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Abstract: This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegen-
erative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products 
are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored 
given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms 
of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in 
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1. Introduction
This review will focus firstly on the tryptophan 
metabolic and catabolic pathways; with particular 
emphasis placed on the tryptophan catabolic path-
way, the kynurenine pathway (KP), and the effects 
of each of its enzymes and products. The cells within 
the brain which have complete or partial expression 
of the KP are then discussed, including the KP in 
inflammatory cells, as there is increasing evidence 
that inflammation plays a role in at least some neu-
rodegenerative diseases. The next section deals with 
the involvement of tryptophan and the KP in neu-
rodegenerative disorders and HIV, first detailing 
the broad and specific pathways for neurodegenera-
tion. Particular neurodegenerative diseases includ-
ing Alzheimer’s disease (AD), Huntington’s disease 
(HD), motor neurone disease, Parkinson’s disease 
(PD) as well as HIV-associated neurocognitive disor-
der (HAND) are discussed emphasizing the evidence 
for the involvement of the KP.

2. Tryptophan Metabolism  
and catabolism
Tryptophan is one of the essential amino acids, criti-
cal for human metabolism. It plays a central role 
in protein synthesis, as well as in the production of 
melatonin, serotonin, and a variety of KP products 
including nicotinamide adenine dinucleotide (NAD+) 
and ultimately niacin (see Fig. 1).

2.1. Tryptophan transport into the brain
Tryptophan is the only amino acid that is bound to 
albumin with approximately 10% being found free in 
plasma.1 Binding to albumin is influenced by several 
factors but especially by the presence of non-esterified 
fatty acids, as well as exogenous factors such as med-
ications, that can displace bound tryptophan. There is 
some evidence for greater dissociation of tryptophan 
from albumin in the cerebral microvasculature, with 
highest dissociation rates occurring under conditions 
of low cerebral blood flow, perhaps regulated partly 
by the sympathetic nervous system.2–4 It is at pres-
ent unclear whether this translates into regional dif-
ferences in tryptophan availability within the brain. 
Free tryptophan is transported from blood across the 
blood brain barrier by a competitive transport carrier 
(L-amino acid transporter 1; LAT-1), which is shared 
with several large neutral amino acids.1 Factors that 

regulate this carrier and which might be disturbed in 
disease states are poorly understood, as are the factors 
determining the rate of tryptophan efflux from the 
brain.5,6 The carrier found in the cerebral vasculature 
is known to have a higher affinity for tryptophan than 
that found outside the central nervous system (CNS). 
Nonetheless, other large neutral amino acids compete 
for the same transporter so that lower concentrations 
of such amino acids facilitate tryptophan transport. 
Once in the brain, tryptophan enters cells by mecha-
nisms that are also unclear though there is some evi-
dence for a transporter in serotonergic neurones7,8 
and pinealocytes.9 It is unclear at present whether the 
LAT-1 and LAT-2 transporters, which are important 
in the bidirectional exchange of tryptophan and kyn-
urenine in most systemic cells, are similarly impor-
tant in brain cells.10

2.2. Tryptophan and protein synthesis
Mammalian cells cannot synthesize tryptophan and 
so rely on its uptake into the cell for protein synthe-
sis. Indeed, tryptophan accounts for approximately 
1.3% of the amino acids in human proteins. Because 
of its critical role in cell function it appears that some 
cells have a “storage mechanism” through which 
production of the cytoplasmic enzyme tryptophanyl-
tRNAsynthetase (TTS) results in the formation of 
complexes of the enzyme with tryptophan.11 Such 
complexes are then directly available for protein syn-
thesis. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) 
and interferon gamma (IFN-γ) are known to induce 
TTS but other modulatory factors remain possible.12,13 
Moreover, the cellular distribution, the relative 
expression of TTS in normal and pathological condi-
tions as well as the duration of tryptophan supply in 
TTS complexes are areas that require exploration.

2.3. Melatonin
Melatonin is an indoleamine synthesized from tryp-
tophan in the pineal gland by pinealocytes. It is also 
synthesised in the retina and outside the brain by 
enteroendocrine cells of the gastrointestinal mucosa, 
lymphoid organs and the bone marrow. Melatonin’s 
chief physiological function appears to be regulation 
of the sleep-wake cycle but it is also an important anti-
oxidant and free radical scavenger.14 Additionally, mel-
atonin has significant immune regulatory functions, 
both cellular and humoral. It stimulates the production 

http://www.la-press.com


Tryptophan pathways in neurodegenerative disease

International Journal of Tryptophan Research 2010:3 123

of natural killer cells, monocytes and leukocytes; 
favours a Th-1 response and increases the produc-
tion of cytokines such as interleukin IL-2, IL-6, IL-12 
and IFN-γ.15 It also plays a role in sexual maturation, 
reproductive behaviour and thermoregulation.16,17

The role of melatonin in neurodegeneration is 
largely speculative at present as it is unclear whether 

levels are significantly abnormal in these diseases. 
However, clinically melatonin supplementation 
appears to have some beneficial effects and is reported 
in AD to improve sleep, reduce “sundowning” and 
possibly slow cognitive impairment.18 There is experi-
mental evidence that melatonin has anti-amyloido-
genic properties;19 but conversely in a rotenone model 
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Figure 1. The catabolic pathway of Tryptophan
note: Production of xanthurenic acid from 3-hydroxykynurenine is not shown on this figure.
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of PD, melatonin appeared to worsen the disease 
state.20 Nonetheless, it is biologically plausible that the 
inflammation associated with neurodegeneration leads 
to melatonin deficiency through KP-mediated trypto-
phan depletion. Such deficiency would be expected to 
compromise melatonin-mediated antioxidant and free 
radical scavenger defences, both of which are impor-
tant in the pathogenesis of neurodegeneration.

2.4. Serotonin
Serotonin is synthesized in the serotonergic neurones 
of the CNS and the enterochromaffin cells of the 
gastrointestinal tract.21 Indeed, the latter is respon-
sible for 95% of the total body’s serotonin synthesis 
and storage.22 Serotonin released into the circulation 
from enterochromaffin cells is rapidly taken up by 
platelets and stored in platelet dense granules, con-
stituting almost all total body circulating serotonin.23 
Serotonin is implicated in the pathophysiology of 
many psychiatric disorders ranging from depression, 
anxiety, obsessive–compulsive disorder to eating 
disorders and dependence.24–26 The association with 
such disorders is principally through serotonin 
deficiency.

Currently, there is no evidence that serotonin has 
a direct role in neurodegeneration. Nonetheless, it 
is tempting to speculate that some of the psychiat-
ric complications of neurodegeneration may have 
their genesis partly through serotonin deficiency in 
turn mediated by tryptophan depletion from KP acti-
vation (see below and Fig. 2). Certainly increased 
tryptophan degradation is linked to increased rates 

of depression and lower quality-of-life in HIV 
patients.27

2.5. The kynurenine pathway
The principal degradative route for tryptophan is the 
KP; about which much remains unknown despite 
the recent burgeoning interest. The KP is rich in 
complexity and subtlety. It differs between species, 
individuals, cells, and according to the agents that 
stimulate it. Species differences have hampered 
rapid progress with the use of knock out mice having 
limited relevance to humans. Differences between 
individuals whilst potentially contributing to vul-
nerability to, or protection from, neurological dis-
eases means that research to elucidate mechanisms 
of the KP involvement in neurodegeneration have to 
be performed without pooling samples from differ-
ent patients. The differential effect of stimuli on the 
cellular expression of the KP is an area that is only 
beginning to be appreciated. As will be discussed in 
more detail below, it is becoming apparent that whilst 
a particular cell may express all the components of 
the KP, the extent to which the component enzymes 
are modified by one stimulus may be different to 
another stimulus. For example, mesenchymal stem 
cells, which express all the KP enzymes, respond 
to IFN-γ stimulation with net quinolinic acid (QA) 
production but interferon ß results in upregulation 
of the distal enzymes of the pathway, favouring the 
degradation of QA.28

Induction of the KP is associated with significant 
immunomodulatory changes for which two non-
mutually exclusive mechanisms have been proposed. 
Firstly, activation of the KP results in tryptophan 
depletion and impairment of the immune response 
through lack of this essential amino acid. Secondly, 
the actions of downstream metabolites of the KP sup-
press the immune system. For example, increased KP 
activity in dendritic cells is associated with complete 
blockage of clonal expansion of T-cells;29 and trypto-
phan depletion and KP activation have been implicated 
in the development of immune tolerance associated 
with pregnancy and persistence of tumours.30

3. The Kynurenine pathway enzymes 
and their products
Most of the work on the KP has focussed on indole-
amine 2,3-dioxygenase (IDO)/tryptophan dioxygen-

Neuroinflammation

TRP
PIC
KYNA
Serotonin

QA
3HK

Figure 2. The Equilibrium of the Kynurenine Pathway in Neuroinflammation.
Abbreviations: 3HK, 3-hydroxykynurenine; KYNA, kynurenic acid; pIc, 
picolinic acid; QA, quinolinic acid; TRp, tryptophan.
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ase (TDO) particularly in relation to the factors that 
can modulate the activity of the latter enzymes. How-
ever, it is becoming clear that the other KP enzymes 
can also be significantly modulated. Furthermore, the 
following discussion is based on the KP enzymes act-
ing “normally” in a variety of disease states. While 
this may be true for the most part there is reason to 
suspect that the KP may be altered in particular cells 
as a result of chronic activation or other processes. 
To illustrate this point, Guillemin et al showed that 
human neurones transformed into neuroblastoma 
cells changed their KP machinery from low net pico-
linic acid (PIC) production to high net QA produc-
tion.31 Similarly, SV-40 transformed human brain 
microvascular endothelial cells have essentially no 
functional KP in contrast to human brain microvas-
cular endothelial cells (Owe-Young et al32 and unpub-
lished data).

The principal component enzymes and products of 
the KP will now be discussed in detail.

3.1. Indoleamine 2,3-dioxygenase
Indoleamine 2,3-dioxygenase is a haem contain-
ing glycoprotein, which has two isoforms, IDO-1 
and IDO-2. It is expressed widely throughout the 
brain and its supporting vasculature but particularly 
within the choroid plexus and pineal gland.33 IDO-
1 is one of the chief cellular mechanisms to com-
bat oxidative stress: superoxide dismutase being 
the only other enzyme that can use superoxide as 
a substrate. The substrates for IDO-1 are broad and 
in addition to tryptophan there are other indoleam-
ines such as tryptamine, serotonin and melatonin. 
Relatively little is known about IDO-2 as it has only 
recently been described. It is thought that it uses 
similar substrates to IDO-1.34 Nonetheless, the clini-
cal significance of IDO-2 at this stage is under some 
doubt.35

Nitric oxide, interleukin-4, peroxynitrite and 
transforming growth factor beta inhibit IDO-1 but it 
is unclear whether these also inhibit IDO-2.36,37 The 
interferons, especially IFN-γ, acting via STAT-1 and 
IRF-1, lipopolysaccharide, tumour necrosis factor 
alpha (TNFα), platelet activating factor, the HIV reg-
ulatory proteins nef and tat, CTLA-4 (via ligation of 
CD80/CD86) and the tumour suppressor Bin1 activate 
IDO-1—again their importance for IDO2 remains to 
be determined.36,38 It seems likely that other factors 

that can regulate the activity of this enzyme will be 
discovered.

3.2. Tryptophan 2,3-dioxygenase
Tryptophan 2,3-dioxygenase (TDO) is very similar to 
IDO-1 with the exception that it is induced by tryp-
tophan, tryptophan analogues and glucocorticoids; 
these essentially have no effect on IDO-1 or IDO-2. 
TDO is inhibited by indoleamines and nicotinamide 
analogues39,40 as well as antidepressants, especially 
tricyclic antidepressant medications and some selec-
tive serotonin reuptake inhibitors.41–46 Systemically, 
the majority of TDO activity is in the liver.

3.3. Kynurenine
Kynurenine (KYN) is the next important KP prod-
uct. Along with the other KP metabolites 3-hydroxy-
kynurenine (3-OH-KYN) and anthranilic acid it can 
cross the blood brain barrier well; whereas kyn-
urenic acid, 3-hydroxyanthranilic acid and QA cross 
poorly.47,48 Transport across the blood brain barrier is 
by the neutral amino acid carrier.47 KYN’s physiolog-
ical concentration in the brain is 2 µM.49 It is metabo-
lized in three distinct ways, serving as a substrate for 
kynureninase yielding anthranilic acid; for kynuren-
ine aminotransferases (KATs) forming kynurenic acid 
(KYNA); and for kynurenine-3-hydroxylase giving 
rise to 3-OH-KYN.

The normal physiological roles for KYN are only 
poorly understood but there is evidence for its impor-
tance in mediating vasodilatation albeit at this stage in 
rabbits.50,51 Nonetheless, given the finding that endo-
thelial cells switch production from kynurenic acid to 
kynurenine under inflammatory signals, there is the 
real likelihood that activation of the KP in endothelial 
cells is important in vascular inflammation.32

3.4. Kynurenine-3-hydroxylase  
and 3-hydroxykynurenine
Kynurenine-3-hydroxylase, also known as kynuren-
ine monoxygenase, produces 3-hydroxykynurenine 
(3-HK) from KYN. Its position in the KP gives it 
substantial significance: its activity principally deter-
mines whether KP activation in the cell will be neu-
roprotective through the generation of kynurenic acid 
or neurotoxic through production of the more distal 
KP metabolites. Kynurenine-3-hydroxylase activity is 
upregulated by the pro-inflammatory cytokine IFN-γ.52 

http://www.la-press.com


Davies et al

126 International Journal of Tryptophan Research 2010:3

3-HK is the substrate for kynureninase, which produces 
3-hydroxyanthranilic acid. Less commonly and proba-
bly less significantly, 3-HK can be processed by KATs 
(see below) to give xanthurenic acid.

3-HK is neurotoxic by being pro-excitotoxic and 
generating free radicals,53,54 though the latter is the 
dominant mechanism in killing cortical and stria-
tal neurones.55–58 Indeed, 3-HK can be converted to 
quinoneimines with the accompanying generation of 
reactive oxygen species;59 however, it is a less potent 
toxin when compared to QA. Uptake of 3-HK into 
the cell is required for neurotoxicity as competition 
with large neutral amino acids can prevent damage by 
blocking uptake.57,60 Furthermore, there is evidence 
that 3-HK inhibits complexes I, II and IV of the mito-
chondrial respiratory chain.61

3.5. Kynurenine aminotransferases
There are at least three isoforms of KAT: I, II, and 
III, which are involved in the transamination of 
L-kynurenine to kynurenic acid (KYNA). In addi-
tion, KAT I and II transaminate glutamine and α-
aminoadipate respectively.62 KAT II is the most 
important in the human brain. Under physiological 
conditions, it is localized mainly in astrocytes,63 but 
it is also present in some neurones in the hippocam-
pus and striatum as well most of the neurones in the 
medulla and spinal cord.64,65 Little KAT activity is 
found in microglia.51 KAT-II is more specific for KYN 
as a substrate. Thus, large amounts of newly produced 
KYNA in the brain can be attributed to KAT-II activ-
ity.66 The novel KAT III has a pH optimum of 8.0 and 
a low capacity to transaminate glutamine or α-ami-
noadipate (respectively the classic substrates of KAT 
I and II). The enzyme is inhibited by aspartate, glu-
tamate, and quisqualate but is insensitive to blockade 
by glutamine.62

3.6. Kynurenic acid
Dependent upon its concentration KYNA is an 
antagonist at four different receptors. It has a par-
ticularly high affinity for the glycine-binding site 
of the NMDA receptor, blocking its activity in low 
micromolar concentrations (IC50 ∼7.9–15 µM).67,68 
Blockade of the glutamate-binding site of the NMDA 
receptor complex requires concentrations 10–20-
times higher than those for the glycine site (EC50 
∼200–500 µM)67, whereas KYNA exhibits a weak 

antagonistic effect on the α-amino-3-hydroxy-5-
methyl-isoxazolepropionate (AMPA) and kainate 
receptors.69,70 A recently identified site of action for 
KYNA is the α-7 nicotinic acetylcholine receptor, 
where it acts in a non-competitive manner (IC50 
∼7 µM).71 NMDA receptors have been found to be 
substantially less sensitive than α-7 nicotinic recep-
tors to KYNA.51 Curiously, KYNA is ineffective as 
an antagonist at the glycine site in cerebellar granule 
cells.72

KYNA thus can potentially antagonize some 
of the effects of QA and other excitotoxins but it is 
noteworthy that in disease states where excess QA 
is produced there is insufficient KYNA to block its 
neurotoxic effects.73 In vitro KYNA inhibits the dopa-
minergic neuronal death on exposure to 1-methyl-4-
phenylpyridinium74 but KYNA penetrates the blood 
brain barrier poorly therefore administration peripher-
ally offers little hope of therapeutic neuroprotection.47 
However, some KYNA derivatives do cross the blood 
brain barrier and have been assessed for their neuro-
protective effect in a rat model.75 The mechanism(s) 
for KYNA catabolism or re-uptake has yet to be 
established and it could yet provide other targets for 
therapeutic intervention.51 Recently KYNA has been 
shown to trigger firm arrest of leukocytes to vascu-
lar endothelium under conditions of flow.76 Therefore 
KYNA may also act as an early mediator for inflam-
matory cell entry into the CNS.

3.7. 3-Hydroxyanthranilic acid
Three-hydroxyanthranilic acid (3-HAA) is the prod-
uct of the catabolism of 3-HK by kynureninase or to a 
lesser extent metabolism of anthranilic acid. 3-HAA 
is metabolised by 3-hydroxyanthralinic acid oxygen-
ase to an intermediate (α-amino-ω-carboxymuconoic 
acid semialdehyde); before a non-enzymatically-
induced rearrangement occurs to form QA. A minor-
ity of 3-HAA is enzymatically metabolised to PIC by 
2-amino-3-carboxymuconate-semialdehyde decar-
boxylase (ACMSD). Elevated levels of 3HAA have 
been documented in several neurodegenerative dis-
eases.61 Noted direct effects of 3-HAA include in vitro 
apoptotic cell death of neurones,57 macrophages 
and monocytes.77 The cellular apoptosis is thought 
to stem from mitochondrial dysfunction as 3-HAA 
inhibits mitochondrial complexes I and II.61 Non-
toxic levels of 3-HAA may have a role in inhibition of 
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homeostatic proliferation of CD8+ T-cells but 3-HAA 
does not affect antigen stimulus-driven proliferation 
of these cells.78 3-HAA also inhibits nitric oxide syn-
thetase (although not in microglial cells) and nuclear 
factor κB expression;79,80 of which the former could 
result in positive feedback and upregulation of IDO 
activity, which is inhibited by nitric oxide, as well as 
neuronal dysfunction through impairment of nitric 
oxide’s neurotransmitter function.36

3.8. Xanthurenic acid
A minority of 3-HK is metabolised to xanthurenic 
acid by KAT and subsequently to 8-hydroxyquinaldic 
acid. The function of xanthurenic acid is not clear. It 
may act as both an antioxidant and pro-oxidant.81 It 
is pro-apoptotic accelerating caspase activation82 and 
recently has been implicated as a novel neurotrans-
mitter in the rat brain, possibly through the action of 
a specific synaptic receptor.83

3.9. Quinolinic acid
QA is found in nanomolar concentrations in healthy 
brain tissue. Its neurotoxicity is mediated through sev-
eral pathways. It is only a weak competitive agonist of 
NMDA receptors acting on the subgroup containing the 
NR2A and NR2B subunits;84,85 where it has a low recep-
tor affinity (ED50  100 µM). Therefore levels of QA 
must be raised by several orders of magnitude to exert 
excitotoxic effects via NMDA receptors.51 However, 
QA can cause stimulation of NMDA receptors indepen-
dently of its agonist action through inhibiting astrocytic 
glutamate uptake, increasing synaptosomal release and 
reducing its catabolism by astrocytes through inhibit-
ing glutamine synthase activity.86,87 Alternative routes 
for neurotoxicity include production of reactive oxygen 
species, mitochondrial dysfunction and lipid peroxida-
tion.88–90 This is supported by the observation that free 
radical scavengers and anti-oxidants reduce QA-induced 
neurotoxicity.91–93 Nitric oxide potentiates QA-induced 
lipid peroxidation90 and 3-HK and 6-hydroxydopamine 
act synergistically with QA causing increased neurotox-
icity.36 Levels of QA only slightly greater than that found 
in healthy brain tissue can cause neurotoxicity when 
cells are exposed for several hours94–96 or weeks;97 with 
some neurones being damaged after exposure to only 
100 nM QA.98,99 Concentrations of 350 nM for 5 weeks 
were shown by Kerr et al100,101 to induce changes in the 
neuronal cytoskeleton, which in turn result in dendritic 

varicosities and damaged microtubules.60,102 As the only 
mechanisms for removal of QA appear to be through 
the blood stream or further metabolism in the KP path-
way, acute rises in QA concentration may be particu-
larly toxic for neurones whereas more subacute rises 
better tolerated.60 Spinal neurones are particularly sensi-
tive to QA with approximately half dying when exposed 
to concentrations of 100 nM.36 Cortical neurones have 
varying susceptibility, with the expression of low levels 
of Bcl-2-i being reported to correlate with their vulner-
ability to QA neurotoxicity.103 Differences in neuronal 
vulnerability to QA-induced NMDA receptor-mediated 
neuronal apoptosis may be of developmental impor-
tance in shaping maturation of the CNS.60 An indirect 
mechanism through which QA might exert neuro-
toxicity involves S100ß. Activated astrocytes release 
the calcium-binding protein S100ß, which in fact can 
upregulate macrophage QA production; and conversely 
QA can induce astrocytic S100ß production.104 Whilst a 
low concentration S100ß is neuroprotective at micromo-
lar concentrations it can induce astrocytic and neuronal 
apoptosis.105,106 Lastly, QA is toxic to oligodendrocytes 
in vitro, where after exposure to mM concentrations of 
QA the cells undergo apoptosis.107

3.10. 2-amino-3-carboxymuconate 
semialdehyde decarboxylase
ACMSD, also known as picolinic acid decarboxyl-
ase, is a critical enzyme in the KP as it directly affects 
the equilibrium between QA and PIC. Cloning and 
sequencing of the enzyme reveals it to have little 
homology with any other mammalian enzyme and 
it is expressed at low levels in mouse brain tissue.108 
Two alternatively spliced transcripts are recognised in 
humans (ACMSD-1 and 2), of which only ACMSD-1 
has enzymatic activity.109 It can be inhibited by QA, 
PIC and KYN.109 A low protein or low polyunsaturated 
fatty acid diet will down regulate ACMSD expres-
sion, whereas adrenaline, glucocorticoids, female hor-
mones and diabetes lead to up regulation.108 Recent 
research has ascertained differences in expression of 
ACMSD by human neurones in health and diseased 
states, which is discussed further in section 4.31

3.11. picolinic acid
PIC within the brain is an endogenous neuroprotec-
tive compound that human primary neurones are able 
to produce in µM concentrations.110 Levels rise with 
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age and secretion into CSF follows a diurnal pattern 
being found in highest concentration between 11 pm 
and 4 am.111 PIC protects both cholinergic and dopa-
minergic neurones against QA neurotoxicity;112,113 
and in nM concentrations it protects against QA and 
kainic acid-induced neurotoxicity after injection 
in rat brains.114,115 PIC is also considered the major 
endogenous metal chelator within the brain; being 
the most efficient chelator for minerals such as chro-
mium, zinc, manganese, copper, and iron. This may 
have relevance for several neurodegenerative dis-
eases, including AD and PD, where such metals are 
thought to be cofactors for protein aggregation; and 
for which strategies for their chelation are proposed 
as therapy.116,117 PIC has immunomodulatory effects 
upon macrophages potentiating their effects against 
Mycobacterium tuberculosis, stimulating a Th-1 
response;118 one mechanism for this action implicates 
the role iron chelation.119 PIC has also been reported 
to have anti-viral properties inhibiting replication of 
both HIV and herpes simplex virus in cell culture.120

3.12. Quinolinic acid phosphoribosyl 
transferase
Quinolinic acid phosphoribosyl transferase (QPRT) 
metabolises QA to nicotinic ribonucleotide. Within 
the CNS the enzyme is found predominantly in glial 
cells and is located intracellularly within cytoplasmic 
bodies, which may prevent intracellular degradation 
of QA or allow secretion of the enzyme to counteract 
elevated extracellular concentrations of its substrate.36 
QPRT activity does not appear to be inducible, rather 
it is constitutively expressed and therefore in vivo it 
may be saturated resulting in accumulation of QA and 
consequent toxicity.121

3.13. Nicotinamide adenine dinucleotide
NAD+, a pyridine nucleotide, is one of the end prod-
ucts of the KP and is essential for cell survival.60,122 In 
particular it is a cofactor for the DNA repair enzyme 
poly(ADP-ribose) polymerase (PARP)—an essen-
tial intracellular enzyme for repair of DNA damage 
caused by reactive oxygen species. Excessive activ-
ity of PARP causes intracellular NAD+ depletion and 
contributes to cell death. Therefore some investigators 
have proposed that the KP is a cellular protective path-
way as NAD+ is a metabolic product. However, data 
from Braidy et al123 demonstrate that at least in human 

astrocytes and neurones this is only partly correct. The 
KP product QA at concentrations greater than 150 nM 
leads to a progressive dose dependent decrease in 
intracellular NAD+ whilst concentrations below 
50 nM were associated with an increase in NAD+.

4. cellular Representation of the 
Kynurenine pathway in the Brain
The cellular location of the KP in the brain is only 
partly understood (see Fig. 3). It is complete in cells 
of monocytic lineage including macrophages and 
microglia.29,124 Macrophages have greater capacity to 
produce QA than microglia and express higher levels of 
IDO, kynureninase and kynurenine-3-hydroxylase.110 
The pathway is partly present in human astrocytes,125 
neurones110 and endothelial cells126 as key enzymes 
are not expressed. Preliminary data indicates in that 
the KP is complete and active in both mesenchymal 
and neural stem cells.

Astrocytes lack kynurenine-3-hydroxylase and 
therefore produce only early metabolites KYN, in µM 
concentration and KYNA in nM concentration. Astro-
cytes do not produce QA but instead can up take it and 
catabolise it.126 Similarly brain microvascular endo-
thelial cells do not express kynurenine-3-hydroxylase, 
3-hydroxyanthranilic acid oxygenase and ACMSD, 
which result in net production basally by the KP of 
KYN or with induction by IFN-γ, KYNA.32 In con-
trast, blood brain barrier pericytes do not produce 
KYNA and only KYN after IFN-γ induction but do 
secrete low levels of the distal KP metabolite PIC; 
although kynurenine-3-hydroxylase has not been 
shown in these cells.32 Both astrocytes and blood brain 
barrier endothelial cells express low levels of QPRT 
and thus have limited ability to metabolise and miti-
gate against the toxic effects of exogenously produced 
QA.32,126 Importantly, cells of the blood brain barrier 
are capable of transducing systemic inflammation, 
without breakdown of blood brain barrier integrity, 
as basolaterally excreted KYN can be metabolised by 
brain microglia to produce QA.32

Neurones can express both the enzymes IDO-1, 
IDO-2 and TDO as demonstrated in the cytoplasm 
immunohistochemically in contrast to microglia, 
which do not express TDO.31 There appears to 
be a reciprocal relationship between TDO and 
IDO-1 in primary neurones whereby IFN-γ-induced 
IDO-1 expression is associated with a decrease in TDO 
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production. Human neurones do not produce QA, 
instead expressing ACMSD that catalyses conversion 
of α-amino-ω-carboxymuconoic acid semialdehyde 
to PIC.31 However, malignant cells of neuronal origin 
(SK-N-SH neuroblastoma cell line) can produce QA. 
Human and rat neurones express KAT-I, -II, and -III 
and thus can produce neuroprotective KYNA.31,127 
Rat permanently immature oligodendrocytes express 
KAT-I and -II and produce KYNA but this has yet 
to be reported in human oligodendroglia.128 Whilst 
it is clear that malignant transformation can change 
neuronal expression of the KP it is less clear whether 
this can occur with different anatomical localisation 
within the brain or with changes associated with other 
disease states.

5. General pathogenetic Framework 
for neurodegenerative Diseases
While there are many aspects of neurodegenerative 
diseases that are specific to the disease in question, 

there are mechanisms that are common to most, if 
not all, of them. A frequently articulated model is that 
there is a breakdown of cellular defence mechanisms 
that then leads to a cascade of damage. In broad terms, 
a pathogenic insult, which in the case of most neuro-
degenerative diseases often appears to be a misfolded 
protein, leads to activation of cellular defence path-
ways. These include heat shock proteins, endoplas-
mic reticulum chaperones, the ubiquitin-proteasome 
complex, autophagy, possibly the KP through pro-
duction of PIC, and the P-glycoprotein system. Most 
of these defences are well known and documented 
but the importance of PIC is only emerging. PIC is up 
regulated in a variety of disease states,129 and as men-
tioned previously, it is the most potent endogenous 
metal chelator and therefore may be important in cel-
lular defence against the effects of protein misfold-
ing.130 In addition it is increasingly recognised that 
neurodegeneration is accompanied by an inflamma-
tory immune response.

Figure 3. Current Understanding of the Kynurenine Pathway in Brain Inflammation.
Abbreviations: α-7NAchR, α-7 nicotinic acetylcholine receptor; 3HK, 3-hydroxykynurenine; LAT-1, L-amino acid transporter 1; L-KYN, L-kynurenine; 
KYNA, kynurenic acid; IDO-1, Indoleamine 2,3-dioxygenase 1; NAD+, nicotinamide adenine dinucleotide; NMDAR, NMDA receptor; pIc, picolinic acid; 
QA, quinolinic acid; QpRT, quinolinic acid phosphoribosyl transferase; L-TRp, tryptophan.

Monocyte Macrophage

IFN-γ

LAT-1

L-TRP

L-TRP

L-KYN

L-KYN

Infiltrating Macrophage or
Microglial cell

L-KYN

QA

KYNA

NAD+

Q PRT

IDO-1

IDO-1

α7NAchR

QA

QA

Neuroprotection

Transport
system?

Stimulation
QA uptake
QA catabolism (saturable)
Stop glutamate uptake & recycling
Astrogliosis (<500nM)
Apoptosis (<500nM)

QA uptake & accumulation
Tau Phosphorylation

+

Neurone

TRP

TRP

GRP35ICAM-1

QA

LAT-1

NMDAR

Neurotoxicity

Gliotoxicity

Oligodendrocyte

LAT-1
Lymphocyte

BLOOD

Astrocyte

BRAIN

BBB

Activated

http://www.la-press.com


Davies et al

130 International Journal of Tryptophan Research 2010:3

Pathologically there is evidence in many neurode-
generative diseases for disturbance in these cellular 
defence pathways. In AD, PD and motor neurone dis-
ease inhibition of the ubiquitin-proteasome complex 
occurs;131,132 and evidence from several investigators 
points to HIV inhibiting this system as well.133–135 
Autophagy is inhibited by HIV and in neurodegener-
ative diseases.136–138 Furthermore, dysfunction of the 
P-glycoprotein system is thought to have a role in the 
pathogenesis of some neurodegenerative diseases, 
most particularly PD through its role in the removal 
of potential toxins,139,140 and there is some evidence 
that it is important in the normal clearance of amy-
loid from the brain.141 Interestingly, P-glycoprotein 
expression is deliberately inhibited in HIV therapy 
to enhance the efficacy of particular antiretroviral 
agents, the protease inhibitors, and it is possible, but 
remains to be established, that such inhibition could 
lead to the accumulation of amyloid within the brain 
with consequent tissue damage.

Oxidative stress is increasingly thought to be a 
final common pathway for several neurodegenerative 
diseases such as AD in addition to HAND.142,143 Fur-
thermore, nitrosative stress with peroxynitrite forma-
tion leading to modification of tyrosines in proteins is 
considered to enhance the aggregation of α-synuclein, 
which in turn is pathogenically significant in PD as 
well as HAND.144,145

Evidence of increased inflammation is common to 
many neurodegenerative diseases and will be reviewed 
by syndrome in section 6; however, common themes 
exist. For instance, immune activation can be inter-
preted from two standpoints: whether inflammation is 
“beneficial” and a protective response to damage, or a 
detrimental pathological process. Following acute or 
chronic exposure there is evidence to indicate differ-
ences in immune response to cytokines. For instance, 
chronic exposure of microglia to monocyte chemoat-
tractant protein-1 (MCP-1), or lipopolysaccharide, is 
associated with a more neurotoxic microglial pheno-
type while acute exposure is linked to a more phago-
cytic phenotype.146 The increase in immune activation 
products, especially MCP-1, as found in chronic neu-
rodegenerative diseases is therefore likely to render 
a more neurotoxic microglial environment. Activa-
tion of microglia and monocytes can be modulated 
by mutations affecting the innate immune system; 
for example loss of function of Toll-like receptor-4 

reduces microglia activation to amyloid plaques in 
a cell culture model AD.147 Conversely, decreased 
immune surveillance, for which there is evidence in 
AD, perhaps representing a “premature immunose-
nescence”, might hasten accumulation of neurotox-
icity through failure to remove toxic products.148 
Lastly, the blood brain barrier is frequently impaired 
in both HAND and neurodegenerative diseases, 
which might allow access to the CNS to neurotoxic 
compounds.149,150

The pathogenic insult and the defence mecha-
nisms are in a dynamic equilibrium until the bur-
den of the insult exceeds the defence capacity or the 
defence pathways become exhausted. The conse-
quences then are the activation of further inflamma-
tion, excitotoxicity, oxidative and nitrosative stress, 
mitochondrial dysfunction, and transcription dys-
regulation. The inter-relationships among these are 
complex and often bi-directional. Nonetheless, the 
end result is cell dysfunction and death, and conse-
quently, neurodegeneration.

6. The Role of the Kynurenine 
Pathway in Specific Diseases
6.1. Alzheimer’s disease
AD, an age-related neurodegenerative disorder with 
progressive loss of memory and deterioration in cog-
nition, is characterized by extracellular plaques of 
aggregated beta-amyloid (Aβ), and intracellular neu-
rofibrillary tangles that contain hyperphosphorylated 
tau protein. Inflammation is a hallmark of the neuro-
pathology of AD; activated astrocytes and microglia 
surround plaques and elevated levels of microglial-
derived inflammatory cytokines are found within AD 
brains.151 The evidence for involvement of the KP in 
AD may be categorized into direct and indirect or 
circumstantial.73 Direct evidence may be found sys-
temically as well as in the AD brain. AD patients 
show decreased serum levels of tryptophan, which 
correlates with the level of cognitive impairment, 
increased serum KYN, and increase in the KYN/tryp-
tophan ratio.152,153 Acute tryptophan depletion is asso-
ciated with worsening of cognitive function in AD, 
illustrating the importance of serotonergic function in 
this disease.154 In AD CSF levels of KYNA are lower 
than controls but there are no significant differences 
in CSF QA concentration between these groups.155 
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However, KYNA is elevated throughout the brain but 
to greatest extent in the caudate and putamen, where 
in addition, an increase in KAT-1 is found.156 Further-
more, using an immunohistochemistry triple staining 
method, there is evidence for IDO over-expression 
and QA over-production in microglia, astrocytes and 
neurones within sections of the medial temporal lobe, 
frontal and cingulate cortex of AD brains.157 Microg-
lial and astrocytic expression of IDO and QA are 
highest at the perimeter of senile plaques; but in addi-
tion, QA staining was observed within the neuronal 
cell body and granular deposits as well as uniformly 
labelling neurofibrillary tangles. Laser capture micro-
dissection applied to AD brain hippocampal sections 
has allowed demonstration that newly formed senile 
plaques, which are characterised by marked immune 
activity with high density of microglia/macrophages, 
contain very high amounts of QA, in contrast to 
those found at the end stage of AD.158 Immunohis-
tochemistry also reveals co-localisation of QA with 
hyperphosphorylated tau—the intracellular patho-
logical hallmark of AD. In vitro the amyoidogenic 
fragment of Aβ (Aβ1-42), but not another Aβ frag-
ment or prion peptides, stimulates increased QA 
production by human primary microglia and macro-
phages through induction of IDO.159 Within primary 
cultures of neurones, pathophysiological levels of 
QA increase tau phosphorylation and upregulate 10 
neuronal genes associated with AD.102 As tau phos-
phorylation is a prerequisite for neurofibrillary tan-
gle formation, upregulation in vivo of phosphorylase 
activity might be pathophysiologically significant in 
AD. Interestingly, the AD drug and NMDA recep-
tor antagonist memantine inhibits the QA-mediated 
increased tau phosphorylation in vitro. Therefore the 
effect of QA on major tau phosphorylases is likely to 
be glutamatergic-mediated.

Indirect evidence for the role of the KP in AD 
relate to observations of QA metabolism associated 
with advancing age and the known attributes of the 
KP in cells whose activation is associated with AD. 
It can be subdivided into processes potentially asso-
ciated with the neurodegeneration, or those exerting 
a potentially functional effect. For example, elevated 
levels KYNA, an ionotropic glutamate receptor 
antagonist, might impair memory formation as the 
physiological basis of memory requires activation of 
these receptors.51 Ageing is associated with increasing 

brain levels of QA and AD with blood brain barrier 
dysfunction.150,160 Microglia and astrocytes, when 
activated as occurs in AD, show upregulation of 
the KP. QA is known to inhibit glutamate uptake by 
astrocytes that might enhance excitotoxic damage to 
neurones in AD.86 Interestingly the NR1/2A or 2B sub-
units of the NMDA receptor, on which QA acts, show 
altered expression in the hippocampus and entorhinal 
cortex of AD.161 Furthermore, QA can induce IL-1b 
production by astrocytes and macrophages, which 
can promote neuronal synthesis and processing of 
Aß.162 As discussed above, QA can promote produc-
tion of reactive oxygen species and lipid peroxidation 
as well as promoting mitochondrial dysfunction in 
the brain. AD is associated with increased markers of 
oxidative stress and products of lipid peroxidation in 
CSF,163,164 as well as reduced levels of complex IV in 
the electron transport chain indicating mitochondrial 
dysfunction.165 Therefore circumstantial evidence 
exists implicating QA indirectly in AD through con-
tributing to excitotoxic neuronal damage, promotion 
of oxidative stress and increased Aß production and 
processing.

6.2. HIv-associated neurocognitive 
disorder
Cognitive changes in patients infected with the human 
immunodeficiency virus type-1 (HIV) are common, 
forming a spectrum from asymptomatic impairment to 
dementia, and collectively are described as HAND.166 
Prior to the advent of combined anti-retroviral therapy 
approximately one-third of patients with advanced 
HIV disease were demented.167 In resource-rich coun-
tries with the widespread availability of combined 
anti-retroviral therapy the incidence of HIV demen-
tia has fallen but milder forms of HAND continue to 
occur. Clinically HAND is a syndrome characterised 
by impairments of motor functioning, behaviour and 
cognition. Pathologically, the highest burden of dis-
ease is found within the frontal lobes and basal gan-
glia, where marked atrophy can be found as well as 
subcortical white matter changes. Microscopically, 
mononuclear inflammatory cell infiltrates, multinucle-
ated giant cells, astrocytosis, activated microglia, loss 
of dendritic arbour and neuronal loss are seen.168–170 
However, the burden of HIV brain infection does not 
reflect the degree of inflammation or cognitive impair-
ment;171 and within the brain, productive HIV infection 
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only occurs in cells of monocyte lineage.172 Instead, 
a stronger correlation is found between markers of 
inflammation, such as microglial activation or mark-
ers of immune activation in CSF, and impairment.173,174 
Therefore, indirect viral-initiated and driven mecha-
nisms are key to the pathogenesis of HAND; puta-
tively mediated through the toxic products of HIV or 
activated inflammatory cells.

The evidence for involvement of the KP in HAND 
is both direct and indirect. Significantly elevated 
CSF levels of QA are found in adults (150-fold 
increase) and children with HAND, which correlate 
with cognitive deficit, but CSF KYNA levels are not 
altered by such magnitude compared to controls.175–178 
Both serum and CSF tryptophan levels are reduced 
and KYN to tryptophan ratio increase with disease 
progression.179,180 Treatment with one or more anti-
retrovirals is associated with a fall in CSF QA and 
increase in serum and CSF tryptophan; and this fall 
correlates with decrease in CSF HIV viral load, indi-
cating a strong relationship between QA and active 
infection.175,181,182 Studies of post mortem brain tis-
sue from patients with HIV dementia show highest 
QA levels in patients with more severe infection, 
and regionally, the deep grey matter had the highest 
QA concentrations.183 Others have reported elevated 
brain levels of neuroprotective KYNA in the frontal 
cortex and cerebellum accompanied by elevation of 
KAT-I and II in frontal cortex and just KAT-I in cer-
ebellum.184 Regional variations in NMDA receptor 
subtype and their susceptibility to QA’s agonist effect 
may be important in accounting for the regional pat-
tern of disease seen in HIV dementia.121 The NMDA 
receptor is a tetramer consisting of variable combina-
tions of subunits. QA shows greatest agonist activity at 
the NMDA receptors containing the NR1 plus NR2A 
or NR2B subunits. These combinations of subunits 
within NMDA receptors are found to predominate 
in the basal ganglia but are expressed at low levels 
in areas of the brain seldom affected in HIV demen-
tia, such as the brain-stem or cerebellum.185 Within 
the basal ganglia NMDA receptor function is inte-
gral to neuronal circuitry controlling motor function. 
Therefore, these observations might link QA with the 
pathological and clinical phenotypic observations of 
HAND.

Indirect evidence of a pathogenetic role for QA in 
HAND relate to the observations of the effect of QA 

on neurones and astrocytes in cell culture, the effect 
on the KP by the inflammatory milieu described in 
HAND, and the relationship of macrophage-tropic 
HIV to the KP. As described above QA can induce 
neuronal necrosis and apoptosis both of which are 
well described in the neuropathology of HIV demen-
tia. Furthermore, proinflammatory cytokines, such 
IL-1b and IFN-γ, which induce IDO causing QA pro-
duction, are elevated in the brains and serum of HIV 
patients.186,187 In fact, QA may amplify the inflamma-
tory process by inducing astrocytes to produce large 
amounts of MCP-1, resulting in increasing ingress 
of HIV-infected monocytes.121 Although this may 
be “double-edged” as MCP-1 is neuroprotective for 
neurones and astrocytes.188 Macrophage-tropic HIV 
is necessary, but not sufficient alone, for HAND. Sub-
sets of macrophage-tropic HIV are both neurotropic 
and lead to QA production further support the impor-
tance of the KP in HAND.121,189 In addition to the 
potential neurotoxicity of KP activation, QA produc-
tion amplifies infection through upregulating CCR5 
receptor expression on macrophages and microglia 
and CXCR4 expression on astrocytes thereby facili-
tating HIV infection.121

Not only are HIV proteins (such as gp120, tat, vpr 
and nef) directly neurotoxic,190–192 but tat, vpr and nef 
induce QA production by macrophages.193 Further-
more, the effect of tat on astrocyte IDO-1 expression 
varies according to the clade of HIV from which the 
protein originates, with greater activity being asso-
ciated with the more neurotoxic strain. However, 
the HIV envelope glycoprotein gp120 can stimulate 
macrophages to produce neurotoxic factors without 
induction of the KP.194 Therefore other macrophage 
neurotoxicity pathways remain to be elucidated in 
addition to the KP.

6.3. Huntington’s disease
HD is an autosomal dominant neurodegenerative 
disease characterised by a movement disorder and 
cognitive decline. The genetic locus for the dis-
ease is on chromosome 4 where an expansion of a 
trinucleotide repeat is found in the gene encoding 
huntingtin. Neuropathologically the disease demon-
strates disproportional loss of striatal medium-sized 
spiny GABAergic neurones as well as evidence of 
microglia and astrocytic activation. The microglial 
activation can be assessed non-invasively through 
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positron emission tomography, using a specific 
ligand (11C-[R]-PK11195), which correlates with dis-
ease severity but also the finding that abnormalities 
precede the onset of symptomatic neurological dis-
ease.195,196 Interest in the role of KP in the pathogen-
esis of HD stems from the observation that injection 
of QA into rat striatum shows histological and neu-
rochemical similarities to the disease.197,198 However, 
elevated levels of QA are not found in post mortem 
brain tissue199 or CSF200 from HD patients late in the 
disease in contrast to 3-HK;201 although elevated 
brain levels of QA, KYNA and 3-HK are reported 
early in the disease,202 paralleling findings in a mouse 
HD model.203 Elevated levels of 3-hydroxyanthranilic 
acid oxygenase but not of KAT or kynurenine-3-
hydroxylase have been found in HD, where eleva-
tion in the former enzyme correlates with elevated 
QA levels204 and it has been suggested that this might 
relate to 3-HK induction.60 Furthermore, there is evi-
dence of systemic differences in the KP amongst HD 
patients. Elevation in the KYN/tryptophan ratio is 
reported indicating greater IDO activity; but there is 
no evidence to suggest increased KYNA production 
from this is a compensatory neuroprotective mea-
sure.205 In fact, within the brain in HD low levels of 
KYNA and its synthetic enzymes KAT-I and -II have 
been found, which through loss of the neuroprotec-
tive benefit of their product may also contribute to 
HD pathogenesis.206,207 Furthermore, deletion of 
KAT-II in mice results in potentiation of the neuro-
toxic effect of striatal QA injection.208

Recent work has begun to link the perturbations 
in the KP noted in HD to the known genetic basis 
for the illness. Polyglutamine repeat diseases are 
often associated with pathogenetic changes caused 
by toxic gain of function of the mutant protein. To 
this end mutant huntingtin is known to cause tran-
scriptional abnormalities in neurones.209 Furthermore, 
it has been demonstrated in a yeast model that mutant 
huntingtin can activate the KP, which can be abro-
gated by an inhibitor of histone deacetlyase Rpd3.210 
However, yeast with kynurenine-3-hydroxylase and 
3-hydroxyanthranilic acid oxygenase gene knockouts 
are resistant to the KP stimulating effect and toxicity 
of the protein; whereas those lacking KAT or a gene 
that encodes an enzyme key to synthesising NAD+ 
from nicotinic acid result in increased toxicity.210 Thus 
enzyme knockouts resulting in reduced QA or 3-HK 

production prevent huntingtin toxicity. In contrast, 
KAT knockouts inhibit production of neuroprotective 
KYNA, hence worsening mutant huntingtin toxicity. 
Inhibition of NAD+ production from nicotinic acid 
is thought likely to upregulate the KP, consequently 
causing increased huntingtin toxicity.

6.4. Motor neurone disease/ 
amyotrophic lateral sclerosis
The commonest cause of adult-onset motor neurone 
disease is amyotrophic lateral sclerosis (ALS), which 
is a progressive disease resulting in degeneration 
both of upper and lower motor neurones. Clinically 
the disease is characterised by the onset of progres-
sive weakness that may affect limb, bulbar and dia-
phragm musculature; however, cognitive deficits can 
occur in some patients. The aetiology is unknown in 
the majority with only a minority (∼10%) having a 
genetic cause. The majority of patients with genetic 
forms of ALS have mutations affecting the super-
oxide dismutase gene indicating the importance of 
oxidative stress to the disease pathogenesis. To that 
end only one medication has benefit, albeit very 
modest, in sporadic ALS—riluzole—that targets 
glutamatergic excitotoxicity. In sporadic disease and 
disease models dysfunction of protein aggregation, 
mitochondria and axonal transport can be found.211 
Furthermore, there is evidence for immune activa-
tion in ALS as levels of TNFα, IL-1β, IL-6, IFN-γ, 
and prostaglandin E2 are elevated, some of which 
can upregulate the KP.211 Previously published data 
reported increased CSF KYNA in patients with bul-
bar onset ALS with severe impairment, but in other 
clinical phenotypes of ALS lower serum KYNA was 
associated with increased disease severity.212 Recently 
published data demonstrates definite activation of the 
KP in ALS showing elevation in CSF and serum con-
centrations of tryptophan, KYN and QA, and reduc-
tion in serum PIC.213 Immunohistochemical studies 
show activation of microglia with increased neuronal 
and microglial production of IDO and QA. Therefore 
evidence exists to indicate a role for the KP in this 
degenerative disease, suggesting imbalance favour-
ing net production of neurotoxic compounds. The 
explanation for the raised tryptophan levels, with KP 
activation, and whether microglial-derived QA plays 
a role in excitotoxic neuronal death in ALS remains 
to be established.
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6.5. Multiple sclerosis
The role of the KP in multiple sclerosis is reviewed 
elsewhere in this edition of the journal (see Lim et al) 
and therefore is not discussed further in this review.

6.6. parkinson’s disease
PD is an idiopathic neurodegenerative disease clini-
cally characterised primarily by a movement disor-
der, although increasingly non-motor symptoms are 
recognised, such as cognitive impairment and auto-
nomic nervous system dysfunction. PD pathologi-
cally is associated with loss of dopaminergic neurones 
projecting from the substantia nigra pars compacta in 
the brain-stem to the basal ganglia; as well as loss of 
ascending cholinergic, noradrenergic and serotoner-
gic neurones from other brain-stem nuclei. Intracel-
lular proteinaceous inclusions named Lewy bodies are 
found in dopaminergic neurones within and outside 
the CNS in PD. Lewy bodies consist of aggregates 
of α synuclein, ubiquitin, neurofilaments and α B 
crystalline, which are thought to occur as a result of 
dysfunction of the intracellular proteasomal system. 
Dopaminergic neurones of the substantia nigra pos-
sess NMDA receptors and receive glutamatergic input 
from multiple cortical and subcortical structures. The 
exact pathogenic mechanisms resulting in PD have yet 
fully to be ascertained. However, there is evidence to 
indicate roles for mitochondrial dysfunction, increased 
oxidative stress, and production of endogenous exci-
totoxins.51 Rarely is the disease purely hereditary in 
nature and environmental factors are thought likely to 
play key roles in pathogenesis. Increasingly, inflam-
mation is recognised pathogenetically in PD both 
histopathologically as well as through measurement 
of inflammatory markers in blood, CSF and brain.214 
Therefore the potential for involvement of the KP in 
PD is wide. However, in contrast to animal models of 
HD, QA injection into brain produces relative sparing 
of damage to the substantia nigra compared to striatal, 
pallidal and hippocampal structures.215

Evidence for mitochondrial dysfunction in PD is 
found systemically in platelets where complex 1 activ-
ity is reduced216 and similarly post mortem in tissue 
from the substantia nigra.217 Such mitochondrial dys-
function is thought to predispose dopaminergic neu-
rones to excitotoxic dysfunction, particularly through 
glutamatergic stimulation, which can be modulated by 
the KP.218 Inflammation is recognised in PD to affect 

the substantia nigra where activated microglia and 
astrocytes are found;219,220 and throughout the brain 
increased CD8+ and CD4+ T-cells are reported com-
pared to controls.221 Of particular interest is the reported 
low density of astrocytes in healthy individuals in 
areas associated with greatest pathological change in 
PD, although astrocytes numbers are increased in dis-
eased substantia nigra in PD.220 Hypothetically, consti-
tutively low astrocyte density in the substantia nigra 
might predispose to reduced potential for free radical 
detoxification. Despite an increased number of reactive 
astrocytes in the substantia nigra at death in PD patients 
and the role of these cells in KYNA production, post 
mortem studies have revealed reduced levels of KYNA 
in the substantia nigra and frontal cortex with increased 
levels of 3-OH-KYN.222 This deficit might arise from 
loss or blocking of astrocytic KP activity (as these 
cells lack kynurenine-3-hydroxylase) with elevated 
levels of 3-OH-KYN arising from direction of the KP 
in cells expressing the full pathway, such as microg-
lia, away from KYNA production. Decreased KAT-I 
levels in mouse substantia nigra and KAT-II in rat cor-
tical slices have been described in animal models of 
PD;223,224 with the reduced levels of KAT-I found in neu-
rones of the substantia nigra but conversely increased 
KAT-I–expressing astrocytes reported.225 Pathogeneti-
cally, increased levels of 3-OH-KYN can lead to greater 
neurotoxicity through heightened oxidative stress. 
Whereas low levels of KYNA could reduce antagonism 
of NMDA receptors and consequently increase exci-
totoxicity with pathological consequences, as in vitro, 
NMDA receptor activation is associated with substan-
tia nigra dopaminergic neurone death.226 Furthermore, 
reduced KYNA antagonism of NMDA receptors might 
also be of pathogenic importance as the neurotoxic-
ity of putative environmental causes of PD, as mod-
elled by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), are thought to be mediated by glutamater-
gic excitotoxicity. However, in rats MPTP can itself 
reduce KYNA levels through inhibition of KAT-1 and 
II.224 A further twist in explanation of the post mortem 
reduction in KYNA levels in PD substantia nigra is 
that exogenous levodopa administration to rats low-
ers KYNA levels through inhibition of KAT.227 There-
fore treatment itself might affect KYNA levels, albeit 
that this could still enhance neurotoxicity. However, 
loss of KYNA antagonism at α-7 nicotinic receptors 
may be of benefit in PD.71 Stimulation of microglial 
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α-7 nicotinic receptors inhibits their activation,228 and 
nicotinic stimulation reduces dopaminergic neuronal 
death when co-cultured with microglia.229 It has even 
been hypothesised that the apparent protective effect 
of smoking against PD results from nicotinic inhibition 
of microglial activation and that selective α-7 nicotinic 
receptor agonists might be candidate PD treatments.214

7. conclusion
Neurodegenerative diseases and HAND share many 
common potential pathogenetic mechanisms. We 
have summarised the increasing evidence not only 
that the KP pathway is activated in a wide variety 
of neurodegenerative diseases but also that changes 
in the dynamic equilibrium between its neurotoxic 
and neuroprotective products results in neural tissue 
damage. The study of the KP is complicated by its 
multiple layers and changes in its dynamics between 
health and disease. However, ultimately it is hoped 
that the KP will offer avenues for successful thera-
peutic intervention. To that end, several drugs that 
block the KP are under investigation. For example, 
KYNA analogues are in or about to enter clinical tri-
als (L695902, L701324, GV150526A, RPR104632, 
ZD150526A) for treatment of epilepsy, stroke and 
possibly PD;36 and two KP inhibitors are currently in 
phase III clinical trial for multiple sclerosis (Teriflu-
nomide [Sanofi-Aventis] and Laquinimod [Teva Neu-
roscience]). Recently, one KP analogue has reached 
the market (in Japan) as a potent immunomodulative 
drug for the treatment of multiple sclerosis, asthma, 
and dermatitis, Tranilast/Rizaben® (Angiogen Ltd), 
which is an anthranilic acid derivative. However, it 
remains to be established what role these compounds 
have in the management of neurodegenerative and 
neuroinflammatory disease long term.
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