
Cancer Informatics 2010:9 115–120

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Cancer Informatics 2010:9 115

Cancer Informatics

M e T h o d o L o g y

An Efficient Gatekeeper Algorithm for Detecting GxE

Jimmy T. Efird
Biostatistics and data Management Unit, Center for health of Vulnerable Populations, University of North Carolina, 
237-A McIver Building, Administrative drive, greensboro, NC 27402-6170, USA. email: jimmy.efird@stanfordalumni.org

Abstract: The risk for many complex diseases is believed to be a result of the interactive effects of genetic and environmental factors. 
Developing efficient techniques to identify gene-environment interactions (GxE) is important for unraveling the etiologic basis of many 
modern day diseases including cancer. The problem of false positives and false negatives continues to pose significant roadblocks to 
detecting GxE and informing targeted public health screening and intervention. A heuristic gatekeeper method is presented to guide the 
selection of single nucleotide polymorphisms (SNPs) in the design phase of a GxE study.
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Introduction
Advances in bioinformatics and genomics have opened 
the door for personalized medicine, enabling epidemi-
ologists to identify genetic variations that predispose 
some, but not others, to disease. Single  nucleotide 
polymorphisms (SNPs), which on average occur in 
about every 1,000 base pairs throughout the human 
genome, also may be useful for determining variability 
in individual response to treatment and could poten-
tially lead to the development of novel therapeutics 
custom tailored to patients’ genetic profiles. However, 
studies often have failed to yield consistent findings 
or definitive results, in part because analyses have not 
accounted for gene-environment interactions (GxE).

While genetics play a significant role in many 
 diseases, few common medical disorders are explained 
by a single SNP or genetic mutation. Rather, environ-
mental factors are thought to modulate an individu-
al’s genetic predisposition for certain diseases.1–3 In 
the case of GxE, risk for disease occurs only when 
genetic and environmental factors are present in com-
bination, while individual factors alone convey little 
or no risk for disease. Correctly identifying GxE is 
particularly difficult in the context of high density 
SNP arrays, because the number of multiple compari-
sons can be in the thousands.

In this paper, an efficient gatekeeper algorithm is 
presented to identify GxE. The technique involves 
computing a multiplicity adjusted lower bound on 
an indirect estimate for GxE. The indirect estimate is 
then used to independently screen for GxE in a direct 
disease association study in order to correctly identify 
risk or propensity for disease.

Indirect OR estimate and confidence 
interval (CI) for gxe
The odds ratio (OR) for environmental exposure (E) 
associated with disease (D) in the population may be 
expressed as

 
OR(E|D) = P(E|D) P(E|D)

P(E|D) P(E|D)
..
 (1)

Assuming that D is relatively rare in both exposed 
and unexposed populations, and that genotype 
(G) is independent of environmental exposure (E)
[i.e., P(G|E)=P(G|E)=g]
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, equation number (1) sim-
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Considering the simple case when OR(GE–|D) = 
OR(G–E|D) = 1, the OR for GxE given disease may be 
written as

 OR(GE|D) = [OR(E|D) 1 + g]/g,-  (3)

where [OR(E|D)| -1]  g by unity constraints on the 
joint conditional probabilities. Treating (g) as fixed, 
the (1-α/2) × 100% CI for OR(GE|D) is approxi-
mately equal to

Methodology
The method for indirectly estimating the odds ratio 
(OR) for GxE from a case-control study and the tech-
nique for computing multiplicity corrected confidence 
intervals for a relative effects estimate have been 
separately described in previous publications and are 
only briefly summarized below.4,5 Their combination 
forms the basis for the procedure to screen for GxE.

where z(1-α/2) is the (1-α/2) × 100 percentile of a 
standard normal distribution.

Multiplicity corrected CIs
Given a set of (i) SNPs, the P value corresponding to the 
statistical significance of OR(GE|D)i is computed as
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and LCI is the (1-α/2) × 100% lower CI from 
equation 4. Ordering the P values (pi’s) from the lowest 
to highest values, i.e., p(1)# p(2)# ... p(i)# ... p(n)  (with 
arbitrary ordering in the case of ties), the multiplicity 
corrected P values denoted by “*” are  computed as

p p( )j j n j* ( ),= - +1  (8)

where j ranges from 1 to n in a 1:1 identity map-
ping with the i values, and p( )

*
j  is bounded by unity. 

The multiplicity corrected (1-α/2) × 100% CI for 
OR(GE|D)(i) is then computed as

CI = OR GE D SE OR(GE | D(1 /2)
*

- -α αexp log( ( | ) [log( ) )] ,( )i iZ±{ }1 /2
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Screening for gxe in a direct  
association study
A SNP will be selected as a possible candidate in 
a direct disease association study for GxE if the 
(1-α/2) × 100% multiplicity corrected lower CI 
(MCLCI) estimate for OR(GE|D) is greater than 
an a priori specified threshold value, for exam-
ple, OR = 3.0. Letting α1 and α2 denote the type I 
error for the indirect and direct tests, the statistical 
 significance of the overall procedure will be pro-
tected at α # α1 + α2, where the upper bound holds 
under independence of the indirect and direct 
tests. The significance level of the likelihood ratio 
test for the global null hypothesis β = 0, where β 

denotes the vector of β coefficients in a direct mul-
tivariable logistic regression model, may be set to 
a nominal value (e.g., #0.001), such that the sig-
nificance level for the overall procedure (indirect 
and direct combined) will be protected at an α-level 

(7)

only slightly greater than the type I error for the 
indirect test. Furthermore, the total number of SNPs 
allowed to enter the direct model may be fixed at a 
small number, for example #10, based on the rank 
order of the lower 95% CIs for SNPs passing the 
OR threshold value.

In practice, a significant gain in power may be real-
ized by using a meta-analysis estimate for OR(E|D) 
and 95% CI. Because a meta-analysis combines sev-
eral studies, the resulting confidence interval will be 
more precise than a single case-control estimate of 
the effect.

where
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example (hypothetical)
A population-based meta-analysis of several case-
control studies estimates that children living on a farm 
have a 1.5-fold OR(E|D) (95% CI = 1.1676 – 1.9270) 
for childhood brain cancer compared with controls. The 
aim of a future association study is to determine whether 
GxE are occurring between a panel of 100 innate 
immunity SNPs and exposure to farm life. The study 
investigator is interested in finding interactions with an 
OR(GE|D)  3.0. The population allele frequencies (g) 
for the 100 SNPs and computed 95% MCLCI for the 
indirect estimates of OR(GE|D) are shown in Table 1. 
Upon examining Table 1, the investigator observes that 
7 SNPs (highlighted in gray in the 3 rightmost col-
umns) have a MCLCI  3.0 for the indirect estimate of 
OR(GE|D) and these will be included in a new associa-
tion study to directly test for GxE. Assuming that the 
type I error rate for the direct test will be controlled 
at α2 = 0.001, the statistical  significance of the overall 
procedure will be protected at α # 0.051.
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Power and sample size computation
Power and sample size for the direct study may be 
computed using standard maximum likelihood meth-
ods for a logistic regression model and setting the 
α-level equal to α2.

6 When the joint distribution of 
covariates is unknown, the sample size for a mul-
tivariable model may be estimated by multiplying 
the univariate result times a variance inflation factor 
1/(1 1.2,3...p

2− ρ ),  where ρ1.2,3...p
2  denotes the squared mul-

tiple correlation coefficient and p equals the number 
of model covariates.7 In the example above, approxi-
mately n1 = 260 cases and n2 = 260 controls are 
needed in a direct study to have at least 80% power 
to detect an OR(GE|D)  3.18 (corresponding to the 
LCI of the minimum SNP passing the threshold for 
entrance into the direct model; upper right hand value 

in highlighted region of Table 1) at the α2 = 0.001 
level of statistical  significance (2-sided test), given 
ρ1.2,3...p

2 = 0 2. ,  P(E) = 0.10 and P(GE) = (0.88)
(0.10) = 0.088.8 Accordingly, the overall test proce-
dure is protected at α # 0.051 (i.e., α1 + α2 = 0.05 + 
0.001 = 0.051).

For models involving non-null main effects [i.e., 
P(G = 1, E = 0) ≠ 1 and/or P(G = 0, E = 1) ≠ 1], power may 
be computed by excluding these effects from the sample 
space when estimating the power for OR(GE|D).

Discussion
To the best of our knowledge, this method is the 
first to screen for GxE using an indirect estimate 
for OR(GE|D). Statistical power is significantly 
increased in this approach by eliminating SNPs prior 

Table 1. Multiplicity corrected 95% lower confidence intervals (LCI) for OR(GE|D) given the population allele frequency (g) 
for 100 innate immunity SNPs and OR(E|D) = 1.5 (95% LCI = 1.1676). 

g* OR 
(GE|D)

Multiplicity 
corrected 
95% LcI

g* OR 
(GE|D)

Multiplicity 
corrected 
95% LcI

g* OR 
(GE|D)

Multiplicity 
corrected 
95% LcI

g* OR 
(GE|D)

Multiplicity 
corrected 
95% LcI

74.0 1.68 1.24 49.4 2.01 1.21 39.4 2.27 1.25 26.8 2.87 1.48
73.0 1.68 1.22 49.0 2.02 1.21 39.0 2.28 1.26 25.8 2.94 1.51
72.0 1.69 1.21 48.6 2.03 1.21 38.6 2.30 1.26 24.8 3.02 1.54
71.0 1.70 1.20 48.2 2.04 1.21 38.2 2.31 1.27 23.8 3.10 1.58
70.0 1.71 1.19 47.8 2.05 1.21 37.8 2.32 1.27 22.8 3.19 1.62
69.0 1.72 1.19 47.4 2.05 1.21 37.4 2.34 1.27 21.8 3.29 1.66
68.0 1.74 1.18 47.0 2.06 1.21 37.0 2.35 1.28 20.8 3.40 1.71
67.0 1.75 1.18 46.6 2.07 1.21 36.6 2.37 1.28 19.8 3.53 1.76
66.0 1.76 1.18 46.2 2.08 1.21 36.2 2.38 1.29 18.8 3.66 1.82
65.0 1.77 1.18 45.8 2.09 1.21 35.8 2.40 1.29 17.8 3.81 1.89
64.0 1.78 1.17 45.4 2.10 1.21 35.4 2.41 1.30 16.8 3.98 1.96
63.0 1.79 1.17 45.0 2.11 1.22 35.0 2.43 1.30 15.8 4.16 2.04
62.0 1.81 1.17 44.6 2.12 1.22 34.6 2.45 1.31 14.8 4.38 2.14
61.0 1.82 1.17 44.2 2.13 1.22 34.2 2.46 1.32 13.8 4.62 2.25
60.0 1.83 1.17 43.8 2.14 1.22 33.8 2.48 1.32 12.8 4.91 2.38
59.0 1.85 1.18 43.4 2.15 1.22 33.4 2.50 1.33 11.8 5.24 2.53
58.0 1.86 1.18 43.0 2.16 1.23 33.0 2.52 1.33 10.8 5.63 2.70
57.0 1.88 1.18 42.6 2.17 1.23 32.6 2.53 1.34 9.8 6.10 2.92
56.0 1.89 1.18 42.2 2.18 1.23 32.2 2.55 1.35 8.8 6.68 3.18
55.0 1.91 1.18 41.8 2.20 1.23 31.8 2.57 1.35 7.8 7.41 3.51
54.0 1.93 1.19 41.4 2.21 1.24 31.4 2.59 1.36 6.8 8.35 3.94
53.0 1.94 1.19 41.0 2.22 1.24 31.0 2.61 1.37 5.8 9.62 4.52
52.0 1.96 1.19 40.6 2.23 1.24 29.8 2.68 1.40 4.8 11.42 5.34
51.0 1.98 1.20 40.2 2.24 1.25 28.8 2.74 1.42 3.8 14.16 6.60
49.8 2.00 1.20 39.8 2.26 1.25 27.8 2.80 1.45 2.8 18.86 8.80

Notes: The lightly highlighted area in the lower right hand corner of the table denotes the 7 SNPs that have multiplicity corrected 95% lower confidence 
intervals (MCLCI) exceeding the a priori specified threshold value of 3.0. The value 3.18 in the darkly highlighted area in the upper right hand corner of the 
above region corresponds to the MCLCI of the minimum SNP passing the threshold for entrance into the direct model. This value is used to conservatively 
estimate power, as higher values in the same column beneath 3.18 will yield smaller sample size estimates.
*expressed as a percentage.
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to  conducting a direct association study of GxE. 
 Furthermore, study cost is greatly reduced since fewer 
SNPs need to be genotyped.

The approach has several advantages. For example, 
the derived indirect estimate requires only knowledge 
of the OR for environmental exposure OR(E|D) and 
the population allele frequency (g). Also, the model 
can detect interactions even when the OR for an envi-
ronmental effect is null, i.e., OR(E|D) = 1.

An indirect estimate for OR(GE|D) can be com-
puted regardless of whether a biologic rationale 
exists for the underlying effect. Since the inclusion 
of biologically irrelevant or non-functional SNPs 
will inflate type I error, pathway analysis and other 
molecular techniques are recommended to determine 
the relevance of SNPs prior to analysis.9

The face validity of the method is based on estab-
lished probabilistic principles and theory.10–12 None-
theless, further validation of the technique will require 
testing its ability to detect biologically and clinically 
meaningful results that hold under replication in 
future independent studies. Furthermore, since the 
multiplicity corrected CIs used in the indirect screen-
ing phase of the method were derived heuristically 
and represent approximate estimates of the true inter-
val widths, re-sampling methods are recommended in 
situations requiring exact coverage.

A practical limitation of the method is that geno-
type must be independent of environmental exposure. 
This assumption may be violated, for example, when 
an underlying gene affects behavior such that an indi-
vidual is predisposed to seek (or avoid) the environ-
mental exposure (e.g., a gene that causes craving for 
alcohol). Additionally, the method does not account 
for complex gene-environment interactions that may 
underlie multifactorial diseases.

An implicit assumption of the method is that 
estimates for OR(E|D) and (g) remain unchanged 
in the population under consideration in the direct 
association study. However, this may not hold true 
when samples are collected based on strict popu-
lation stratification or the target population has 
changed over time. Accordingly, a prudent com-
parison of known epidemiologic characteristics for 
the indirect and direct populations is advised prior 
to the implementation of this method. Additionally, 
the user must use caution in the interpretation of 

results when the decimal precision of estimates are 
limited.

When the allelic frequency of SNPs is very low, the 
multiplicity adjusted P values will approach zero. To 
remedy this limitation, a GMP-based  implementation 
of the Schonhage-Strassen algorithm may be used to 
perform arbitrary-precision arithmetic.13,14 This algo-
rithm uses fast Fourier transforms in rings with 22n+1 
elements to enable multiplicative computation of 
 factors near absolute zero.

The ultimate success of detecting GxE will depend 
on the accurate and precise measurement of envi-
ronmental exposures on par with recent advances in 
genotyping technology. For many diseases, this will 
entail determining life-course environmental expo-
sures from birth onward.1 Parsimonious questionnaire 
design and the use of targeted biomarkers will play a 
key role in assessing environmental exposures in the 
context of GxE.

In summary, the failure to account for multi-
plicity in large scale GxE studies may lead to the 
misinterpretation of results. Furthermore, disease 
association studies for GxE are expensive and time 
consuming, and careful control of these factors is 
important to consider in study design.15 The method 
presented in this paper offers an easy to implement 
and efficient means to identify GxE that will pro-
vide more efficacious use of research and clinical 
resources.
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