. 
Because of the different outcomes and conclusions, 
there is often a failure to replicate results and lit-
tle consensus for the most accurate or appropriate 
measures of  impulsivity. Assessments of multiple 
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components of impulse control are necessary to 
ultimately understand the relationships of different 
components of impulse control among samples char-
acterized by impulsive behavior (e.g. suicidal and 
drug-use  behaviors69,70). To overcome this limitation, 
in the present study we incorporated key features of 
current theoretical models and systematically stud-
ied the effects of tryptophan depletion using three 
laboratory measures of impulsivity representative of 
the three-component model.32,38 Given that the differ-
ences in the timing and magnitude of the behavioral 
changes observed were not uniform across the three 
measures, the outcomes of this study support the 
need for using multiple measures and have important 
implications for identifying the role of serotonin dys-
regulation in these different component processes of 
impulsive behavior.

As described in the introduction, impulsivity is 
a complex multi-faceted construct, the components 
of which may be differentially affected by pharma-
cological manipulations such as tryptophan deple-
tion. The theoretical models of impulsivity propose 
that deficits in response initiation are reflected by a 
response that is made prior to complete information 

processing of a stimulus, whereas deficits in response 
inhibition are reflected by an inability to withhold a 
response in the face of new information. And, defi-
cits in consequence sensitivity are reflected by a 
predominant preference for a smaller-sooner rather 
than a larger-later reward, which theorists sug-
gest is an inability to tolerate the delay necessary 
for obtaining the larger reward. Several theoretical 
models32,71 suggest that different behavioral mecha-
nisms of impulsivity may be associated with distinct 
underlying biological differences. Consistent with 
these theoretical suppositions, the results of the pres-
ent study illustrate that brain serotonin may play a 
greater role in mechanisms underlying response 
initiation impulsivity and sensitivity to reward, but 
a lesser role in mechanisms governing response 
 inhibition. One  possible  explanation for this unex-
pected finding is that the response  inhibition function 
(i.e. GoStop) may be more relevant to underlying 
deficits in noradrenergic and dopaminergic systems, 
which would be consistent with findings from other 
studies.72 Alternatively, it may be simply that the 
low-impulsive healthy adults, such as those tested in 
this study, are not sensitive to changes in response 

Table 3. performance means and standard deviations of the primary dependent measures for each task following each of 
the two amino-acid formulations at the time points of peak effectiveness.

5.0 h 6.0 h
Tryptophan depletion Balanced placebo Tryptophan depletion Balanced placebo

Mean sD Mean sD Mean sD Mean sD
IMT
 correct detections 96.41 3.72 96.49 4.02 96.19 4.67 96.48 4.51
  Response latency 421.21 51.44 419.22 43.51 418.33 48.88 416.48 43.01
 commission errors 27.09 16.51 23.69 15.04* 28.24 16.02 24.75 15.31*
  Response latency: FA 429.52 60.54 432.30 57.58 430.57 58.08 428.81 48.57
 Ratio 0.28 0.17 0.25 0.15* 0.26 0.16 0.30 0.17*
gostop (150 ms)
 correct detections 7.41 4.12 6.44 4.28 6.89 4.10 7.74 4.85
 Response inhibition failures 78.11 2.44 78.30 1.77 78..41 1.72 78.30 2.45
 Ratio 0.38 0.21 0.33 0.22 0.35 0.21 0.39 0.25
sKIp
 Total responses 3.5 2.5 2.73 1.85* 3.50 3.3 3.15 2.01
 Average response interval 704.51 367.04 679.56 364.77 739.19 312.21 728.64 319.09
 Longest delay 931.93 259.31 974.84 294.37 905.36 270.95 1010.49 264.66*

note: FA, False Alarms.
*Indicates significant difference between the Trp depletion (T–) and balanced placebo (TB) conditions at P  0.05.
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 inhibition impulsivity as a result of serotonergic 
manipulations and that differences would be more 
distinct when testing other populations.

The findings of this current study are generally con-
sistent with the few studies that have  examined the 
effect of tryptophan depletion on  impulsivity among 
healthy adults, and provide important extensions of that 
work. While two of those studies reported increased 
response initiation impulsivity following tryptophan 
depletion among healthy individuals, those studies 
focused predominantly on testing samples of men.51,52 
The present findings indicate that the effect of trypto-
phan depletion on response initiation impulsivity is evi-
dent in both men and women. Increases in impulsivity 
also have been found when testing response inhibition 
impulsivity following tryptophan depletion in samples 
of aggressive adolescents66 and young men at risk for 
alcoholism;54,55 however, consistent with the present 
study, others have also failed to find similar decreases 
in response inhibition in healthy participants.54 Finally, 
data from this study also indicate that the effects of 
tryptophan depletion increase consequence sensitiv-
ity impulsivity among healthy adults, contributing to 
a small literature that has been inconsistent and has 
focused almost exclusively on individuals with sub-
stance use problems or individuals at risk for develop-
ing substance-related problems. Only three studies have 
examined the effects of tryptophan depletion on conse-
quence sensitivity impulsivity (e.g. delay-discounting 
procedures) among healthy controls. One study using a 
questionnaire-based delay-discounting procedure found 
that tryptophan depletion had no effect on impulsivity,54 
but this method of testing has drawn criticism because 
it requires participants to think about, rather than expe-
rience, the consequences of each choice.73 Of the two 
prior studies that used experiential behavioral testing, 
one found tryptophan depletion had a significant effect 
on consequence sensitivity  impulsivity56 while the other 
did not.57  Notably, the latter study only included twelve 
participants and may not have had sufficient power to 
detect the relatively subtle behavioral effects of trypto-
phan manipulation in healthy individuals; however, the 
former tested a sample of healthy men only and did not 
specify the age range of the participants. Thus, the pres-
ent study adds important information to this limited body 
of  literature and provides further support for the role of 
serotonin in consequence sensitivity impulsivity.

In conclusion, under carefully controlled condi-
tions, this study demonstrated that acute tryptophan 
depletion among healthy adults produced selec-
tive differences in impulsive responding that were 
dependent on the type of impulsivity being tested. 
Having identified these effects in a sample of healthy 
controls, this study lays the groundwork for future 
avenues of research involving other populations or 
other pharmacological agents. For example, because 
alcohol consumption has been shown to affect a 
number of different types of impulsivity among 
normal healthy volunteers,74,75 one logical exten-
sion of the current study would be to investigate the 
effect of tryptophan depletion on alcohol-induced 
impulsivity in a sample of healthy controls. Testing 
how alcohol-induced impulsivity might differ as a 
function of an individual’s underlying serotonergic 
state among healthy individuals, rather than a clini-
cal sample, would provide important information 
about the serotonin-alcohol relationship without 
the inherent interference of underlying differences 
related to clinical state. This type of study would 
provide insight into the role that serotonin plays 
in either mediating or moderating the behavioral 
effects of alcohol. Alternatively, two recent studies 
have used tryptophan depletion to test behavior in 
clinical samples of boys with ADHD and adults with 
self-injurious behavior.67,68 Extending these studies 
to test changes in laboratory-measured behavioral 
impulsivity following tryptophan depletion among 
various clinical populations characterized by prob-
lems with impulsivity (e.g. individuals with alcohol 
or substance use disorders, bipolar disorder, or con-
duct disorder) could provide valuable insight into 
specific behavioral deficits of these samples.
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