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Abstract: A mixture normal model has been developed to partition genotypes in predicting quantitative phenotypes. Its estimation 
and inference are performed through an EM algorithm. This approach can conduct simultaneous genotype clustering and hypothesis 
testing. It is a valuable method for predicting the distribution of quantitative phenotypes among multi-locus genotypes across genes 
or within a gene. This mixture model’s performance is evaluated in data analyses for two pharmacogenetics studies. In one example, 
thirty five CYP2D6 genotypes were partitioned into three groups to predict pharmacokinetics of a breast cancer drug, Tamoxifen, 
a CYP2D6 substrate (p-value = 0.04). In a second example, seventeen CYP2B6 genotypes were categorized into three clusters to 
predict CYP2B6 protein expression (p-value = 0.002). The biological validities of both partitions are examined using established 
function of CYP2D6 and CYP2B6 alleles. In both examples, we observed genotypes clustered in the same group to have high 
functional similarities. The power and recovery rate of the true partition for the mixture model approach are investigated in statistical 
simulation studies, where it outperforms another published method. 
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Introduction
Genetic association studies have been widely used to 
identify risk factors for complex diseases or to predict 
drug-treatment outcomes (efficacy or toxicity). 
One important approach is called candidate gene 
approaches.1 It is frequently selected to investigate 
genes in known signaling and metabolic pathways. 
This approach typically narrows gene targets to 
a handful of candidates deemed to have a stronger 
potential of affecting outcomes. Consequently, it is 
feasible to investigate a dense SNP set per gene. For 
example, in our pharmacokinetics study of Tamoxifen 
in breast cancer patients, 35 CYP2D6 alleles were 
investigated from more than 70 known CYP2D6 
polymorphisms.

In a candidate gene study, multiple SNPs per 
gene usually lead to many haplotypes or alleles, 
creating high genotype dimensions for genotype/
phenotype association analysis. A striking example 
is the CYP2D6 gene, which has greater than 70 
alleles, including mutations, deletions, insertions, 
gene conversions and duplications (www.imm.
ki.se/CYPalleles).

To have potential clinical benefit, association 
studies must address a two-fold question: whether 
a phenotype is associated with genetic variations, 
and whether the clinical outcome distribution 
among genotypes is well-defined (i.e. how many 
sub-population groups can be predicted by genetic 
polymorphisms). An ideal statistical approach 
should have a high power to test genetic effects 
on the phenotypes. It should also be able to group 
combinations of genetic variables into clusters, 
where samples in each cluster share a similarly 
distributed phenotype. Clustered genotypes that 
predict phenotypes have high clinical relevance as 
possible diagnostic markers, which could directly 
facilitate future clinical decisions.

In traditional statistical theory, many multiple 
comparison approaches were developed.2,3 Scheffe, 
LSD, and Tukey’s HSD tests can evaluate the overall 
phenotype difference among genotype groups, but 
they can’t tell where the difference is. Newman-Kuels 
and Duncan tests are able to search for phenotype 
differences sequentially among genotype groups, 
but may result in overlapped grouping [Christensen,2 
page 80, example 5.5.1]. Therefore, all of these 
approaches are capable of addressing the first part of 

the prescribed two-folded question: whether there is 
any genetic effect on the phenotype. However, none 
of them can provide decisive answer to the second 
part of the question: how genetic polymorphisms are 
grouped to predict the phenotype.

A restricted partition method (RPM) has been 
proposed4 to address these two aims. The algorithm 
ranks the genotype groups from the smallest to the 
largest according to the phenotype means. Then, 
adjacent genotype groups are merged sequentially 
based on a Tukey’s HSD test until it reaches a pre-
specified significant level. The overall type I error is 
controlled by the empirical distribution constructed 
for the R2 statistic from a regression of the quantitative 
trait value on the final genotype grouping. This 
RPM method is an extension of a proposed multiple 
comparison approach for quantitative phenotypes. 
It has two important features that may affect its 
implementation. At first, it has inherent assumptions 
of equal phenotypic variance and equal sample 
sizes among genotype cells in Tukey’s HSD test. 
In practice, this assumption may or may not hold. 
Secondly, it uses disparate methods for genotype 
grouping (Tukey’s HSD test) and testing genotype/
phenotype associations (R2). Arbitrary threshold 
selection for both methods may not guarantee the 
optimal partition.

In this paper, we propose a parametric mixture 
model approach to genetic association studies, 
where the quantitative phenotype is assumed to 
follow multivariate normal distribution. Differential 
genotype cells are allowed to have different means 
and variances. A sequential likelihood ratio test, i.e. 
one mixture vs. two mixtures, two vs. three, and so on, 
among subgroups defined by genetic polymorphisms 
indicates the significance of the genetic effect on the 
phenotype. The optimal partition among genotypes 
for phenotype prediction is determined by probability 
assignments from the mixture model. Therefore, this 
mixture model approach can simultaneously perform 
p-value calculation and determine the optimal 
genotype partition. The innovation of our mixture 
model includes an added penalty term to avoid non-
identifiable parameters.

The performance of our approach is evaluated 
with two pharmacogenetics study examples, in which 
CYP2D6 and CYP2B6 alleles were genotyped to 
predict the pharmacokinetics of a CYP2D6 substrate 
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and CYP2B6 protein expression respectively. 
Because the functional relationship between CYP2D6 
alleles and metabolic activity and CYP2B6 alleles 
and protein expression has been extensively studied, 
their function based partitions will serve as objective 
standards for assessing our mixture-model-based 
partitions. In addition, statistical simulations were 
conducted to compare performance of RPM and the 
mixture model.

Methods
Mixture model specification
The history of the mixture model’s application in 
genetics can be traced back as far as 1800s.5 Many 
important contributions of this approach in population 
genetics are well documented.6 We emphasize that 
the traditional mixture model approach has been to 
infer whether a phenotype from the population (such 
as blood pressure or drug response) is composed of 
multiple sub-populations determined by possible 
underlying, unknown genotypes. The mixture 
model formulation and its estimation procedure 
are introduced in great detail by McLachlan.7 
We reformulate the traditional mixture model to 
estimate if measured genotype groups can predict a 
number of unknown, underlying normal mixtures in 
measure phenotypes.

Let us assume that we have G genotype groups, 
and every genotype group has ng (g = 1, …, G) 
phenotype samples, yg = (     yg1, …, ygng), where ygi is 
a normal random variable. We write the probability 
of the measured phenotype y as a function of the 
observed G genotype groups defining partitions of y 
and the assignment of phenotype group yg to one of 
the assumed K clusters
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where zg = 1, 2, …, K is a multi-nominal random 
variable, and I{zg = k} indicates genotype group g  

follows distribution Pr(yg | mk, sk). For the sake of 
simplicity, let’s define sgk = I{zg = k}. The log-likelihood 
for mixture model (1) is
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Under the null hypothesis, the true model has only 
one distribution. If we fit the data by a mixture of 
K-components, any (   pk = p0 = ptrue, 0  pk  1, 
k = 1, …, K   ) will achieve the maximum in (2). 
This problem causes not only numerical difficulties 
in the mixture model estimation process,8 but also 
theoretical difficulties in likelihood ratio tests.9,10 
The identification problem was solved in11 by 
adding a penalty term into the log-likelihood 
function (2), by which the penalized likelihood 
function pl(.), (3), forces pk = 1/K when it reaches 
the maximum.
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Our aim is the classification of the genotype cells, 
while Chen11 classify individual observations. This 
difference leads to distinctive estimation algorithms 
and asymptotic LRT.

e-M algorithm
In the estimation step (E-step), the random variable 
zgk (un-observed) is estimated by (4):
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The grouping of genotype g is based on the its 
highest probability assignment,

 group(g) = aug maxk = 1, …, K{sgk} (5)

In the maximization step (M-step),
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The E- and M-steps are iteratively conducted, and 
the convergence is monitored based on the relative 
difference of the penalized likelihood function (3).

sequential log-likelihood ratio test
To test the number of normal distribution mixtures 
present in the observed genotypes, a likelihood ratio 
test (LRT) is conducted. The marginal penalized log-
likelihood for a mixture model of K-component is 
listed in (7).
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The LRT is calculated by

	 λ	= -2[   plM (Kl) - plM (K2)]. 

This LRT will be conducted sequentially in data 
analysis, i.e. (K1, K2) = (1, 2), (2, 3), (3, 4), etc., for 
all (K1, K2) with K2  g. The family-wise type I error 
is calculated as the cumulative p-value along the 
sequential test. The threshold is pre-specified at the 
5% level. For each LRT step, parametric bootstrap 
(5,000 replications) is implemented to calculate the 
empirical p-value.

Data Analysis
Pharmacogenetic study of CYP2D6 
genetic effect on tamoxifen metabolites 
in patients with breast cancer
N-Desmethyltamoxifen (NDM), a major primary 
metabolite of tamoxifen, is hydroxylated by CYP2D6 
to yield endoxifen. Due to its high antiestrogenic 
potency, endoxifen may play an important role in 

the clinical activity of tamoxifen. We conducted 
a prospective trial in 158 breast cancer patients 
taking tamoxifen to further understand the effect 
of CYP2D6 genotype and concomitant medications 
on endoxifen plasma concentrations. Thirty-five 
different genotypes (Fig. 1a) were determined 
from the 17 CYP2D6 alleles assayed. Plasma 
concentrations of tamoxifen and its metabolites 
were determined at the fourth month of tamoxifen 
treatment.

The NDM/Endoxifen ratio data were log-
transformed for better normal mixture model 
fitting. However, the sample size and variance 
are clearly unequally distributed among 35 
genotype cells (Fig. 1a). Applying the mixture 
model, the sequential LRTs (Table 1) suggest 
the 35 genotype cells were optimally partitioned 
into three groups. Sequential test p-values for 
testing mixtures (1 vs. 2), (2 vs. 3), (3 vs. 4) 
were 0.008, 0.032, and 0.143 respectively, with 
a cumulative p-value = 0.040 for the mixture 
model of 3 components. The genotype group 
with smallest log(NDM/Endoxifen) contains 
genotypes *3/*41, *17/*41, *4/*4, and *41/*41 
(group 1 in Table 1). It has a mean of -3.76 and a 
SD = 0.15, and approximately 12% of the samples 
belong to this group. The second genotype group 
contains *4/*41, *10/*4, *10/*4xn, *35/*41, 
*1/*10, *10/*2, *35/*5, *10/*41, *2/*4, *1/*3, 
*2/*41xn, *2/*35, *1/*4, *5/*9, *1/*41, *1/*29, 
*1/*35, *35/*4, *1/*5, *2/*41, and *41/*9. Its 
log(NDM/Endoxifen) has a mean of -2.82 and a 
SD = 0.40, and 50% of the samples belong to this 
group. The third group contains genotypes *1/*2, 
*2/*2, *1/*1, *2/*9, *10/*35, *1/*1xn, *2xn/*4, 
*1xn/*2, *41/*41xn, and *1/*2xn. It has the largest 
log(NDM/Endoxifen) with a mean –2.28 and a 
SD = 0.42, and 38% of the samples belong to this 
group. Figure 1b displays the three mixture density 
distributions. Figure 1c shows genotype cell 
probability assignments (sgk) to each of the three 
predicted normal mixture components, where 
colored bar lengths (scaled on (0,1)) indicate the 
value of sgk for each mixture component.

RPM was conducted for the log(NDM/Endoxifen) 
data. Results are presented in Table 2. The RPM 
sequential analysis stopped at the first iteration, 
with p-value = 0.036. The result suggests 
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log(NDM/Endoxifen) is significantly different among 
all 35 genotype cells.

Pharmacogenetic study of CYP2B6 
genetic effect on its protein  
expression in human liver tissues
We conducted a retrospective study, investigating the 
effect CYP2B6 genetic polymorphisms on CYP2B6 

protein expression in 83 human liver tissues. 
Seventeen genotypes (Fig. 2a) were determined from 
9 CYP2B6 alleles assayed (*1, *2, *4, *5, *6, *13, 
*14, *15, and *22). This data were recently published 
by our group.12 Protein expression level was done with 
western blotting in liver microsome samples. Much 
detail method description was described in13 CYP2B6 
protein expression data was fitted using the normal 
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Figure 1. genotype/phenotype association analysis for the Tamoxifen study. A) is a raw data description. The x-axis is the nDM/endoxifen ratio in 
log-scale, where both nDM and endoxifen are Tamoxifen metabolites. The y-axis denotes the 35 CYP2D6 genotypes. B) Thirty-five genotypes are 
clustered into three groups by a mixture model, which are characterized by three normal distributions. The x-axis is the nDM/endoxifen ratio in log-scale, 
and y-axis is the probability density. c) shows genotype cell probability assignments (sgk) to each of the three predicted normal mixture components, 
where colored bar lengths (scaled on (0,1)) indicate the value of sgk for each mixture component. In A), B), and c), green, blue, and red colors represent 
the memberships of three clusters.
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mixture model. Sample size and variance were clearly 
unequally distributed among 17 genotypes (Fig. 2a). 
The sequential LRT (Table 1) suggests CYP2B6 
protein expression levels are optimally portioned into 
three groups based on genotype. The sequential test 
p-values for testing mixtures (1 vs. 2), (2 vs. 3), (3 vs. 4) 
were 0.001, 0.001, and 0.153 respectively, with a 
cumulative p-value = 0.002 for the mixture model of 3 
components. The genotype group with smallest mean 
protein expression contains genotypes *6/*13, *5/*5, 
*5/*6, *1/*15, *5/*15, and *1/*4 (group 1 in Table 1). 
It has a mean of 2.81(pmol/mg) and a SD = 1.64, and 
approximately 31% of samples belong to this group. 
The second genotype group contains *6/*14, *2/*4, 
*1/*5, *6/*6, *1/*6, *5/*22, *2/*22, *4/*6 and *1/*2. 
Its protein expression has a mean of 11.6(pmol/mg) 
and a SD = 58.1, and 52% of the samples belong to 
this group. The third group contains genotypes *1/*22 
and *1/*1. It has the largest protein expression with 
mean 28.1(pmol/mg) and SD = 259.7, and 17% of the 
samples belong to this group. Figure 2b displays the 
three mixture density distributions. Figure 2c shows 
genotype cell probability assignments (sgk) to each of 
the three predicted normal mixture components.

RPM was conducted for the CYP2B6 protein 
expression data. Results are presented in Table 2. The 
RPM sequential analysis stopped at the first iteration, 
with p-value = 0.007. The result suggests mean 
protein expression is significantly different among all 
17 genotypes.

simulation studies
The preceding data analyses show discrepancies 
between the mixture model and RPM approaches. 

In these comparisons, RPM partitions the genotype 
cells into more subgroups than the mixture model. 
As both methods emphasize the importance of 
dimensionality reduction, we look favorably on 
the mixture model result, though both detected 
significant genotype/phenotype associations in their 
respective genotype partitions. In the following 
simulation studies under two epistatic models, we 
compare the power of the two approaches to detect 
genetic effects and model recovery probabilities. 
Of importance is the ability of both approaches to 
recover the true model partition.

Data were simulated from two 2-locus, bi-allelic 
models: a checkerboard model (Fig. 3a) and a 
diagonal model (Fig. 3b). These two models have 
been thoroughly described by Culverhouse.14 For 
each model, both alleles at each of the contributing 
loci are equally frequent (minor allele frequencies for 
a and b are 0.5), and the phenotype in each genotype 
cell is normally distributed.

Checkerboard models were simulated with 
2 distributions among the 9 cells, with equal or 
unequal variances. One group consists of 4 genotype 
cells containing exactly one heterozygote (Fig. 3a, 
shaded cells), with a phenotypic mean of 0. The other 
five genotype cells have a higher phenotypic mean. 

Table 1. Mixture model based data analyses.

phenotypes Group ID Mixture Dist. and 
prob. n(µ, σ 2; p)

Genotype grouping

Tamoxifen study 1 n(-3.76, 0.15; 0.12) *3/*41, *17/*41, *4/*4, *41/*41
Log 
(nDM/endoxifen)

2 n(-2.82, 0.40; 0.50) *4/*41, *10/*4, *10/*4xn, *35/*41, *1/*10, *10/*2, *35/*5, 
*10/*41, *2/*4, *1/*3, *2/*41xn, *2/*35, *1/*4, *5/*9, 
*1/*41, *1/*29, *1/*35, *35/*4, *1/*5, *2/*41, *41/*9

3 n(-2.28, 0.42; 0.38) *1/*2, *2/*2, *1/*1, *2/*9 *10/*35, *1/*1xn, *2xn/*4,  
*1xn/*2, *41/*41xn, *1/*2xn

efavirenz study 1 n(2.81, 1.64; 0.31) *6/*13, *5/*5, *5/*6, *1/*15, *5/*15, *1/*4
Protein expression 
(pmol/mg)

2 n(11.6, 58.1; 0.52) *6/*14, *2/*4, *1/*5, *6/*6, *1/*6, *5/*22, *4/*6, *2/*22, 
*1/*2

 3 n(28.1, 259.7; 0.17) *1/*22, *1/*1

Table 2. rPM based data analyses.

 Tamoxifen study cYp2B6 study
P-value 0.036 0.007

grouping 35 groups for  
35 genotypes

17 groups for 
17 genotypes
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Diagonal models were simulated with 3 distributions 
among the 9 cells, with equal or unequal variances. 
All the cells off the main diagonal have a phenotypic 
mean of 0. The diagonal cells (Fig. 3a, dark shaded 
cells) have higher phenotypic means, with the double 

heterozygote (Fig. 3a, light shaded cell) phenotypic 
mean as half that of the other two cells, but with equal 
variance.

The data were simulated as follows: assuming 
unrelated individuals, genotype cells are simulated 
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Figure 2. genotype/phenotype association analysis for the CYP2B6 study. A) is a raw data description. The x-axis is the CYP2B6 protein expression 
(pmol/mg). The y-axis denotes the 17 CYP2B6 genotypes. B) seventeen genotypes are clustered into three groups by a mixture model, which are 
characterized by three normal distributions. The x-axis is the protein expression level, and y-axis is the probability density. c) shows genotype cell 
probability assignments (sgk) to each of the three predicted normal mixture components, where colored bar lengths (scaled on (0,1)) indicate the value of 
sgk for each mixture component. In A), B), and c), green, blue, and red colors represent the memberships of three clusters.
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independently based on allele frequencies. Given 
an individual genotype cell, the phenotype was 
generated from a normal distribution. Phenotypes were 
simulated under two variance assumptions. In situation 1 
(equal variance), one group of cells follows N(1, 12), and 
the other group follows N(1 + m, 12), where m = 0.25, 
0.5, and 1. In situation 2 (unequal variance), one 
group of cells follows N(1, 12), and the other group 
follows N(1 + m, 22), where m = 0.25, 0.5, and 1. 1000 
datasets were simulated, each containing 500 samples. 
In situation 3 (Gamma Distribution), one group of 
cells follows a gamma distribution of mean = 1 and 
variance = 1, and the other group follows a gamma 
distribution of mean = 1 + m, and variance = 1, where 
m = 0.25, 0.5, and 1.

In both RPM and mixture model analysis, the 
p-value threshold is set at 0.1% level in order to make 
the simulation results comparable to the original 
PRM simulation studies.4 Power and model recovery 
probabilities from the simulations are reported in 
Table 3. Power was calculated by the proportion of 
simulated data sets where the null hypothesis was 
rejected. Recovery probability was estimated by the 
proportion of simulated data sets in which the true 
partition was recovered. Highlights of simulation are 
summarized as following:

• For models with equal variance among genotype 
cells (situation 1), both RPM and the mixture 
model methods demonstrated comparable power, 

but the mixture model had much higher recovery 
probabilities.

• For models with unequal variance among genotype 
cells (situation 2), the mixture model approach 
was more powerful and had higher recovery 
probabilities than RPM.

• For RPM in the unequal variance situation, 
both checkerboard and diagonal models had 
considerable discrepancies between power and 
recovery probability estimates. This result is due 
to early rejection of the RPM multiple comparison 
tests, making it unable to fully recover the true 
partition.

• Comparing the simulations under equal and 
unequal variance, the mixture model gained power 
and had increased partition recovery probability 
for models of unequal variance.

• If the data distribution is un-symmetric (i.e. 
gamma distribution), both mixture model and 
RPM methods have comparable performance 
comparing their performance in data following 
normal distribution, respectively.

Discussion and conclusion
The penalized mixture model approach for quantitative 
phenotypes is a novel application of the mixture 
model to genotype clustering in genetic association 
studies. As demonstrated in pharmacogenetic studies 
of CYP2D6 and CYP2B6, along with simulations, this 
mixture model method is capable of clustering local 
haplotypes and multi-locus genotypes to significantly 
reduce complexity of high-dimensional genotype 
space. The approach has power to detect quantitative 
traits loci when genetic effects on phenotypes are 
marginal or purely epistatic. As demonstrated in two 
pharmacogenetic genetic studies and simulations, 
it can detect both main and interactions effects of 
genetic polymorphisms on quantitative phenotypes.

Investigating the effect of CYP2D6 genotype on 
CYP2D6 metabolism of N-Desmethyltamoxifen, 
the mixture model approach generated three 
CYP2D6 genotype clusters in predicting log(NDM/
Endoxifen). Before we discuss the biological 
rational for this classification, let us review the 
functionality of CYP2D6 alleles. CYP2D6*1 is the 
wild type allele, which codes for a fully functional 
enzyme. CYP2D6*2, *33 and *35 alleles contain 
point mutations that do not affect the catalytic 
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Figure 3. Bi-allelic epistatic models. A) Checkerboard model was 
simulated with 2 distributions among the 9 cells, with equal or unequal 
variances. One group consists of 4 genotype cells containing exactly one 
heterozygote (shaded cells), with a phenotypic mean of 0. The other five 
genotype cells have a higher phenotypic mean. B) Diagonal model was 
simulated with 3 distributions among the 9 cells, with equal or unequal 
variances. All the cells off the main diagonal have a phenotypic mean 
of 0. The diagonal cells (dark shaded cells) have higher phenotypic 
means, with the double heterozygote (light shaded cell) phenotypic mean 
as half that of the other two cells, but with equal variance.
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Table 3. simulation studies.

µ RpM Mixture model
power Recovery- 

probability
power Recovery-  

probability
situation 1: equal variance
Check board model
0.25 8% 9.7% 8.6% 49.8%
0.50 87% 51.4% 88.5% 83.2%
1.00 100% 79.3% 100% 99.8%
Diagonal model
0.25 40% 1.3% 44.3% 33.2%
0.50 100% 44.3% 100% 61.1%
1.00 100% 86.5% 100% 97.9%
situation 2: Unequal variance
Checkerboard model
0.25 0.4% 5.8% 13.5% 77.8%
0.50 16.4% 22.4% 92.9% 92.3%
1.00 99.8% 0.3% 100% 100%
Diagonal model
0.25 0.6% 0.2% 54.4% 49.4%
0.50 15.2% 0.2% 100% 82.3%
1.00 95.4% 0.2% 100% 100%
situation 3: skewness  
(gamma distribution)
Check board model
0.25 7.5% 5.5% 7.3% 49.3%
0.50 82% 46.3% 85.5% 84.2%
1.00 99% 74.3% 98.3% 93.8%
Diagonal model
0.25 38% 2.3% 39.3% 36.7%
0.50 100% 43.4% 100% 63.2%
1.00 100% 87.4% 100% 98.9%

properties of the protein product. CYP2D6*3–8, 
*11–16, *18–20, *38, *40, *42, *44 are associated 
with no enzymatic activity and CYP2D6*9, *10, 
*17, *29, *36, *37, *41 with reduced activity.15–17 
The presence of multiple copies of CYP2D6 alleles 
(i.e. *1, *2, *35, *41) have been reported in 
subjects with unusually high CYP2D6 catalytic 
activity.18,19

Based on this prior functional information, all of 
the CYP2D6 alleles contained in the first genotype 
group in Table 1 have either no or reduced enzymatic 
activity. The majority of alleles in the third genotype 

group have either normal or high activities. There 
are only four heterozygous diplotypes that possess 
low enzymatic activity: *2/*9, *10/*35, *2xn/*4 
and *41/*41xn. With the exception of *2/*35 and 
*1/*35, almost no genotypes in the middle group 
are homozygous for normal or no-enzymatic activity 
alleles. If these six genotype groups (*2/*9, *10/*35, 
*2xn/*4, *2/*35, *1/*35) were misclassified by the 
mixture model, they are account for only 10 out of 
158 samples (6%). Therefore, the mixture model 
based partition is accurate according to well defined 
functionality of CYP2D6 alleles.
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In exploring the effect of CYP2B6 genotype 
on expression of its protein product, 9 alleles 
were genotyped. CYP2B6 *1 represents fully 
functional expression and activity while *22 is 
associated with increased CYP2B6 expression.20 The 
*5 allele reduces CYP2B6 protein by about 8-fold in 
isolated human liver microsomes.13 The *6 allele has 
been shown to reduce function in vitro as well as the 
pharmacokinetics of its substrate efavirenz in clinical 
studies.21,22 The other alleles (*2, *13, *14, *15) 
have very low or completely absent function.13,23,24 
CYP2B6*4 appears to increase25 or decrease (our 
data) activity depending on the substrate tested.

Three CYP2B6 genotype clusters generated from 
the mixture model reasonably reflect our expectation 
based on these prior studies. Genotypes in the cluster 
with the highest protein level are composed of only 
fully functional alleles, *1 and *22. Most genotypes 
in the lowest protein level cluster are composed of 
two low or non-functional alleles (*2, *4, *5, *6, 
*13, *15), with the exception of *1/*15 and *1/*4. 
Most of genotypes in the middle cluster contain one 
functional allele and one low or non-functional allele, 
apart from *4/*6, *6/*14, *2/*4, and *6/*6. If these 
six genotype groups (*1/*15, *1/*4, *6/*14, *2/*4, 
*6/*6, *4/*6) were misclassified by the mixture 
model, they account for 12 out of 83 samples (14.4%). 
In both examples, mixture model based partitions on 
CYP2D6 and CYP2B6 genotypes are supported by 
their functional information.

Comparing RPM to the mixture model approach, 
RPM detected genotype/phenotype associations with 
similar power. However, in the CYP2D6 and CYP2B6 
pharmacogenetic studies, the mixture model generates 
three clusters for each data set, while RPM generated as 
many clusters as the original genotype cells. The result 
suggests a tendency of over clustering by the RPM 
method. This characteristic of RPM is confirmed in 
the simulation study, where RPM had a lower recovery 
rate for the true partition compared with the mixture 
model approach. Improvement in the mixture model’s 
recovery rate was observed when the assumption of 
equal variance among groups was violated, while 
RPM’s recovery probability was diminished.

In summary, the mixture model approach has 
adequate power to detect genetic effects on phenotypes 
and simultaneously cluster multiple genetic variables 
into homogeneous phenotype groups.
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