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Abstract: The constant accumulation of sequence data poses new computational and methodological challenges for phylogenetic 
inference, since multiple sequence alignments grow both in the horizontal (number of base pairs, phylogenomic alignments) as well as 
vertical (number of taxa) dimension. Put aside the ongoing controversial discussion about appropriate models, partitioning schemes, and 
assembly methods for phylogenomic alignments, coupled with the high computational cost to infer these, for many organismic groups, a 
sufficient number of taxa is often exclusively available from one or just a few genes (e.g., rbcL, matK, rDNA). In this paper we address 
scalability of Maximum-Likelihood-based phylogeny reconstruction with respect to the number of taxa by example of several large 
nested single-gene rbcL alignments comprising 400 up to 3,491 taxa. In order to test the effect of taxon sampling, we employ an appro-
priately adapted taxon jackknifing approach. In contrast to standard jackknifing, this taxon subsampling procedure is not conducted 
entirely at random, but based on drawing subsamples from empirical taxon-groups which can either be user-defined or determined by 
using taxonomic information from databases. Our results indicate that, despite an unfavorable number of sequences to number of base 
pairs ratio, i.e., many relatively short sequences, Maximum Likelihood tree searches and bootstrap analyses scale well on single-gene 
rbcL alignments with a dense taxon sampling up to several thousand sequences. Moreover, the newly implemented taxon subsampling 
procedure can be beneficial for inferring higher level relationships and interpreting bootstrap support from comprehensive analysis.
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Introduction
At present phylogenetic inference using statistical 
models of evolution has come of age and several 
novel, fast, and accurate likelihood-based phyloge-
netic inference programs such as GARLI,1 RAxML,2–4 
IQPNNI,5 PHYML,6,7 Tree-Finder,8 using maximum 
likelihood (ML), or Bayesian programs like for 
instance MrBayes9,10 have become available. One key 
question that arises is up to which number of taxa 
they scale on single-gene alignments with respect to 
accuracy because of the comparatively weak phylo-
genetic signal.

Despite the increasing popularity of phylogenomic 
analyses comprising up to 150 genes11 (see also refs.12–

16 for recent examples of such studies), which has 
stimulated a growing controversy about their assem-
bly17–19 and the choice of appropriate models as well as 
partitioning schemes,20,21 the inference of trees based 
on large single-gene alignments, e.g.,22 still remains 
an important issue for two reasons: Firstly, for many 
organismic groups comprehensive sequence data that 
provide a sufficiently dense taxon sampling are only 
available for commonly used gene markers such as 
rbcL for green plants, a small number of mitochon-
drial genes for animals, and the large subunit and small 
subunit ribosomal RNA genes for various unicellular 
organisms. Secondly, the addition of genes (increased 
gene sampling) leads to extremely “gappy” align-
ments that typically contain more than 70% of gaps 
due to unsampled genes. For instance, the datasets 
used by McMahon and Sanderson12 exhibit a gappy-
ness of 90%. Thus, only little supplementary signal is 
provided by addition of more genes18 at the expense 
of significantly larger data matrices and a scarce taxon 
sampling. The information content of the data does 
not increase linearly with the alignment length, and 
more importantly, the computational cost. The high 
computational cost is generated by the extremely 
large inference times and memory footprints of the 
alignments under the widely used23 General Time 
Reversible (GTR) model24 of nucleotide substitution 
combined with the gamma (Γ) model of rate hetero-
geneity.25 Analyses of such datasets typically require 
supercomputing resources like the IBM BlueGene/L 
or the SGI Altix26,27 which are difficult to exploit for 
most taxonomists (biologists). Current phylogenomic 
analysis projects with RAxML required 89 GB of 
main memory and 2.25 million CPU hours on an 

IBM BlueGene/L supercomputer. In addition, there 
is a realistic chance that such large-scale analyses on 
supercomputers might be limited by high energy costs 
in the near future. On the other hand, the recent intro-
duction of a rapid Bootstrapping (BS)28 algorithm in 
RAxML version 7.0.429 allows for full, i.e., more than 
100 BS replicates and a thorough search for the best-
scoring ML tree, large-scale phylogenetic analyses on 
single-gene datasets of more than 1,000 taxa within a 
couple of days on a modern desktop computer. While 
the accuracy of phylogenetic reconstruction depends 
on the sequence length of the alignment30,31 and ML 
is consistent if the sequence length goes to infinity,32 
it still remains crucial to explore the scalability limits 
for current single-gene alignments because of the 
aforementioned reasons. Due to the immense com-
putational resource requirements in terms of random 
access memory and number of CPUs there is a clear 
trade-off: One can either compute trees with many 
taxa, e.g.,22,33 or with many genes, e.g.,14 but not both, 
i.e., one needs to choose between dense taxon sam-
pling and dense gene sampling.

Finally, the discussion on the impact of appropri-
ate taxon sampling34 on results of phylogenetic anal-
yses tends to be neglected, despite recent findings 
that phylogeny reconstruction is more susceptible to 
incomplete taxon than to incomplete gene sampling 
(see ref.35 for a review).

Another problem that can potentially be resolved 
by increasing the number of terminal accessions is 
the selection (and taxon density) of outgroup(s) used 
in phylogenetic studies. Outgroup selection may 
bias subtree topologies by placing a false root, e.g.,36 
which can be prevented by using all available (and 
“alignable”) sequence data to assemble a dense out-
group that contains multiple organisms.

Due to the undertaken systematic efforts by stud-
ies of single- or few-gene genealogies based on dense 
taxon samples as well as on multigene phylogenies, 
many (terminal) clades in contemporary systemat-
ics can be considered to be well established. For 
instance, this is the case for the currently accepted 
families and orders of angiosperms,37–44 among oth-
ers. However, some interclade relationships remain 
unresolved.14,38,42,43 Thus, although one is not neces-
sarily interested in obtaining additional support to 
merely confirm well-established clades, the usage of 
placeholder taxa for such clades can potentially bias 

http://www.la-press.com


Maximum likelihood analyses of 3,490 rbcL sequences

Evolutionary Bioinformatics 2010:6 75

results because of insufficient taxon sampling and 
hence a lack of sufficient phylogenetic signal from 
these clades. The impact of taxon sampling on the 
inferred topology has been demonstrated in several 
cases, in particular for angiosperms.34,45,46

We therefore address the important issue of scal-
ability of ML to large single-gene alignments via an 
empirical study of the widely used rbcL gene for which 
currently over 26,000 sequences are available (NCBI 
GenBank query, 08/17/2008). We assembled several 
large alignments for eudicots (excluding euasterids, 
represented by c. 3,500 additional rbcL sequences), 
rosids, eurosids I, and eurosids II, containing 3,490, 
2,259, 1,590, and 436 taxa respectively. The fact, that 
the rosids are a subset of the eudicots and that euro-
sids I and II are nested within the rosids, allowed us 
to assess the scalability of ML on these datasets. In 
addition to these comprehensive large-scale analy-
ses, we also examined an alternative approach that 
uses Group-based Randomized Taxon Subsampling 
(GRTS) and allows for comparisons of trees with 
varying taxon numbers while maintaining the relative 
taxon composition. In contrast, the commonly known 
taxon jackknifing approach as introduced by Lanyon47 
applies agnostic taxon subsampling; this leads to dis-
tinct sets of leaves in each jackknife replicate, which 
hinders computation of consensus trees and biparti-
tion frequencies using currently available software. 
Also, Lanyon47 only removed a single leaf per rep-
licate, which rather corresponds to a leave-one-out 
experiment. Hence, his approach is not well-suited 
for improving scalability. We here compare topolo-
gies as well as bipartition frequencies obtained via 
GRTS, which is primarily used as a vehicle to assess 
scalability of ML, to those obtained by straightfor-
ward comprehensive analyses of the aforementioned 
datasets.

The main objective of this paper is to assess how 
good comprehensive ML analyses (combined tree 
inference and bootstrapping analyses) using RAxML 
scale up to alignments that contain several thousand 
taxa by example of single rbcL genes. We use RAxML 
as a typical representative of modern ML-based algo-
rithms, that, similarly to GARLI and the most recent 
version of PHYML, deploys an implementation of 
lazy SPR (Subtree Prunung and Re-grafting) moves. 
While RAxML, GARLI, and PHYML typically yield 
trees that are not significantly different from each 

other, based on the standard statistical significance 
tests, RAxML on average returns trees with the best-
known likelihood values on datasets of more than 
1,000 to 2,000 taxa. Nonetheless, the results obtained 
here with RAxML, are qualitatively very similar to 
those that could be obtained via GARLI or PHYML, 
because all programs deploy comparable search 
mechanisms.

The results of the rbcL analyses are compared 
to previous results from the literature in the on-line 
supplements. We demonstrate that: (i) ML scales well 
on large single-gene matrices. (ii) GRTS using well-
established groups as TU deserves further investiga-
tion to assess its potential for resolving higher level 
phylogenetic relationships. (iii) Analyses of densely 
sampled rbcL data are informative and in good agree-
ment with “multigene analyses”.

Material and Methods
rbcL alignment assembly
Gene bank data was accessed in spring 2007 via 
the NCBI GenBank taxonomy portal. Searches and 
downloads of rbcL data were conducted at the ordinal 
level as provided by the NCBI taxonomy. Comprehen-
sive alignments were assembled as follows: Initially, 
subalignments for each order (or several small orders 
as well as taxa not included in current orders) were 
constructed using the Clustal V algorithm as imple-
mented in MegAlign (DNA Star Software package, 
LaserGene, Madison, WI, USA). These subalign-
ments were visually inspected for apparent sequence 
artifacts: the rbcL is highly length-conserved among 
angiosperms, hence, any gap (or additional base) 
can be considered to be an artifact or to represent a 
pseudogene. Sequences containing a high degree of 
artifacts were eliminated. For the use with GRTS, the 
sequence name labels were transformed into a 5-digit 
code, followed by the gene bank accession number. 
The first three letters of the 5-digit code indicate the 
family or genus, to accommodate taxa that have not 
been assigned to a family, sensu APG II;39 the last 
two letters designate the order (or family or genus) 
sensu APG II, amended by information retrieved from 
the Angiosperm Phylogeny Website38 (APW) and 
additional web and print resources on taxonomy pro-
vided via APW. (Labeling was not automated since 
the current NCBI taxonomy contains several incon-
sistencies at the family and order level compared to 
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 taxonomic-systematic resources such as APG II and 
APW. A respective list of such inconsistencies can 
be found in the online appendix.) Note that, the cod-
ing reflects the systematic affinity of the organism 
and not the sequence, hence, we did not correct for 
misnamed/mislabeled sequences (see Results) at this 
stage of the analysis process. In a second step, the 
subalignments were successively merged (nested) 
into more comprehensive alignments, which were 
then used to conduct the phylogenetic analyses. The 
alignments contain the entire rbcL data for euro-
sids I (EURO1 matrix), eurosids II (EURO2), rosids 
(ROSID), and eudicots except euasterids (EUDIS). 
All respective NEXUS and PHYLIP alignment files 
are available for download at http://wwwkramer.
in.tum.de/exelixis/rbcl.tar.bz2.

comprehensive ML analyses
Comprehensive analyses of the full datasets were 
conducted with RAxML-VI-HPC version 2.2.3. (The 
most recent version 7.2.6 was not available at the time 
the phylogenetic inferences for this paper were 
conducted.) For each alignment we inferred 100 BS 
trees and conducted 20 ML searches to determine 
the best-scoring ML tree on distinct randomized 
stepwise addition MP starting trees using GTR and 
the CAT approximation of rate heterogeneity.48 This 
approximation serves as an efficient computational 
workaround for the significantly more memory- and 
floating point-intensive standard Γ model of rate het-
erogeneity. The CAT approximation simply provides 
a means to rapidly navigate into portions of the topo-
logical search space where tree topologies score well 
under GTR + Γ. The computations were conducted 
on the CIPRES (Cyberinfrastructure for Phylogenetic 
Research project, http://www.phylo.org) project clus-
ter located at the San Diego Supercomputer Center 
(SDSC) that is equipped with 16 8-way 2.4 Ghz AMD 
Opteron nodes and on the infiniband cluster located 
at the Technische Universität München (TUM) that 
comprises 36 4-way 2.4 GHz AMD Opteron nodes. 
We denote the BS support values obtained from the 
comprehensive analyses as CA-BS.

Finally, we used the rapid Bootstrapping algo-
rithm implemented in RAxML version 7.0.429 in 
combination with a Perl-script to assess the effect 
and applicability of the double Bootstrap proce-
dure49 on the large 3,490 sequence alignment. Here 

we used the naïve approach, i.e., we computed 
100 second-level BS analyses on 100 first-level BS 
replicates which amount to a total of 10,000 BS 
analyses. This analysis was carried out on 128 CPUs 
located at the Technische Universität München 
over a weekend. This first assessment of a double 
bootstrap procedure on a large single-gene dataset 
was included as an alternative to GRTS to evaluate 
whether it can be used to improve support values 
for such large analyses.

group-based randomized taxon 
subsampling (grTs) analyses
The group-based randomized taxon subsampling 
(GRTS) procedure was implemented via appropriate 
Perl-scripts. As mentioned above, taxon names in the 
alignments were assigned in a way such that grouping 
information, a taxonomic unit (TU), is encoded by 
certain characters in the taxon name. This grouping 
information was then used to reduce alignment sizes 
via directed taxon jackknifing with various alignment 
size reduction factors ranging from 1/2, 1/4, 1/8, down 
to 1/64 (where applicable) of the original number of 
taxa (procedure illustrated in Fig. 1). For instance, an 
alignment of 1,024 taxa will successively be reduced 
via taxon jackknifing to sizes of 512, 256, 128, ..., 16 
taxa. However, since we conduct group-based taxon 
jackknifing (based on the meta-information contained 
in the sequence names) in order to maintain the taxon 
diversity and composition during the reduction pro-
cess, every taxonomic group will be reduced propor-
tionally to the number of representatives in the original 
alignment. For example, if a group has 256 members 
in an original 1,024 sequence alignment, it will suc-
cessively be reduced to 128, 64, 32, ..., 4 members 
in the GRTS samples. This means that the jackknif-
ing process is not completely conducted at random, 
but maintains the structure of the original alignment 
in terms of its taxonomic breadth and composition. 
In addition, the reduction factor was limited in such 
a way that at least two sequences were sampled per 
predefined group. The assignment of orders in addi-
tion to families as TU (Taxonomic Unit) ensured 
that the majority of TU comprised enough members 
to allow for application of large reduction factors 
such as 1/32 or 1/64. For each alignment and each 
applicable reduction factor we computed 100 repli-
cates. For each of those 100 replicates we inferred 
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10 ML trees using the GTR + CAT approximation 
and determined the respective best-scoring tree under 
GTR + Γ . Thus, for every reduction factor and data-
set, we computed 100 best-scoring ML trees for dis-
tinct randomized group-based subsamples. Finally, in 
order to investigate the effect of the GRTS approach 
on bipartition support values, we also conducted 
100 standard BS replicates for only 10 out of 100 
GRTS replicates per reduction factor (1,000 trees 
per dataset and reduction factor), in order to keep 
the computational requirements within acceptable 
limits. However, for a reduction factor of 1/32 we 
also computed 100 BS replicates on all 100 GRTS 
replicates (a total of 10,000 trees per dataset) to assess 
the effect of using all 100 GRTS replicates instead 
of only 10. This effect was, however, negligible. We 
carried out BS analyses of GRTS replicates for the 
three smaller alignments (EURO1, EURO2, ROSID) 
with reduction factors of 1/4, 1/8, ..., 1/64 (were 

applicable). The rationale behind the GRTS approach 
is to reduce those large alignments to subalignments 
with a significantly lower and hence, more favorable 
number of taxa for ML-based analyses with respect 
to the signal in the data and the NP-hard optimization 
problem, while maintaining the relative taxon com-
position. This can be regarded as zooming into the 
alignment while maintaining the relative taxon com-
position. This allows us to better assess the scalability 
of the tree search algorithms and conduct topological 
comparisons with respect to the placement of well-
established groups. At the same time this provides a 
mechanism to assess the change (decrease/increase) 
of BS support values with increasing number of taxa. 
Henceforth, we denote GRTS support values obtained 
from the ML-searches on replicates (100 trees for 
100 GRTS replicates) as GRTS-ML and GRTS support 
values obtained from 100 BS replicates on 10 GRTS 
replicates as GRTS-BS.

Figure 1. scheme illustrating the GRTS procedure (this study) in comparison to random taxon jackknifing.47 In contrast to random jackknifing, GRTS 
assures that each replicate includes always members of all pre-defined TU (in the given example TU 3 is missing in the random jackknife replicate) and 
that each TU is sampled proportionally to its original size. For instance, TU 1 includes 16 accessions. Thus, using a reduction factor of 2 each grTs 
replicate will include exactly 8 members of TU 1. The number in random jackknife replicates may vary, resulting in an over- (TU 1 in given example) or 
underrepresentation of TUs (TUs 4 and 5).
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result analyses: comparing trees  
with distinct sets of leaves
We implemented three distinct tree comparison meth-
ods to extract comparable bipartition support values 
from the respective collections of trees:

i. a comparison (CA-BS with CA-BS ) of the nested 
trees obtained via the comprehensive analyses

ii. a comparison of GRTS-ML with GRTS-BS repli-
cates among each other

iii. a comparison of GRTS-ML/GRTS-BS replicates 
with CA-BS replicates

In order to compare CA-BS values from the compre-
hensive analyses with different nested sets of leaves, 
e.g., a eudicot tree with a rosid tree, leaves not pres-
ent in the less comprehensive rosid tree were pruned 
from the larger eudicot phylogeny in all CA-BS repli-
cates. “Nested” means in this context that all taxa in 
the smaller trees and alignments are also contained in 
the respective larger and more comprehensive trees. 
With respect to the taxon label sets (TLS) induced by 
the trees and alignments we have: 

TLS(eudicots) ⊋ TLS(rosids) ⊋ TLS(eurosids I)/
TLS(eurosids II).

To prune the trees we used our own script newick.tcl 
that is freely available at http://www.goeker.org/mg/dis-
tance/. This script is equivalent to the DELETE/PRUNE 
command in PAUP*.50

The comparison of trees inferred via GRTS-BS and 
GRTS-ML is slightly more complicated because each 
taxonomic unit (TU) that is used for sampling is rep-
resented by a distinct set of sequence name labels in 
every GRTS replicate. Moreover, the representatives 
of a TU, which reflect an accepted angiosperm order 
or family, are not necessarily recognized as being 
monophyletic based on rbcL data alone. To reduce 
each TU to a single leaf representing this TU in every 
tree, that is, to extract the “big picture”, we used the 
following algorithm: Each homogeneous subtree that 
only comprises members of a single TU is reduced to 
a single leaf and the number of leaves in this homoge-
neous subtree is stored. If there is more than a single 
subtree per TU, i.e., if the TU is not monophyletic 
within the tree, all homogeneous subtrees for this TU 
except the largest one are pruned. The rationale for 
this is that the largest homogeneous subtree of a TU 
is most likely the best representative for the specific 
TU and will most probably contain true (e.g., non-

 mislabeled) members of this TU. On the other hand 
small and deviating clades, most likely comprise 
sequences from misidentified specimens or from wet-
lab artifacts. For comparison of GRTS-BS/GRTS-ML 
replicates with trees from comprehensive CA-BS 
analyses, the CA-BS trees as well as GRTS-BS and 
GRTS-ML were reduced to TU trees using the same 
topological reduction algorithm.

If several equally large (maximum size) homoge-
neous subtrees exist for a TU, one of them is chosen 
at random. The rationale for this random selection is 
that GRTS, like bootstrapping, includes random deci-
sions and that the deviations induced by applying the 
above algorithm will average out if a sufficiently large 
number of GRTS samples is used for comparison.

This topology reduction algorithm is also imple-
mented in the newick.tcl script, which includes a flex-
ible mechanism to recognize the TU assignments of 
sequences that are encoded in their labels.

After application of these transformations for the 
three types of comparisons (CA-BS versus CA-BS, 
GRTS-BS versus GRTS-ML, GRTS-ML/GRTS-BS 
versus CA-BS) to the respective replicates in order 
to obtain collections of trees with consistent leave 
sets of equal size, we computed the Pearson corre-
lation coefficient ρ between all bipartition frequen-
cies, induced by the respective replicate sets (via the 
respective RAxML command line switch −f m). In 
addition, we computed the Pearson correlation coef-
ficient, the slope, and the offset using an appropriate 
Perl script and the respective RAxML option (−f b) 
on the respective best-scoring ML trees with support 
values. This allowed us to compare scalability of sup-
port values induced by CA-BS analyses on the best-
scoring ML trees of the respective smaller nested 
datasets. Finally, we computed the extended majority 
rule consensus tree (a bifurcating tree) for CA-BS rep-
licates using consense from the PHYLIP package.

Visualization
We used the following tools to visualize the results of 
the comprehensive ML and BS, as well as GRTS-BS 
and GRTS-ML trees, analyses: Dendroscope51 (ver-
sion 0.22) was used to draw and color the com-
prehensive ML trees; modules implemented in 
SplitsTree52 (versions 4.8 and 4.10) were used to ana-
lyze the bipartition patterns observed in the CA-BS 
and GRTS-BS/GRTS-ML analyses: The  consensus 
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network approach53 allowed us to visualize the 
 distinct sets of tree replicates: CA-BS and GRTS-BS/
GRTS-ML replicates were used to reconstruct splits 
graphs in which the length of each edge reflected the 
frequency of the respective bipartition in a sample of 
input trees (“bipartition network”, edge weight set to 
count);54 or in which the length of each edge corre-
sponded to the mean branch length over all replicates 
(“confidence network”, edge weight set to mean).55 
In the latter case, only those edges are represented 
in the splits graph occurring in more than a defined 
percentage of the replicate trees. For example, a 25% 
confidence network represents all splits that occur in 
more than 25% of the (BS/GRTS) replicates.

Results and Discussion
scalability of nested comprehensive  
ML analyses
Figure 2 shows a condensed representation (family-
level) of the ML tree inferred from the EUDIS matrix; 
the full tree as well as trees inferred from the other 
three matrices can be accessed via http://www.kramer.
in.tum.de/rbcl.html. (This link provides also the com-
plete results from the CA-BS, GRTS-BS, and GRTS-ML 
analyses.) Most orders and families represented by 
more than one rbcL accession (sensu APG II; in total 
143 taxa) formed clades in the comprehensive ML 
trees and received moderate to high BS support by 
CA-BS, which highlights the systematic value of rbcL 
sequences for angiosperm systematics at the ordinal 
and subordinal level.37,44,56–59 Exceptions were mainly 
due to mislabeled sequences or sequences represent-
ing organisms of controversial systematic affiliation. 
(Details are provided in Online Supplement [OS] 1.) 
Our rbcL data does not support the monophyly (CA-BS 
 50; misplaced or controversial sequences not con-
sidered) of 20 families and one genus (Nelumbo; 
monotypic Nelumbaceae) that have been defined as 
TUs (putatively monophyletic according to APG II 
and APW; details provided in Online Supplement 
[OS] 2). However, members of such TUs occasionally 
formed clades in the best-known ML trees as well as in 
the majority of GRTS-based ML trees (see below). Of 
the 31 currently accepted order-level TUs (orders and 
unplaced families) covered by our data, 25 received 
moderate to high CA-BS support (Table S1 in OS 2).

The Pearson correlation coefficient ρ between 
CA-BS values from the distinct nested datasets, 

 calculated after pruning leaves down to the leave 
set of the smaller tree from the respective larger and 
more comprehensive tree via newick.tcl, are shown 
in Table 1. For the CA-BS analyses we do not prune 
down trees to TUs, but just prune down the respec-
tive larger trees to the taxon set of the nested smaller 
trees. Column # bipartitions in Table 1 provides the 
number of bipartitions induced by the respective 
(pruned-down) tree collections. Column ρ-best pro-
vides the correlations of the support values on the 
respective smaller, best-scoring tree, e.g., the cor-
relation between CA-BS values of the pruned-down 
eudicot replicates and the rosid replicates, drawn on 
the best-scoring rosid ML tree. The computed slope 
and the offset for the comparisons of support values 
on the best-scoring trees showed only insignificant 
variations. The slope lies between 1.0019 and 0.9861, 
while the offset varies between −0.4087 and 1.8442. 
The average support on the respective best-scoring 
ML trees for the four datasets (original support val-
ues and pruned-down support values) is highly stable 
regardless of the number of taxa, and varies between 
59.90 and 61.29. This also holds for the average sup-
port (80.98 and 81.66) on the respective extended 
majority rule (binary) consensus trees extracted from 
the replicates. The higher average support on CA-BS 
consensus trees compared to the best-scoring ML 
trees is not surprising, since the extended majority 
rule consensus algorithm in essence just maximizes 
the average support for a given set of bipartitions. In 
general, correlations appear to slightly decrease with 
increasing differences in the number of leaves, but 
are nonetheless very high (minimum: 0.987 for all 
bipartitions; 0.982 for bipartitions on best-scoring 
tree). In addition, the number of bipartitions induced 
by the pruned-down trees from the respective large 
datasets is slightly higher (2.5%) than for the non-
pruned datasets.

The overall high correlation coefficients show that 
the number of taxa in the alignments, which reflects 
the taxonomic breadth of the data set, has little 
effect on the bipartitions induced by the BS analy-
ses. In other words, the support of a node defining 
any eurosid I clade X, is not influenced by inclusion 
of eurosids II, other rosids, or other eudicots in the 
alignment. This is in agreement with the observa-
tion that, with respect to branch support, a large and 
dense outgroup provides a better subtree rooting 
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Table 1. correlation between bootstrap support values for comprehensive analyses and number of bipartitions in the 
respective tree collections of nested rbcL datasets.

Data sets # taxa ρ-all # bipartitions ρ-best WRF

Eudicots ⊇ 3,490 0.989 Eudicots: 31,124 0.986 0.021
rosids 2,259 rosids: 30,338
Eudicots ⊇ 3,490 0.987 Eudicots: 22,060 0.982 0.032
eurosids i 1,590 Eurosids i: 21,688
Eudicots ⊇ 3,490 0.988 Eudicots: 6,110 0.983 0.048
eurosids ii 436 Eurosids ii: 5,894
rosids ⊇ 2,259 0.993 rosids: 22,060 0.993 0.019
eurosids i 1,590 Eurosids i: 21,983
rosids ⊇ 2,259 0.992 rosids: 6,110 0.990 0.053
eurosids ii 436 Eurosids ii: 6,019

Figure 2. A family-level representation of the best-known ML tree inferred from the EUDis matrix. The basic tree includes more than 3,500 leaves and has 
here been reduced to family-level TU (see Material and Methods); the latter have also been used for the grTs analyses (following chapter).
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than a sparse  outgroup.36 However, there is a slightly 
higher correlation among the rosids, eurosids I, and 
eurosids II data sets than within the eudicots data set. 
The inclusion of most eudicots (outgroups from the 
perspective of eurosids I, eurosids II, and rosids) has 
some, although small, effect on the BS support of 
nodes within the rosids, eurosids I, and eurosids II 
subclades (Tables S1–S3 in OS 2). There are three 
possible explanations: First, it might be that the effect 
of the less favorable number of taxa to number of 
base pair ratio becomes more prevalent.30,31 As a con-
sequence, ‘correct’ relationships, according to the 
rbcL genealogy, are less resolved. Second, exactly 
the reverse phenomenon might occur: the eurosids I, 
eurosids II, and rosids analyses might have yielded 
support for ‘incorrect’ bipartitions, which were cor-
rectly resolved in the eudicots analyses due to the 
more comprehensive taxon sampling. Third, the sup-
port of a few isolated nodes may vary significantly 
depending on the underlying data. A case-by-case 
investigation of changing support with reference 
to the well established phylogenetic framework for 
Angiosperms shows that all potential explanations 
apply (OS 2).

The general agreement between the inferred topol-
ogies and current knowledge (outlined in Figs. 2, 3), 
the comparably high CA-BS support of commonly 
accepted nodes (OS 2), and the general high correlation 
(Table 1) indicates that ML scales well in the studied 
case of large rbcL data sets. However, deeper (inter-
ordinal or backbone) and well-supported relationships 
based on several to many genes, e.g.,14,43,44 generally 
lack CA-BS support from rbcL alone (Table S3 in OS 2). 
Only the nitrogen fixing clade, received moderate BS 
support (Fig. 3; CA-BSAll matrices = 54).

The bootstrap of the bootstrap  
on 3,491 eudicots rbcL sequences
We mainly assessed the effects of applying the double 
BS procedure to large single-gene datasets since it had 
become computationally feasible due to the recent 
implementation of a rapid bootstrapping algorithm 
in RAxML29 and had never been tested in practice 
on large datasets before. We therefore conducted an 
empirical assessment of this approach to determine if 
it can be deployed as an alternative to improve the 
quality of support values on large trees. Despite 

the theoretically favorable statistical  properties of 
 second-level bootstrap procedures, in practice, and in 
particular on large single-gene alignments, a double 
bootstrap procedure does not appear to be applicable. 
The main reason is the significant reduction of the 
number of distinct (unique) alignment column pat-
terns with respect to the original alignment and hence, 
phylogenetic signal in the BS replicates and to an 
even larger extent in the second-level BS replicates. 
In our experiments with the large eudicot dataset, the 
original alignment has 1,370 distinct column patterns, 
while the 100 first level bootstrap alignments have an 
average of 868 patterns per replicate and the 10,000 
second level replicates only contain 641 patterns 
per replicate, less than half the length of the original 
alignment. In addition, first-level as well as second-
level BS replicates contain a relatively high number 
of sequences that are exactly identical under the ML 
model, while the original alignment does not contain 
duplicate sequences. For first-level replicates there 
are on average 67 identical, thus essentially indistin-
guishable, sequences per replicate while for second-
level BS replicates this number increases to 140 on 
average. Therefore, the phylogenetic signal contained 
in second-level BS replicates is reduced significantly 
and thus does not represent a good solution to infer 
support values for large single-gene analyses. This 
is depicted in Figure 4, where we plot the support 
values on the best-scoring ML tree of first-level BS 
replicates against support values from second-level 
BS analyses. The second-level BS values are signifi-
cantly lower than first-level BS above a threshold of 
75%. Thus, second-level BS does not scale as well as 
first-level BS (see results of CA-BS above) in the case 
of the herein analyzed data sets.

cA-Bs versus grTs-Bs/grTs-ML
With a reduction factor of 1/4, the EUDIS matrix 
was reduced to 440 terminal taxa by GRTS. In the 
case of our focus groups rosids (matrix ROSID) and 
eurosids I (matrix EUROS 1; Fig. 5), datasets were 
reduced down to 282 and 199 taxa respectively. Nodes 
that received high BS support (CA-BS  70) based 
on the comprehensive data matrices were recovered 
in most (.50%) to all best-scoring GRTS-ML trees 
(Tables S1, S2 in OS 2). Representatives (subsamples) 
of the same TU clustered together when the same group 
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was supported by moderate (.50) to high CA-BS val-
ues (OS 2). The consensus networks of the GRTS-ML 
trees indicated further relationships between pre-
defined TUs that received low CA-BS (,50; example 
given in Fig. 6). For instance, large-scale multigene 
analyses43,44 supported an eurosid I subclade includ-
ing the Celastrales, Malpighiales, Huaceae, and Oxal-
idales. CA-BS support for this subclade is low, even 
when mislabeled sequences are not considered, but 
the representatives of these TU consistently group 
using GRTS-ML (Table S3 in OS 2). The high over-
all similarity between CA-BS and GRTS-ML based 
topologies, irrespective of the actual support values, 
can be visualized via consensus networks (bipartition 
networks) of the 100 GRTS-ML trees, which depict 
the same relationships (Fig. 5), or alternative relation-
ships, as indicated by CA-BS analyses of the compre-
hensive matrices (example shown in Fig. 6; see also 
OS 2): Equally CA-BS supported topological alterna-
tives could be found with a certain frequency also in 
the GRTS-ML replicates.

Pearson correlation coefficients between all 
bipartition support values obtained via CA-BS and 
GRTS-ML (reduction factor 1/4), all pruned-down to 
family-level TU trees, are shown in Table 2. Column 
# bipartitions indicates the total number of biparti-
tions induced by the pruned-down CA-BS trees and 
the GRTS trees. Correlations vary between 0.90 and 
0.93 and are relatively high, but lower than for the 
CA-BS support values among the nested compre-
hensive datasets shown above. In Table 2 there is 
no prevalent tendency for the correlation to increase 
or decrease with increasing number of leaves in the 
GRTS-ML replicates. The number of bipartitions 
induced by the GRTS-ML replicates is significantly 
smaller than the respective number of bipartitions 
induced by the comprehensive trees, which has a 
direct effect on the average support on the pruned-
down best-scoring ML trees from the comprehensive 
analyses: GRTS-ML support values (average: 61.16) 
are significantly higher than support values obtained 
via CA-BS (average: 53.78). This is also reflected by 

Figure 3. A circle cladogram of the best-known ML tree inferred from the rOsiD matrix. By far the most sequences are placed according to well-known 
clades (occasional mislabeled sequences not addressed). note that the CA-BS support of these higher order clades is often low (,50; Tables s2, 
s3 in Os 2).
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larger offsets between 9.48 and 11.05 compared to 
the offsets among support values induced by com-
parison of CA-BS between each other. Likewise, 
average support values as calculated from the major-
ity rule consensus trees range between 82.15 and 
87.69 for GRTS-ML, but between 77.65 and 83.10 for 
CA-BS. The reason for this is that GRTS-ML tends to 
be more decisive than CA-BS and to favor topologi-
cal alternatives to different degrees (an example is 
given in Fig. 6). Such decisiveness could be posi-
tive or negative: Positive would mean that GRTS-ML 
has a higher chance than CA-BS to find support for 
‘correct’ nodes; put in a negative context, the higher 
decisiveness could indicate that GRTS-ML exhibits a 
higher risk of yielding too high support for ‘wrong’ 
nodes. In our case, the effect appears to be positive 
rather than negative: The relationships indicated by 
GRTS-ML are in good agreement with the inferred 
comprehensive ML trees (e.g., example shown in 

Fig. 5) and earlier multigene analysis (Tables S1, 
S2 in OS 2). Using higher reduction factors (only 
feasible if order-level TUs are used; see below) seem 
to even increase the positive effect considering the 
recovered relationships.

Effects of different reduction factors
As mentioned in Material and Methods, numerous 
family-level TUs are represented by a few accessions 
only. Therefore, we used the order-level TUs to be able 
to apply larger reduction factors. For the ROSID matrix, 
order-level GRTS was based on 18 TUs (15 rosid 
orders, 2 families, one outgroup order/family), the 
respective subsets (matrices EURO1 and EURO2) 
contained nine and five TUs. The usage of these more 
coarse-grained TUs is feasible because, according to 
APG II as well as APW, the according clades are gen-
erally well supported (see also Table S1 in OS 2 and 
cited literature; for a review see Soltis and Soltis).42

Figure 4. support values of second-level BS values over first-level BS support values on the best-scoring ML tree for the eudicots.
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The effect of varying reduction factors on the cor-
relation between CA-BS and GRTS-ML as well as 
GRTS-BS support values is shown in Tables 3 and 
4, respectively, which also allows for a  comparison 
between the GRTS-BS and GRTS-ML approach. Here 

the trees were pruned to order-level TU topologies 
instead of family-level TUs. This more coarse-grained 
reduction allows for assessing the effect of high 
reduction factors (see Material and Methods). Except 
for GRTS-ML values for rosids (Table 4), the corre-

Figure 5. Potential of GRTS-ML to recover ‘correct’ relationships. Top, ML phylogram based on EUrO1 matrix. Bottom, bipartition network based on 100 
GRTS-ML replicates (family-level TU, reduction factor 1/4).
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lation with CA-BS values generally decreases with 
increasing reduction factors. Overall, GRTS-BS val-
ues are more in agreement with the respective CA-BS 
values, than is the case for GRTS-ML (Tables 3 vs. 
4). In combination with a moderate reduction factor 
of 1/4 or 1/8, the correlation between GRTS-BS and 
CA-BS can be as high as 0.999. These highest cor-
relations are obtained for a data set (eurosid II) with 
well-sampled and well-supported TUs. The data set 
includes only five TUs that are mutually monophyl-
etic. Four of these groups are extremely well repre-
sented by numerous rbcL sequences. Based on the 

overall good correlation, GRTS-BS may be a valid 
alternative to CA-BS to investigate support of back-
bone relationships of large datasets. In particular in 
the light of misplaced and mislabeled sequences: The 
subsampling of GRTS can handle a certain amount 
of misplaced and mislabeled representatives per 
TU if compensated by correctly placed and labeled 
representatives. For example, if the data includes 
99 sequences of a TU that are correctly placed in the 
phylogenetic inference, the single misplaced (errone-
ous) sequence has only a probability of 0.01* sam-
plingFactor to be sampled per replicate.

Table 2. correlation between family-level TU CA-BS and family-level TU GRTS-ML, using a reduction factor of 1/4, support 
values for the distinct datasets.

Datatset # taxa ρ-all # bipartitions ρ-best WRF

Eudicots 256 0.925 cA-Bs: 4,427 0.883 0.079
grTs-ML: 2,987

rosids 153 0.915 cA-Bs: 2,587 0.889 0.092
grTs-ML: 1,390

Eurosids i 80 0.908 cA-Bs: 1,683 0.899 0.094
grTs-ML: 771

Eurosids ii 43 0.924 cA-Bs: 322 0.824 0.229
grTs-ML: 139

Figure 6. competing topological alternatives in grTs-ML and cA-Bs replicates. Unlabeled circles represent ‘candidate’ common ancestors (topological 
alternatives); support indicated by intensity of gray tones.
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As mentioned before the decreased correlation 
between GRTS-ML, GRTS-BS (to a lesser degree) 
and CA-BS (Tables 3, 4) is coupled with the obser-
vation that GRTS-ML (and GRTS-BS) increasingly 
recover and support commonly accepted (inter-)ordi-
nal relationships that received only low CA-BS sup-
port (OS 2). This is exemplarily illustrated in Figure 7 
using the results of the GRTS-ML analyses based on 
the ROSID matrix. A reduction factor of 1/32 implied 
that from the 2,445 original accessions four are sam-
pled per TU, plus the two rbcL accessions represent-
ing Picramminaceae (in total 70 terminal taxa per 
GRTS matrix). It has been demonstrated, especially 
for angiosperms, that increased taxon sampling is 

favorable.34,46 However, we obtain increased support 
for relationships, which were originally poorly 
supported, by reducing the number of leaves. Does 
this mean that fewer leaves are more prospective than 
many? Notably, only ‘correct’—or better, unchal-
lenged—relationships gained support. Moreover, we 
have to keep in mind that the predefined TUs repre-
sented ‘good’ taxonomic units (well-supported clades 
based on multigene data). This is a major difference 
to ‘blind’ (unguided) random taxon jackknifing and/
or using arbitrarily selected placeholders. An appar-
ent effect of GRTS seems to be that a stable, ‘correct’ 
signal is maintained over the replicates while incon-
sistent, ‘wrong’ signal, is filtered out.

conclusion and Outlook
Comprehensive and GRTS-based analyses were con-
ducted on large rbcL datasets to investigate whether 
the broad sampling of a single genetic marker is use-
ful for large-scale, in terms of number of taxa, phylog-
eny reconstruction. The good correlations among the 
CA-BS results (Table 1) of the nested large matrices 
show that comprehensive ML analyses with RAxML 
scale well in terms of accuracy and support values, 
despite the fact that the amount of signal available in 
the data is, in principle, less favorable. Furthermore, 
ML-based CA-BS and to a greater extent, GRTS are 
able to recover higher-level relationships obtained via 
multigene studies; relationships that received poor 
support based on single-gene rbcL analyses in previ-
ous studies (OS 2).

The overall high correlation between CA-BS and 
GRTS-ML (Tables 2, 3) and in particular, between 
CA-BS and GRTS-BS (Table 4) demonstrates that 
the predefined family-level TUs and order-level 
TUs were well chosen. One may expect significantly 
worse correlations between CA-BS and GRTS-ML/
GRTS-BS if the selected TUs do not represent well-
supported clades. GRTS-based analyses yield largely 
the same phylogenetic relationships as inferred via 
comprehensive large-scale analyses (Figs. 5–7; 
Tables S1–S3 in OS 2). However, despite these 
promising results (e.g., Fig. 7), the statistical proper-
ties of GRTS-ML in comparison to CA-BS need to be 
investigated in more detail via computational experi-
ments with simulated and additional real-world data 
sets prior to using GRTS-ML as additional means in 
phylogenetic inference based on large datasets. On 

Table 3. correlation between order-level TU CA-BS and 
order-level TU GRTS-ML support values for the distinct 
datasets and reduction factors.

Dataset Reduction 
factor

# taxa ρ-all ρ-best WRF

rosids 1/4 565 0.836 0.842 0.262
1/8 282 0.845 0.847 0.240
1/16 141 0.882 0.869 0.213
1/32 71 0.884 0.868 0.160

Eurosids i 1/4 398 0.828 0.781 0.283
1/8 199 0.828 0.584 0.253
1/16 99 0.693 0.390 0.206
1/32 50 0.639 0.345 0.229

Table 4. correlation between order-level TU CA-BS and 
order-level TU GRTS-BS support values for the distinct 
datasets and reduction factors.

Dataset Reduction 
factor

# taxa ρ-all ρ-best WRF

rosids 1/4 565 0.977 0.974 0.162
1/8 282 0.966 0.959 0.120
1/16 141 0.946 0.940 0.119
1/32 71 0.950 0.938 0.123
1/64 35 0.891 0.875 0.055

Eurosids i 1/4 398 0.977 0.878 0
1/8 199 0.932 0.714 0.136
1/16 99 0.918 0.640 0.097
1/32 50 0.865 0.500 0.053
1/64 25 0.836 0.522 0.146

Eurosids ii 1/4 109 0.999 ∼ 0.517
1/8 55 0.999 ∼ 0.517
1/16 28 0.999 ∼ 0.513
1/32 14 0.993 ∼ 0.485
1/64 7 0.970 ∼ 0.467
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the other hand, the high correlation between GRTS-
BS and CA-BS values provide a useful tool for the 
interpretation of the CA-BS values. The execution 
times for CA-BS and GRTS-BS are roughly similar 
because the taxon subsampling approaches require, 
in total, a larger number of ML searches to be con-
ducted. In addition even many-taxon single-gene 
alignments rarely require more than 500 bootstrap 
replicates to generate stable support values.60 The 
group-based taxon jackknifing in combination with 
bootstrapping (GRTS-BS) allows for comparing sup-
port for the relationship between the main clades, in 
terms of family- or order-level TUs, without invest-
ing too much effort (human and computational 
resources) on the optimization of intra-clade rela-
tionships. In addition, it can be assessed how, and 
which, BS values decrease with an increasing num-
ber of taxa, and thus, generally lower average sup-
port values on larger single-gene trees can be more 

easily  interpreted. It may be of interest to apply the 
here introduced methods to multigene data: The 
basic concept of GRTS would allow combining gene 
data with only partly overlapping sets of species 
per  predefined TU (e.g., well- supported families or 
orders) without the need to decide on a placeholder 
taxa and/or filtering of occasionally misplaced or mis-
named accessions. Conversely, GRTS could be used 
to select placeholder sequences in conjunction with 
the new placement algorithm61,62 that has recently 
been implemented in RAxML and that is particularly 
suited for the identification of short sequence reads 
that range between 100–400 bp in length. It appears 
reasonable to choose those sequences as placehold-
ers that resulted in those trees closest to the GRTS 
majority-rule tree; such a preselection would fur-
ther accelerate sequence identification and could be 
applied as long as within-group placement of query 
sequences is not of interest.

Figure 7. GRTS-ML-based bipartition networks using different reduction factors and order-level TUs. red, eurosid i clades, blue, eurosid ii clades; 
important changes in the recognition of well-known groups are highlighted by arrows. The analyses were done based on the rOsiD matrix. A) reduction 
factor of ¼. The nitrogen fixing clade is recovered in most replicate trees. B) reduction factor of 1/8. sapindales are separated from Zygophyllales and 
celastrales from Malpighiales. c) reduction factor of 1/16. Zygophyllales are placed with other eurosids i. D) reduction factor of 1/32. Eurosid 2 clades 
and crossosomatales, respectively, are grouped.
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