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Abstract
Background: Genetic and epigenetic alterations in colorectal cancer are numerous. However, it is difficult to judge whether such 
changes are primary or secondary to the appearance and progression of tumors. Therefore, the aim of the present study was to identify 
altered DNA regions with significant covariation to transcription alterations along colon cancer progression.
Methods: Tumor and normal colon tissue were obtained at primary operations from 24 patients selected by chance. DNA, RNA and 
microRNAs were extracted from the same biopsy material in all individuals and analyzed by oligo-nucleotide array-based comparative 
genomic hybridization (CGH), mRNA- and microRNA oligo-arrays. Statistical analyses were performed to assess statistical interac-
tions (correlations, co-variations) between DNA copy number changes and significant alterations in gene and microRNA expression 
using appropriate parametric and non-parametric statistics.
Results: Main DNA alterations were located on chromosome 7, 8, 13 and 20. Tumor DNA copy number gain increased with tumor 
progression, significantly related to increased gene expression. Copy number loss was not observed in Dukes A tumors. There was no 
significant relationship between expressed genes and tumor progression across Dukes A–D tumors; and no relationship between tumor 
stage and the number of microRNAs with significantly altered expression. Interaction analyses identified overall 41 genes, which dis-
criminated early Dukes A plus B tumors from late Dukes C plus D tumor; 28 of these genes remained with correlations between genomic 
and transcriptomic alterations in Dukes C plus D tumors and 17 in Dukes D. One microRNA (microR-663) showed interactions with 
DNA alterations in all Dukes A-D tumors.
Conclusions: Our modeling confirms that colon cancer progression is related to genomic instability and altered gene expression. How-
ever, early invasive tumor growth seemed rather related to transcriptomic alterations, where changes in microRNA may be an early 
phenomenon, and less to DNA copy number changes.
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Introduction
Overwhelming amount of information is appearing 
in the literature on genetic alterations associated to 
invasive colorectal cancer.1 It is so far unclear to what 
extent such findings are primary causes of neoplastic 
transformation and tumor progression or may rather 
represent events secondary to genetic instability. 
Unfortunately, it would require hundred thousands of 
patients with defined colon cancer disease and con-
trolled follow up to discriminate and validate both 
genetic and epigenetic information by traditional 
multivariate analyses.2–5 This fact became evident to 
us in previous evaluations of results based on genome 
wide DNA alterations in progressive colon cancer 
based on BAC CGH analyses in patients with differ-
ent survival,6 as also emphasized by others.7 Thus, it 
seems practically impossible to rank appearing DNA 
sequence alterations in relationship to progressive dis-
ease and clinical outcome, accounting for defined and 
undefined standard elements including epigenetics.3,4 
A major part of correlates and relationships may after 
all only represent indirect or secondary phenomena 
to underlying critical cellular events despite sufficient 
statistical power or information on complete genome 
wide alterations.8,9 Therefore, simplistic models are 
required as alternatives to traditional statistics in order 
to efficiently screen for and suggest candidate DNA 
regions of primary importance for appearing invasive 
growth and subsequent progression of colorectal can-
cer. In line with this speculation we found it interest-
ing to relate significant DNA copy number changes to 
either significantly changed gene expressions or post-
transcriptional control of RNA in tumor biopsies from 
colon cancer; all processed from the same patients. 
The present study provides such in silico analyses 
on well defined and quality controlled tumor mate-
rial from selected patients with colorectal cancer of 
Dukes A, B, C and D tumor stage as surrogate mark-
ers for clinical outcome, in order to filter genes within 
regions with copy number gain and loss by statistical 
modeling in limited number of patients.1

Materials and Methods
Patients and clinical details
Intentionally, the patient material comprised a limited 
number of patients (n = 24) operated on for primary 
colon carcinoma at Uddevalla Hospital, Sweden 
between 2001–2003 (Table 1). These patients were 

selected by chance from a cohort of 486 consecutive 
patients with colorectal cancer to represent 6 patients, 
with tumor stage Dukes A, B, C and D, respectively. 
(Modified Dukes A–D stages correspond to TNM 
I–IV in present histopathological evaluations). Dukes 
D tumors were all diagnosed at operations and subse-
quent histopathological staging. Patient selection was 
also dependent on the presence of a particular surgeon, 
patient acceptance to take part in the study, quality 
control of tissue extracted RNA and the absence of 
any pharmacological preoperative treatment deemed 
of importance for the investigation. Thus, none of the 
patients had experienced any additional specific treat-
ment beside surgery at the time of operation. Patients 
with rectal and very low sigmoidal tumors were not 
considered for inclusion. There was no overall differ-
ence between the patients when grouped according to 
Dukes A, B, C and D stages, considering gender and 

Table 1. Included patients operated on for primary colon 
carcinoma.

Tumor stage Gender Age Tumor localization
Dukes A

M 82 Right colon
M 75 Right colon
M 75 Left colon
F 66 Left colon
F 75 Left colon
F 81 Left colon

Dukes B
F 80 Right colon
F 78 Left colon
F 60 Left colon
M 63 Left colon
M 79 Left colon
M 73 Left colon

Dukes C
M 76 Right colon
F 86 Right colon
F 55 Right colon
F 72 Left colon
M 73 Left colon
M 62 Left colon

Dukes D
M 59 Right colon
M 66 Right colon
M 61 Left colon
F 69 Left colon
M 73 Left colon
F 52 Left colon

All patients were consecutively included from a large cohort selected by 
chance over time.
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2 set. All labeled samples were checked by NanoDrop 
spectrophotometry prior to hybridization and arrays 
were scanned (Agilent scanner G2565 AA, Agilent 
Technologies).

Analyses of scanned images from CGH two-color 
oligonucleotide arrays were performed in Feature 
Extraction 9.1.3.1 (Agilent Technologies). Feature 
Extraction result files were imported into the statis-
tical language R 2.7.210 where both channels were 
normalized using median normalization implemented 
in the Bioconductor package11 LIMMA. The techni-
cal replicates were averaged and then segmented by 
DNA copy package using the CBS algorithm with 
default parameter values.12 Minimal common regions 
(MCR, defined in)13 between the different Dukes types 
were identified using the cghMCR package.13 Briefly, 
gained and lost regions were defined as segment of 
contiguous probes that showed log2 values above or 
below a cut-off level, defined as one standard devia-
tion of the probe variation calculated from all of the 
arrays. The cut-off values for both gained and lost 
segments were estimated to 0.1 (log2), which corre-
sponded approximately to the 20th and 80th percen-
tiles of the segment alteration values respectively.12

mRNA expression analysis
Total RNA from tumor and normal tissue was sepa-
rately pooled as described for CGH analyses; 200 ng 
of pooled total RNA was labeled with Agilent Two-
Color RNA Spike-In Kit (Agilent Technologies), lin-
early amplified and synthesized to cRNA. Labeled 
products were checked in a NanoDrop and further 
hybridized in competition to Agilents Whole Human 
Genome Oligo Microarrays (Design 014850) with 
Gene Expression Hybridization Kit (Agilent Tech-
nologies). Arrays were washed with Gene Expression 
Wash Buffer Kit (Agilent Technologies) and scanned 
(Agilent scanner, Agilent Technologies).

Analyses of scanned images from two-color 
mRNA expression were performed in Feature Extrac-
tion 9.1.3.1 (Agilent Technologies). Feature Extrac-
tion result files were imported into the statistical 
language R 2.7.2 where replicated probes were aver-
aged.10 Each array was then normalized using Low-
ess normalization implemented in the Bioconductor 
package LIMMA.11,14 A moderated t-statistic, based 
on an empirical Bayes model were calculated for each 
gene and the corresponding p-value was adjusted 

tumor location (Table 1), but Dukes D patients were 
younger as also observed in the entire cohort of 486 
patients (P , 0.05). Six patients for each Dukes group 
were finally available according to above mentioned 
criteria considering a comparatively even distribution 
of patient characteristics and disease stage.

Tissue samples and extraction  
of DNA and RNA
Biopsies from primary tumors and normal colon tis-
sue were collected from each patient at operation, 
snap frozen in liquid nitrogen and stored at -80°C. 
Tissue biopsies were crusched in a mortar and two 
aliquotes of powdered tissue were used for DNA and 
total RNA extraction respectively. Genomic DNA 
and total RNA were from the same tissue source in 
each patient. DNA was extracted with QIamp DNA 
mini kit (Qiagen) according to instructions and total 
RNA was extracted with mirVana total RNA isola-
tion kit (Ambion/Applied Biosystems). All material 
was quantified by NanoDrop ND-1000 spectropho-
tometry (NanoDrop Technologies) and total RNA 
samples were run in Bioanalyzer (Agilent Technolo-
gies) to confirm appropriate quality. mRNA expres-
sion arrays and DNA on oligo CGH arrays were run 
in triplicate. MicroRNA expression arrays were run 
in duplicate (167 or 307 ng DNA depending on array 
format, 33 ng RNA and 20 ng microRNA were used 
from each patient). Tumor tissue comprised around 
80% malignant cells.6

CGH analysis
Genomic DNA from tumor and normal colon tis-
sue from the 24 patients was separately pooled for 
analyses with 6 patients in each group according to 
Dukes A–D. Hybridization of tumor versus normal 
colon DNA was performed in competition to either 
44 K Whole Human Genome oligo arrays (Design 
013282, Agilent Technologies) or 4 × 44 K Whole 
Human Genome oligo arrays (Design 014950, Agi-
lent Technologies). Pooled DNA (1.84 µg/array) for 
44 K arrays was labeled with Agilent Genomic DNA 
Labeling Kit PLUS, hybridized and washed using 
Agilent Human Genome CGH Microarray Kit 44B 
and for 4 × 44 K arrays by labeling (1µg DNA/array) 
with Agilent Genomic DNA Labeling Kit PLUS, 
hybridized with Agilent Oligo aCGH Hybridization 
Kit and washed with Agilent Oligo Wash Buffer 1 and 
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for multiple testing using the Benjamini-Hochberg 
False Discovery Rate (FDR).15,16 Absolute log fold-
change of 1 and FDR of 0.05 were used as cut-off 
for subsequent analyses. Trends in mRNA expression 
according to the Dukes types were tested with linear 
regression within the empirical Bayes model.15

microRNA expression analysis
Total RNA from tumor and normal colon tissue was 
separately pooled as described; 120 ng of pooled 
total RNA was labeled with Agilent Cyanine 3-pCp 
reagent for direct labeling by Agilent microRNA 
Labeling Reagent and Hybridization Kit (Agilent 
Technologies). Labeled products were hybridized to 
Agilent Human microRNA single color microarrays 
(G4470A, Agilent Technologies, with 470 human, 
64 viral probes), washed and scanned on an Agilent 
scanner. Analyses of scanned images from single- 
color microRNA expression were performed in 
Feature Extraction 9.5 (Agilent Technologies). The 
one-channel Feature Extraction 9.5 result files were 
imported into R. Identical probes were averaged and 
the data normalized using quantile-quantile normal-
ization implemented in the Bioconductor R-package 
Affy.17 As for the mRNA expression data, a moder-
ated t-statistic was calculated for each microRNA as 
well as a p-value and the FDR. Cut-off values used in 
subsequent analyses were an absolute log fold-change 
of 0.5 and an FDR of 0.05.

Statistics and mathematical interactions
Group analyses were performed by t-testing or 
ANOVA and frequency analysis by χ2. Statistical 
interaction analyses (correlations, co-variations, sig-
nificant alterations) were based on DNA segments 
with copy number changes and significant alterations 
in expression of defined transcripts. Statistical inter-
actions between altered DNA sequences and mRNA/
microRNA expression for a specific region were 
calculated as follow: First, probes from the microar-
ray were mapped to NCBI Entrez (build 18) genes 
within the region. The proportion of differentially 
expressed genes was compared to the entire genome 
and enrichment was then tested using Fisher’s exact 
test. The test of interactions was performed for all 
significant DNA alterations over the entire genome, 
each chromosome and each aberrant segment accord-
ing to CGH analysis. Significant correlations between 

DNA events present in Dukes A plus B tumors versus 
findings in Dukes C plus D tumors in combination 
with altered expressions were regarded candidate 
DNA sequences, that may explain tumor progression. 
P , 0.05 was regarded statistically significant in two-
tailed tests.

Results
DNA alterations
Tumor tissue vs. normal colon tissue
Significant tumor DNA copy number changes 
increased with tumor progression defined as early 
(Dukes A plus B) versus late tumors (Dukes C plus D) 
(Fig. 1, Fig. 2, Table 2). Dukes A, B, C, and D tumors 
displayed DNA alterations in 4%, 4%, 21% and 16% 
respectively of the entire genome compared to normal 
colon tissue (P , 0.05) (Table 2). Four chromosomes 
displayed alterations in Dukes A, 6 in Dukes B, 15 
in Dukes C and 14 in Dukes D (X and Y excluded). 
Copy number loss was not observed in Dukes A. Early 
stage DNA alterations were gain on chromosome 7p, 
13q, 20p/q and loss on 18q. Late stage alterations 
were gain on 7p/q, 8q, 13q, 20p/q and loss on 8p, 
17p/q, 18p/q and 21q.

Chromosomes 1–11, 13–18 and 20–21 showed 
102 Minimal Common Regions (MCRs) in Dukes A, 
B, C and D tumors; 78% represented gains and 22% 
lost regions (not shown). These aberrations equalized 
30% of the entire genome (X and Y chromosomes 
excluded);. 14% of aberrant bases covered by MCR 
regions were altered in at least 3 out of 4 Dukes groups 
when analyzed in iterated combinations (ABCD, 
ABC, ACD, or BCD). These alterations were mainly 
located on chromosomes 7, 13, 18 and 20. Chromo-
somes 13 (1 Mb) and 20 (41 Mb) showed gains in 
all Dukes A–D tumors; 55% of MCRs were found in 
Dukes A and B tumors and may be considered most 
relevant for carcinogenesis and early tumor progres-
sion. Overall 75% of the MCRs were found in Dukes 
C and D tumors (not shown).

mRNA expression
Tumor tissue vs. normal colon tissue
Distribution of genes with altered expression among 
Dukes A–D tumors is summarized in Figure 3b and 
Table 3. There was no significant relationship between 
the number of expressed genes and tumor progression 
(Fig. 3b). Six, 8, 8 and 6 percent of all genes showed sig-

http://www.la-press.com


Genomic and transcriptomic analyses to predict colorectal cancer progression

Cancer Informatics 2010:9	 83

of genes with increased expression in Dukes D tumors 
compared to Dukes A–C tumors (P , 0.01).

microRNA expression
Tumor tissue vs. normal colon tissue
There was no relationship between tumor stage and 
the number of differentially expressed microRNAs 
(Fig. 3c). Dukes A, B, C and D tumors showed 17%, 
21%, 18% and 15% respectively of microRNAs with 
altered expression (FC . 0.5, FDR , 0.05) compared to 
normal colon tissue (Table 4). 173 microRNAs showed 
significantly altered expression in one or several com-
binations of Dukes stages and 55 microRNAs were 
altered in all Dukes groups located on chromosomes 
1–9, 11, 13, 17–20 and 22. Six microRNAs showed 
significant changes in expression between Dukes A 
plus B vs. Dukes C plus D stages (Table 5).

Combined statistical analyses  
of DNA and RNA alterations
Genome-wide interactions
Each Dukes tumor stage showed some genome wide 
statistical interactions between structural and tran-
scriptional alterations (Fig. 3b), but only Dukes C 
and D tumors showed interactions accounting for 
DNA alterations that discriminated significantly 
between early (A plus B) and late (C plus D) tumors 
(Table 6). Altogether, 29% (6498/22094) of all genes 
had significant copy number changes or showed sig-
nificantly altered expression in one or several combi-
nations in Dukes A, B, C and D tumors. 1231 of these 
genes (19%, 1231/6498) showed chromosomal alter-
ations in all four Dukes A–D stages and 406 genes 
(6%, 406/6498) showed combined interactions in the 
same direction (i.e. gain and upregulation or loss and 
downregulation).

Chromosomal interactions
Chromosomes 4, 8, 13 and 20 displayed significant 
interactions between copy number changes and genes 
with significantly altered expression when isolated 
chromosomes were tested separately. The number 
of chromosomes with significant within-interactions 
increased with tumor progression according to Dukes 
stage; Dukes A showed one interaction and Dukes D 
4 interactions.

23 microRNAs were located within altered DNA 
segments in Dukes A, B, C and D on chromosomes 1, 4, 
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Figure 1. Genome wide overview of DNA segments with sequence varia-
tions across chromosomes in Dukes A, B, C and D. Solid lines outside or 
close to the confidence interval (dashed lines) suggest significant DNA 
sequence alterations.

nificantly altered expression (FC . 1, FDR , 0.05) in 
tumor tissue compared to normal colon tissue in Dukes 
A, B, C and D respectively. Downregulation was more 
common than upregulation in Dukes A and B tumors (P 
, 0.05), without any such difference between up and 
downregulation in Dukes C and D tumors. Only chro-
mosome 13 displayed significantly increased number 
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Figure 2. DNA copy number changes on chromosome 8 in Dukes A, B, C and D tumors. Significantly altered DNA segments are indicated by solid lines. 
Genes with significantly altered expression are indicated by red (mRNA) and green (microRNAs). Dashed lines indicate thresholds for statistically signifi-
cant DNA segment alterations.

Table 2. Copy number gain and loss in CGH analysis across Dukes A–D tumors compared to normal colon tissue from the 
same patients.

Chromosome Dukes tumor stage No of 
basesA B C D A B C D

Gain Loss

1 0 0 0 195 0 0 37946 0 247179
2 0 0 2512 0 0 0 0 0 242690
3 0 0 0 0 0 0 1298 0 199288
4 0 0 0 0 0 0 182616 0 191121
5 0 0 0 0 0 1219 25902 0 180617
6 0 224 0 0 0 0 0 0 170734
7 56564 0 4919 77519 0 0 0 0 158781
8 678 0 104396 80270 0 0 0 31707 146251
9 0 0 0 2999 0 0 0 0 140129

10 0 0 0 0 0 0 824 0 135254
11 0 0 496 25 0 0 0 0 133951
12 0 0 0 0 0 0 0 0 132278
13 3440 8393 78167 95475 0 0 0 0 114077
14 0 0 0 0 0 0 0 3261 106330
15 0 0 0 83 0 0 0 1199 100169
16 0 0 5288 0 0 128 0 0 88652
17 0 0 0 0 0 0 975 21956 78623
18 0 0 0 0 0 58430 75913 75714 76083
19 0 0 0 0 0 0 0 0 63784
20 62345 39471 45970 42083 0 0 0 0 62364
21 0 0 0 0 0 0 21063 19817 46892
22 0 0 0 0 0 0 0 0 49525
TOT 123027 48088 241748 298649 0 59777 346537 153654 2864773

Gained or lost bases (kb) per chromosome among Dukes tumor stages were detected by DNA copy segment algorithm. Significant thresholds were 
specified by the 80th and 20th percentile respectively.
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Figure 3. A) Distribution of aberrant DNA copy numbers across Dukes 
A, B, C and D tumors (solid line), DNA loss (dashed line) and gained 
(semidashed line).  B) Distribution of significantly changed transcript 
expression across Dukes A-D tumors (red line) including significant inter-
actions between DNA and RNA alterations (solid line).  C) Distribution 
of significantly altered microRNAs across Dukes A–D tumors (red line) 
including significant interactions between DNA and microRNA alterations 
(solid line).

7–9, 13, 17, 18 and 20 with 3, 3, 16 and 16 microRNAs 
altered in Dukes A, B, C and D respectively. One 
microRNA (microR-663 at 20p11.1) showed interac-
tions with altered DNA sequences in all Dukes A–D 
tumor stages. All interacting microRNAs in Dukes A 
and B were present in Dukes C and D tumors, which 
imply that alterations in microRNA may be an early 
tumor phenomenon.

Segmental interactions
The number of significant segmental interactions 
increased with tumor progression as illustrated for 
chromosome 8 (Fig. 2). Dukes A comprised 3 seg-
ments (66 Mb), Dukes B 3 (23 Mb), Dukes C 5 
(358 Mb) and Dukes D 7 segments (244 Mb) with 
interactions between DNA and RNA. Three seg-
ments on chromosomes 8p and 18q showed inter-
actions between DNA segments with loss and 
downregulation of expression. Eight regions at 
chromosome 7p/q, 8q, 13q and 20p/q showed inter-
actions between DNA segments with copy number 
gain and upregulation.

Genes assumed important for carcinogenesis 
and tumor progression
Sixteen genes with significant mathematical interac-
tion and upregulation were found in all Dukes tumors 
and were all located on chromosome 20. The DNA 
segment covered 40 Mb on chromosome 20p11.21–
20q13.33. These genes represented 0.2% of the total 
number of structurally altered genes on all chromo-
somes and may be relevant for the appearance of 
malignancy.

Genome wide DNA segment alterations with 
mathematical interaction to gene expression con-
tained all together 41 genes with significantly altered 
expression in a manner that statistically discriminated 
between early (Dukes A plus B) versus late (Dukes C 
plus D) tumors (not shown); 28 of these genes were 
expressed in Dukes C plus D tumors and 17 in Dukes D 
tumors and may thus be relevant for tumor progres-
sion (Table 6). Ten of these genes (WDR67, RFXAP, 
RP11-50D16.3, CAB39L, THSD1, SPRY2, TGDS, 
CLDN10, SLC10A2, CD33L3) have been reported 
changed in tumor tissues, while only 2 (RP11-50D16.3, 
SLC10A2) have been reported to appear changed in 
colorectal cancer.
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Discussion
Technology progress in cancer research has been 
extraordinary with generation of enormous amounts 
of information particularly related to genomic and 
epigenetic alterations. Therefore, it appears more or 
less unlikely that it is possible to describe isolated and 
well defined causes behind appearance of malignant 
transformation or progression of cancer. It is easily 
recognized that combined alterations in gene struc-
ture, expression and processing of genetic information 
and epigenetic control of regulatory elements, may 
represent an infinite number of alterations in ranking 
critical events related to clinical outcome. Therefore, 
in the present study we used surrogate markers for 
outcome such as well established Dukes tumor stage 
classification of colon carcinoma in purposely a small 
group of individuals selected by chance as applied by 
others,18 since the relationship between Dukes stage 
and survival is well established worldwide. We com-
bined DNA, RNA and microRNA arrays to identify 

tumor specific DNA copy number changes in rela-
tionship to early (Dukes A plus B) and late (Dukes C 
plus D) tumors. Tumor material and normal mucosa 
were all taken from the same individuals and genomic 
DNA and total RNA were processed from the same 
piece of tissue specimens. Statistical interaction anal-
yses were based on DNA segments defined aberrant 
by DNA copy algorithm with subsequent determina-
tion of correlations to defined genes or transcripts 
with either significantly altered expression or con-
tent of tissue mRNA or microRNA. Pooled patient 
materials were intentionally used to stabilize for inter 
specimens variation, which enhances specificity but 
limits sensitivity in testing.

DNA sequence alterations in general and in 
early and late tumor stages agreed with our previ-
ous findings, where we used tiling BAC arrays to 
sub classify DNA sequence alterations in patients 
selected according to long and short term survival.6 
Frequent early stage DNA changes included gains on 

Table 3. Number of transcripts with significantly altered RNA expression in genome wide analyses of Dukes A–D tumors 
compared to normal colon tissue from the same patients.

Chromosome Dukes tumor stage No of 
transcriptsA B C D A B C D

Upregulation Downregulation
1 55 100 121 122 161 227 209 125 4046
2 64 101 117 94 119 148 115 73 2811
3 39 58 68 46 106 132 92 79 2293
4 44 65 71 53 83 114 86 73 1674
5 37 57 61 46 74 91 69 55 1978
6 54 81 78 58 61 85 114 50 2200
7 73 74 82 76 65 84 59 56 2090
8 44 69 83 57 45 74 38 42 1536
9 28 43 43 50 73 94 82 45 1624
10 32 48 42 57 62 95 66 51 1641
11 55 68 98 55 94 116 108 64 2178
12 49 70 77 54 84 91 90 65 2075
13 24 41 40 93 9 14 4 2 775
14 22 42 40 17 72 68 61 49 1301
15 32 39 47 32 67 77 66 55 1273
16 38 69 51 34 89 75 88 62 1706
17 41 65 57 33 91 107 114 92 2226
18 8 13 20 7 32 43 33 33 665
19 35 66 57 63 91 105 98 61 2338
20 58 118 73 58 34 42 32 28 1055
21 10 17 9 12 16 16 22 9 482
22 15 18 14 13 58 68 55 47 929
TOT 857 1322 1349 1130 1586 1966 1701 1216 38896

Transcription was considered significantly altered with log fold change .1 and adjusted p-value (FDR) ,0.05 in total RNA from tumor tissue versus normal 
colon tissue.
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Table 5. microRNAs with significantly altered expression among early (Dukes A plus B) and late tumors (Dukes C plus D).

Transcript Regulation 
(A + B); (C + D)

Location Found in
Solid tumorsa CRC Hematological 

cancer
miR-425–5p ↑ – 3p21.31 Yes – Yes
miR-625 ↑ – 14q23.3 Yes Yes
miR-144 ↓ – 17q11.2 Yes Yes
miR-486 ↓ – 8p11.21 Yesb –
miR-602 – ↑ 9q34.3
miR-373 – ↑ 19q13.41 Yes Yesa,c

↑ Upregulation ↓ Downregulation—Lack of significant change in expression between tumor and normal colon mucosa. amiRÒ, The miR-Ontology 
Database. bMees, ST et al. Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas. Ann Surg 
Oncol 16:2339-50, 2009. cMonzo, M et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res. 2008; 
18:823–33. 

Table 4. Number of micro RNAs in tumor tissue with significantly altered expression in genome wide analyses among 
Dukes A-D tumors compared to normal colon tissue from the same patients.

Chromosome Dukes tumor stage No of 
probesA B C D A B C D

Upregulation Downregulation
1 11 18 16 6 17 19 29 17 96
2 0 1 0 0 8 7 6 7 38
3 3 6 0 2 6 5 8 5 58
4 5 4 2 5 5 5 3 4 51
5 4 3 2 0 9 12 8 8 44
6 0 0 0 0 6 6 5 5 31
7 16 17 15 11 2 2 6 2 64
8 0 0 0 0 5 10 5 2 38
9 4 6 9 7 10 6 3 8 43
10 – 2 1 – – 0 0 – 38
11 4 2 4 2 8 9 4 8 37
12 1 2 4 – 0 0 2 – 45
13 16 17 17 17 0 0 2 0 32
14 8 16 8 1 5 1 4 11 148
15 1 4 4 8 0 4 0 0 34
16 0 4 0 0 2 6 4 2 22
17 3 4 5 3 10 16 6 8 69
18 0 0 0 0 3 3 3 3 8
19 3 0 7 3 8 9 4 6 170
20 3 3 1 3 0 0 0 0 23
21 2 3 2 0 3 3 0 5 12
22 3 3 2 3 0 0 0 0 24
TOT 87 115 99 71 107 123 102 101 1125

chromosome 20 and parts of chromosomes 7p and 
13q and loss in parts of chromosome 18q, while late 
tumor stages included gains of 7p, 7q, 8q, 13q and 
loss of 8p, 18p and 21q, suggesting great complexity 
within specific chromosomes as reported by others.1 
Structural DNA and RNA alterations, interacting 
statistically significantly, increased from early to late 

tumor stages at both chromosomal, sub-chromosomal 
and gene levels. Also, interactions between DNA and 
microRNA increased significantly at gene levels in a 
similar way across Dukes A-D tumors. Chromosome 
20 showed interaction between DNA and RNA in 
all Dukes A, B, C and D stages with MCR across all 
tumor stages. Thus, 40% of the aberrant bases in 3 
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Table 6. Transcripts (mRNA) with significantly altered expression located within DNA segments with significant copy number 
change in progressive colorectal tumors (Dukes C plus D versus Dukes A plus B).

Gene Location Alterations in References Systemic 
name mRNA 
(NM_)DNA RNA Protein function E F

Dukes A
Dukes A–C
Dukes C–D
STX1 A 7q11.23 ↑ ↑ Transport 004603.2
CLDN4 7q11.23 ↑ ↓ Membrane, 

Development
(35, 36) (35) 001305.3

CLDN3 7q11.23 ↑ ↓ Membrane, 
Development

(35, 36) (35) 001306.3

RPL30 8q22.2 ↑ ↑ Ribosome (37) (37) 000989.2
PABPC1 8q22.3 ↑ ↑ Translation initiation (38, 39) – 002568.3
TATDN1 8q24.13 ↑ ↑ Hepatocarcinoma (40) – 032026.2
EXOSC8 13q13.3 ↑ ↑ RNA processing – – 181503.2
C13orf7 (RNF219) 13q31.1 ↑ ↑ Unknown function – – 024546.3
RANBP5 (IP05) 13q32.2 ↑ ↑ Transport – – 002271.4
TPP2 13q33.1 ↑ ↑ Proteolys – – 003291.2
SLC14A1–002 18q12.3 ↑ ↑ Transport – – 001128588.1
Dukes D
WDR67 8q24.13 ↑ ↑ Unknown function (41) – 001145088.1
RFXAP 13q13.3 ↑ ↑ Transcription factor (42, 43) – 000538.3
ALG5 13q13.3 ↑ ↑ Glycosylation – – 001142364.1
RP11-50D16.3 
(NHLRC3)

13q13.3 ↑ ↑ Unknown function (44) (45) 001012754.2

KIAA1704 13q14.12 ↑ ↑ Unknown function – – 018559.2
CAB39 L 13q14.2 ↑ ↑ Calcium binding protein (46) – 030925.2
THSD1 13q14.3 ↑ ↑ Extracellular matrix (47) – 018676.3
AL831999 13q14.3 ↑ ↑ Unknown function – –
SPRY2 13q31.1 ↑ ↑ Signaling (48–50) – 005842.2
TGDS 13q32.1 ↑ ↑ Glucose dehydratase (51) – 014305.2
CLDN10 13q32.1 ↑ ↑ Membrane-tight  

junction
(36, 52) – 182848.2

SLC10A2 13q33.1 ↑ ↓ Transport-sodium/bile  
acid

(53, 54) (53, 54) 000452.2

ANKRD10 13q34 ↑ ↑ Unknown function – – 017664.2
PCID2 13q34 ↑ ↑ Unknown function – – 018386
AF263545 18q12.3 ↓ ↑ Unknown function – – (AF263545)
CD33 L3 (SIGLEC15) 18q12.3 ↓ ↑ Membrane (55) – 213602.1
ATP5A1 18q21.1 ↓ ↓ Transport – – 001001937.1

Genes with unknown function have been reported.56

Abbreviations: E, Earlier reported in human malignant disease; F, Earlier reported in human colon cancer; ↑, Copy number gain (DNA); increased 
expression (RNA); ↓, Copy number loss (DNA); decreased expression (RNA).

out of 4 Dukes groups were located on chromosome 
20, which makes it likely related to carcinogenesis 
and early invasiveness.19 DNA alterations on chro-
mosome 20 have been reported by others indicating 
correlations between gains and transition from colon 
adenoma to carcinoma.20–23 Among altered genes on 
chromosome 20 in the present study were AURKA 
and CSE1L, which were also reported by others 

related to colorectal cancer.23,24 Thus, our results and 
conclusions agreed with findings reported by others 
based on genomic and transcriptomic information 
from different sources and patients,18 when our com-
putations were performed on specific chromosomes. 
However, a different pattern appeared when early 
versus late tumor stages were used as covariates; 
then it appeared that chromosomes 13 and 18 were 
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most important for transcriptional alterations due to 
changed DNA.

Copy number changes in DNA may reflect a natu-
ral adaptation of DNA to altered environmental con-
ditions. This phenomenon may represent selections 
in development of life based on genetic recombina-
tion. Thus, cellular DNA that contains polymorphic 
regions may or may not represent future blue prints 
for improved functions. Based on this implication, 
it is not easy to judge what appearance of altered 
DNA sequences really imply in cells overriding con-
tact inhibition and normal growth control including 
attenuated apoptosis. Such altered DNA structures 
may either represent appearing suitable adaptations 
to withstand hypoxia and other challenges; or it may 
only be a result of by chance events leading to fur-
ther compromised cell function and growth control. 
A third explanation may be appearance of significant 
alterations without any impact at all on cell func-
tion; i.e. cells can continue to accumulate aberrant 
DNA as long as it does not compromise cell survival. 
However, DNA alterations important for carcinogen-
esis should be present in all subsequent tumor stages 
or tumor cell clones as long as the malignant cell 
remains. Late appearing DNA alterations may thus 
either imply changes determining tumor progression 
or simply that such changes are not destabilizing the 
genome too much. Therefore, a simplistic interpreta-
tion of our model approach was to discriminate and 
correlate early and late DNA copy number changes 
to statistically significant alterations in gene expres-
sion. This approach should exclude most structural 
DNA changes that are not translated into functional 
dynamics. Therefore, candidate DNA regions with 
interactions should contain a majority of copy number 
changes that could potentially influence on defined 
cellular functions by splicing and either increased 
or decreased translation. However, this simplistic 
approach would not identify DNA alterations that are 
related to as yet unconfirmed changes in gene expres-
sion. With this perspective it was also interesting to 
evaluate significant statistical interactions between 
microRNA and DNA copy number change, which 
may identify important interactions based on more 
recent dimensions of gene expression.

Genome-wide chromosomal copy number gain 
represented the only structural change that alone pre-
dicted progressive malignancy. Three genes showed 

inverse relationships between DNA structure and 
expression; i.e. gain and downregulation or loss and 
upregulation; a kind of combined alterations that 
make them less likely as functional adaptations. 
Also, we observed that altered expression in early 
stage tumors could disappear in later tumor stages, 
probably as a consequence of DNA loss. A majority 
of 28 genes with altered expression in Dukes C and 
D appeared to code for proteins in translation- and 
transcription control, cell transporting, membrane 
protein interactions and posttranslational modifica-
tions, although some genes had more or less unknown 
functions. Differentially expressed genes in Dukes A 
and B tumors did not correlate to confirmed aberrant 
DNA copy numbers (Table 6). A large proportion of 
genes with significantly altered expression and DNA 
interactions mapped to chromosome 13 (17/28), 
but 35% of these genes had unknown function. Our 
results indicated a clear-cut relationship between 
increasing number of combined genetic events (DNA 
and RNA or DNA and microRNA) and late Dukes 
stage, when we used a relative wide selection crite-
ria for microRNA (FC , 0.5). However, as few as 6 
microRNAs (including microR-602) were altered to 
discriminate between Dukes A and B versus Dukes 
C and D respectively. Only 4 microRNA genes were 
altered in Dukes A and B but not in C and D indicating 
few differences in microRNA between early and late 
tumor progression, although it has been reported that 
microR-602 and microR-373 may impact on systemic 
tumor spread. Accordingly, microR-373 was recently 
suggested a promoter of metastasis in breast cancer 
cells,25,26 now with similar indication in colon cancer. 
Upregulation of microR-21 was reported to corre-
late to poor outcome in colorectal cancer patients,27 
but we did not find such implication in our present 
analysis accounting for tumor stage (Dukes A to D). 
Indeed, a lot of clinical and prognostic information 
appears to be confined to altered microRNAs in colon 
cancer,28 but such alterations seemed indirectly less 
related to DNA copy number changes since simi-
lar findings occurred in embryonic and transformed 
cells.29 Such observations agree with findings appear-
ing in our present modeling. Only one of these six 
microRNAs (microR-486) was found to have a pre-
dicted target gene (CLDN10, Table 6, TargetScanHu-
man, the microR-Ontology Database), when search 
was performed among top 100 predicted target genes. 
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Our observations on deregulated expressed microR-
NAs agreed to 70%–80% with selected sets of 
microRNAs from published reports.30–33

In conclusion, our present and previous observations 
indicate thousands of aberrant DNA copy numbers in 
genome wide analysis on colon cancer as expected.6,7,34 
These numerous altered segments with potential impor-
tance for tumor progression were filtered by means of 
mathematical interaction analysis to a final group of 
17 candidate genes (Dukes D) with hypothetical rel-
evance for tumor progression. Our modeling supports 
that colon cancer progression is related to genomic 
instability accompanied by altered gene expression. 
However, new information is that carcinogenesis and 
early appearance of invasive tumor growth may rather 
be related to functional genomic alterations and less 
to DNA copy number changes. Our model may be a 
tool to accept or reject structural and functional genetic 
alterations in appearance and progression of colorectal 
cancer in small groups of patients.
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