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Abstract: Positive feedback loops have been identified in many biological signal transduction systems. Their importance in a system’s 
bistability has been well established by identifying multiple steady states of a network under different parameters. In this paper, we 
identify the contribution of positive feedback loops to network robustness by a systematic comparison between network structures 
and responses to perturbations at a pre-steady state. Our study is based on a T helper (Th) cell differentiation model in which positive 
feedback loops give rise to a subnet robustness against both positive and negative perturbations from outside the subnet. Although it is 
unclear whether this pre-steady state exists in vivo, the results from in silico modeling are in agreement with the reported in vivo obser-
vations. Being highly heterogeneous and rarely at a steady state, the disease cells, such as cancer cells, may gain potential resistances 
to certain drugs in a similar way. From the reverse engineering point of view, our results confirm that, while data from perturbation 
experiments are very effective in identifying causal relationships among the network components, caution should be taken, as in some 
circumstances, a direct interaction could be invisible due to positive feedback loops.
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Introduction
Many cellular components interact with each other 
with high specificity to form signal transduction path-
ways and networks. These networks further control 
cell functions and physiological states, such as pro-
liferation, differentiation and apoptosis, in response 
to intra- or extra-cellular perturbations or develop-
mental signals. It is thus an important task to study 
the relationships between the network structures and 
the dynamics of the network components. A detailed 
understanding of these relationships will help to elu-
cidate the mechanisms of cell response pathways 
and identify critical genes as potential therapeutic 
targets.

It was suggested decades ago that the existence of 
certain network features, such as feedback oscillation/
inhibition and feed-forward activation, would deter-
mine system dynamics.1,2 In recent years, mostly 
due to the technological breakthrough in genome 
sequencing and large-scale biological network con-
struction, increasing attention has been paid by 
researchers to the systematic study of the relation-
ship between network structures and dynamics. For 
example, Ingram et al3 showed a lack of character-
istic behavior for the bi-fan motif using a series of 
deterministic models. Similarly, Soyer et al4 reported 
that diverse and biologically relevant responses could 
be created by networks consisting of three- and four-
protein components. Kuo et al5 studied the network 
topology and the evolution of dynamics in an artificial 
genetic regulatory network model. Using an in silico 
perturbation approach, Goryachev et al6 identified an 
auxiliary positive feedback loop together with dimer-
ization of the transcription factor, which is important 
to the switch-like behavior of the network. In these 
works, mathematical modeling and in silico simula-
tion proved to be very useful in revealing the hidden 
structure-function relationship in the network.

Despite the above results, a very basic question 
remains open regarding the relationship between 
a network’s structure/topology and its dynamics. 
Given a network with nodes and the directed edges 
between the nodes, it is feasible to search the potential 
pathway(s) from one node to another and to identify 
the reachability between them. This structural reach-
ability is determined by the network topology. On the 
other hand, if a change in a node in the network (for a 

cell system, this change could be a gene knock-out or 
knock-down, or over-expression of a protein) results 
in a change in another node, these two nodes are 
dynamically reachable. A previous study showed that 
structural reachability does not guarantee dynamic 
reachability.7 While positive feedback loops had been 
inferred to play an important role in the discrepancies 
of these reachabilities, this could also be due to other 
structural characteristics; for instance, if two nodes 
are separated by a long pathway, signaling could be 
diminished along the pathway and could fall below a 
detectable level before it reaches the target. Or there 
could be multiple pathways between two nodes and 
they transduce opposite signals which could cancel 
each other out.

In this study we further explore a well established 
T helper cell differentiation regulatory network as 
a test case to extend our previous work by system-
atically investigating the relationship between struc-
tural and dynamic reachability. We apply an in silico 
perturbation approach to examine the relationship 
between two categories of structural features (path-
way- and node-specific features, respectively) and 
dynamic reachability. We first confirm that structur-
ally reachable node pairs are not always dynamically 
reachable, even if the two nodes are separated by only 
one edge. We then compare the relative importance 
of pathway lengths, pathway numbers, and the num-
bers of positive and negative alternative pathways in 
network robustness. Finally, we show that dynamic 
unreachability between nodes separated by one edge 
is due to multiple feedback loops.

Methods
The model
We adopted a previously published model8 for this 
study. The network structure of this model includes 
23 cellular components (Fig. 1A) and interactions 
between them that are important in T helper (Th) cell 
differentiation. Two methods have been previously 
used to model this network, namely discrete and con-
tinuous dynamic modeling, with the latter approach 
involving a novel and general method of generating 
a dynamic system. Both approaches identified three 
steady states (or attractors) of the network, which cor-
respond to the precursor Th0 cell and the effector Th1 
and Th2 cells, respectively, which are determined 
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based on specific cytokine activities. This model 
was claimed to be the first dynamic model of Th cell 
differentiation.8

For the purposes of our analysis, the interactions 
are arbitrarily classified into three categories, namely 
backbone interactions, feed-forward interactions and 
feedback interactions (Fig. 1B, nodes are numbered 
for simplicity). The backbone interactions constitute 
the backbone of a network, which is represented as an 
acyclic and branched tree. In the backbone, all interac-
tions point in one direction (downward in this case), 
and all nodes can be placed at a specific layer (or depth) 

without ambiguity. A feed-forward interaction has the 
same direction as the backbone, but it spans at least 
two layers in the backbone. A feedback interaction has 
the reverse direction to the backbone, and spans one 
or more layers backwards. Classification of the inter-
actions will help identify structural features related to 
dynamic perturbations (for details see below).

Network structure characterization
Two categories of structural features are studied, 
namely pathway-specific features and node-specific 
features. For pathway-specific features, all the potential 

Figure 1. The network structure of the model of Th cell differentiation. Modified from (Mendoza and Xenarios,6) A) Cellular components involved in the 
model; B) Network strucutre. For more explanation of the interaction classification, see the text.
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pathways between any two nodes are searched. For 
each pathway, the length is counted and the potential 
effect is calculated based on the number of negative 
edges. It is then trivial to find the shortest pathway, 
the total number of pathways and the number of posi-
tive alternative pathways (PAP) and negative alterna-
tive pathways (NAP). The average pathway length 
between each node pair is also calculated. Structural 
reachability is designated to a pair of nodes if at least 
one pathway can be found between them. For node 
specific features, the node connectivity (input, output 
and total connections) and feedback loop are counted, 
and the average shortest pathways (for incoming 
pathways and outgoing pathways, respectively) are 
calculated.

Dynamic simulation
We studied the network dynamics using two types 
of in silico perturbations. In simple perturbation, 
one component is perturbed with the initial activity 
reduced or increased by half, which mimics the knock-
down or over-expression experiments. In conditional 
perturbation, particular feedback or feed-forward 
interaction(s) are blocked, and a perturbation is applied. 
The purpose of simple perturbation experiments is to 
find the dynamic relationships between the nodes in 
the context of the network, and to find the relation-
ship between the structural and dynamic reachabilities. 
The purpose of conditional perturbation experiments 
is to find particular structural properties, such as feed-
back loops and/or feed-forward interactions, which are 
important for explaining the potential discrepancies 
between the structural and dynamic reachabilities.

Three steady states of the Th network were iden-
tified in the previous work, representing Th0, Th1 
and Th2 cell types, respectively, all found during T 
helper cell differentiation (Mendoza and Xenarios,8 
and references therein). In each steady state, at least 
some nodes will bear the value 0, making the network 
partially active. Because in this study we are attempt-
ing to reveal the relationship between the network 
structure and the dynamics, the full network structure 
should be taken into account. We thus define the ini-
tial states of the network with each node having the 
half of the maximum activity, to make sure every ele-
ment of the network will contribute to the observed 
dynamics. Note the maximum activity is 1 under the 
mathematics of the model.

GNU Octave software (http://www.octave.org) is 
used to investigate the network dynamics. Details of 
this software can be found in the Octave manual avail-
able on the web site. When a perturbation scheme 
(the initial activity of the nodes and the structure of 
the network) is defined, Octave scripts are created 
based on the formulation as described by Mendoza 
and Xenarios.8 The equations assign an ODE (Ordi-
nary Differential Equation) to each node. The ODE 
is composed of two items, an activation item and a 
decay item. The activation item incorporates both 
positive and negative regulations and is a sigmoid 
function. We followed the previous formulation in 
assigning the parameter values, i.e. the weights α = 
β = 1, decay constant γ = 1, and the gain h = 10. For 
all simulations, the time period is from 0 to 20 arbi-
trary units, which is divided into 600 steps for solv-
ing the differential equations. Time series from the 
simulation are recorded, and the total activities of a 
node are summed up along the simulation time. The 
simulations are performed pair-wise, with one being a 
control and one being perturbed. The ratio of change 
of the nodes is calculated using the formula:

Ratio of change = (TAP-TAC)/TAC
Where:

TAP = �total activity from the perturbation 
simulation

TAC = total activity from the control simulation.

The perturbation (i.e. the dynamic reachability) is 
determined by a cutoff of the ratio. In real biological 
samples with high noise, detection of the ratio will be 
largely dependent on the sensitivity and accuracy of 
the instruments. In the simulation experiments, we did 
not introduce noise, and therefore a very low value, 
0.001 (or 0.1%), was chosen as the cutoff, i.e. if the 
ratio is larger than 0.001 or less than –0.001, there is a 
positive or negative perturbation, respectively.

Results
Discrepancies between structural  
and dynamic reachability
Figure 2 shows the structural versus dynamic reach-
ability between the nodes for the Th cell differentiation 
network, with the first column being the starting nodes 
(heads/perturbers) and the first row the ending nodes 
(tails/perturbees). Most of the nodes have pathways 
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to 16 other nodes, while nodes 2 and 23 can reach 17 
other nodes structurally. Nodes 2, 8 and 10 cannot 
be reached structurally by any nodes, as they do not 
have any upstream regulators. Nodes 3 and 16 can be 
reached by one node. All other nodes in the Th net-
work can be reached by all nodes. In total we identi-
fied 376 structurally reachable node pairs, excluding 
self-reaching. In knock-down simulation, a total of 
165 perturbations are observed (Fig. 2, red right-hand 
upper section of the node-pair square), while in over-
expression simulation, 155 perturbation are observed 
(red right-hand bottom section). The discrepancies 
between structural and dynamic reachability is thus 
obvious, leaving 211/221 node pairs reachable struc-
turally but without discernable perturbation effects 

in knock-down/over-expression simulation. In the 
following sections, we investigate the structural fea-
tures that are potentially important in determining the 
observed discrepancies. To do so, we split the struc-
turally reachable node pairs into two groups: pertur-
bation (dynamically reachable), and non-perturbation 
(dynamically un-reachable) groups, and study the 
distribution of pathway-specific and node-specific 
structural features in these groups.

The pathway lengths, but not the pathway 
numbers, are important for perturbation
Figure 3A shows the distribution of the shortest path-
way lengths for the two groups. For the perturbation 
group, most of the shortest pathways have a length 

Figure 2. Structural versus dynamic reachability. The heads or perturbers are listed in the first column; the tails or perturbees are listed in the first row. 
For each head/tail or perturber/perturbee pair, the square is split into three sections. The left-hand half represents structural reachability, with blue color 
representing reachable and black color representing unreachable. The upper right-hand section represents the perturbation when knock-down experi-
ments are applied, with red color representing perturbable and black color representing unperturbable. The bottom right-hand section represents the 
perturbation when over-expression experiments are applied.
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between 1 and 4 (87%) with the peak at 2 and 3, while 
for the non-perturbation group, most of the shortest 
pathways have a length between 5 and 9 (73%) with 
the peak at 6 and 7. (For all node pairs, the short-
est pathway length distribution peaks at 3 and 4.) It 
is thus obvious that the shortest pathway length is 
important in determining the dynamic perturbation. 
Figure 3B shows the distribution of the average path-
way lengths. Again, the distribution for all node pairs 
and the non-perturbation group peaks at the same 
average length (8), but for the perturbation group, the 
peak is located at a smaller length (6). Additionally, 
more node pairs have small average lengths (1–4) in 
the perturbation group than in the non-perturbation 
group. Figure 3C shows the distribution of the total 
number of the pathways between the node pairs. It is 
intuitive to think that if multiple paths exist between 
two nodes, then they are likely to be dynamically 

reachable. However, no obvious trends are observed 
for them, although the perturbation group has more 
node pairs with either very small (1–2) or very high 
(19) number of total pathways. Similar distribu-
tions are observed in the over-expression simulation 
(Figs. 3D, 3E and 3F). We thus conclude that path-
way lengths, especially the shortest pathway lengths, 
are important in determining the outcome of dynamic 
perturbation.

Non-perturbation is only partly explained 
by PAP and NAP
It is likely that the effect of long pathways on 
dynamic perturbation could be because of the 
decreased signal level caused by decay during sig-
nal transduction. However, one other possible cause 
for non-perturbation is the existence of both positive 
and negative pathways between a pair of nodes, and 

Figure 3. Distribution of node-pair specific features. A and D: shortest pathway length; B and E: average pathway length; C and F: total pathway number. 
A, B and C: results from simulated knock-down experiments; D, E and F: results from simulated over-expression results.
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Figure 4. PAP and NAP for the node pairs. The square for each node pair is split into four parts; upper left-hand for PAP, bottom left-hand for NAP, upper 
right-hand for the results of simulated knock-down experiments, and bottom right-hand for the results of simulated over-expression experiments. PAP/NAP 
groups: p0n1: #PAP = 0, #NAP  0; p1n0: #PAP  0, #NAP = 0; p1n1: PAP  0, NAP  0. X: there is no node pair with positive/negative pathway(s) and 
negative/positive perturbations.
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they may abate each other’s effect and result in the 
observed non-perturbation. To test this hypothesis, 
we calculated the effects of all pathways, and counted 
the number of positive-alternative-pathways (PAP) 
and negative-alternative-pathways (NAP) for each 
node pair. Figure 4 shows the existence of PAP and 
NAP for each node pair (grouped into three catego-
ries, see the legend for details) and the dynamic per-
turbations for both knock-down and over-expression 
simulations. Figures 5A and 5C show the distribu-
tion for all cases. Most node pairs have only PAP or 
NAP, many of them do not guarantee a perturbation. 
For those having both PAP and NAP, most show a 
perturbation, either positive or negative and only 
a small proportion (10%) have no perturbation. 

It thus can be concluded that non-perturbation 
between reachable nodes is mostly due to other 
structural features than the conflict between PAP and 
NAP. We also analyzed the dominance of PAP or 
NAP in determining the perturbation effects of node 
pairs where both PAP and NAP exists (Figs. 5B and 
5D). When the number of NAP is greater than the 
number of PAP, the perturbation is mostly negative 
in both the knock-down and over-expression groups; 
while when the PAP number is greater than the NAP 
number, the perturbation is mostly positive in the 
knock-down group. This result demonstrates that the 
existence of positive or negative alternative path-
ways is at least partially responsible for the dynamic 
behavior of the entire network.
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Node-specific features and dynamic 
perturbation
We analyzed the input and output connections of the 
nodes separately. For input connections, the number 
of nodes that can reach a particular node is compared 
to the number of nodes that can perturb it. For out-
put connections, the number of nodes that a given 
node can reach is compared to the number of nodes it 
can perturb. As shown in Figures 6A and 6D, reach-
ability is not affected by either input (left) or output 
(right) connections. As few as one connection could 
be enough for the node to be reached by or to reach 
many other nodes; however, a high number of con-
nections will probably ensure the node’s ability to 
perturb or to be perturbed. The second node-specific 
feature is the average length of the shortest pathways, 
which is used as a measurement of node closeness. 
The average length for input and output shortest path-
ways is calculated separately. As shown in Figures 6B 
and 6E, node closeness does not affect the ability of a 
node to be reached or to reach other nodes, but prob-
ably affects its ability to be perturbed or to perturb, 
with more perturbation related to greater closeness. 
The last node-specific feature we analyzed is the 
number of feedback loops. Most nodes have feedback 
pathways to themselves (Fig. 2), except for nodes 2, 
3, 8, 10, 16 and 23 since they either lack input or have 

input only from those nodes lacking input. The num-
ber of loops varies from 4 to 22 (Figs. 6C and 6F). 
There is no clear relationship between the number of 
loops and dynamic perturbation, although increasing 
the loop number tends to relate to higher perturbing 
ability. Nevertheless, in the following section, cer-
tain feedback loops will be shown to determine the 
robustness of certain nodes to perturbation by other 
nodes one step upstream of them.

Feedback and feed-forward interactions 
determine the non-perturbation in short 
pathways
As analyzed above, the shortest pathways are impor-
tant in determining the dynamic perturbation (Figs. 3 
and 6). However, several non-perturbation node pairs 
have their shortest pathway length as low as one step 
(Fig. 3A and 3D), implying the existence of other 
topological features responsible for these extreme 
cases. These one-step, non-perturbation node pairs 
are all towards node 4 (144, 164 and 204), 
indicating that this node is highly robust against the 
perturbation to these upstream nodes. Node 4 has 
the greatest input number (5) in this network, 3 of 
them are feedback interactions (from nodes 14, 19 
and 22); the other 2 are backbone interactions (from 
nodes 16 and 20, Fig. 1B). We hypothesize that it 

Figure 5. Balancing between PAP and NAP did not account for most non-perturbation. A and C: distribution of node pairs in different groups based on 
PAP and NAP; B and D: Dominance of PAP or NAP in type p1n1 of perturbation group. A and B: results from simulated knock-down experiments; C and 
D: results from simulated over-expression experiments.
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Figure 6. Relationship between node specific features and dynamic perturbation. A and D: Node connection, input and output; B and E: Average length 
of shortest pathways; input and output; C and F: Node feedback loop. A, B and C: results of simulated knock-out experiments; D, E and F: results of 
simulated over-expression experiments.

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0
0 2 4 6

0 2 4 6

0 2 4 6

8 0 2 4 6 8

0 10 20 30 0 10 20 30

reached
reaching

perturbed
perturbing

Connection (input/output)

Average length of shortest pathway (in/out)

Feedback loop

A D

B E

C F

N
u

m
b

er
 o

f 
n

o
d

e 
p

ai
rs

is these feedback loops that stabilize node 4. To test 
this, we conducted a systemic conditional perturba-
tion simulation, in which the 10 feedback interactions 
(including 2 auto-interactions) are blocked one at a 
time, and the perturbation effects of nodes 14, 16 and 
20 on node 4 are simulated. As three feed-forward 
interactions all exist in the route of the feedback loop 
via node 19, we also tested their effects in a similar 
manner.

As shown in Table 1, blockage of two feedback 
interactions towards node 4, namely 22-4 and 19-4, 
and the 22-22 self-interaction, sensitize node 4 to 
nodes 14, 16 and 20, which does not occur in the 
intact network. Quantitatively, blockage of 22-4 
feedback has a larger sensitizing effect than blockage 
of 19-4 (8.327 versus 4.921 in arbitrary units), and 
the effect of the 22-22 blockage (6.256) is between 

these two values (Table 1). Furthermore, blockage of 
a feed-forward interaction, 22-1, also enables node 
4 to be sensitive to its upstream nodes (Table 1). 
Similar results are also observed in over-expression 
simulation. These effects were not observed for other 
feedback or feed-forward interactions. It thus seems 
that these four interactions are critical for dynamic 
non-perturbation of node 4. To further test this 
notion, we conducted another round of conditional 
perturbation simulation, in which feedback/feed-for-
ward interactions are added to the network backbone 
one at a time (Table 1). For knock-down simula-
tion, addition of any of the feedback/feed-forward 
interactions does not result in loss of sensitivity of 
node 4; however, addition of the feedback interaction 
22-4 reduces its sensitivity by 96.7% (from 0.0351 to 
0.0012, a marginal perturbation), and the next most 
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effective feedback interaction is 19-4, which reduced 
the sensitivity by 69.1% (from 0.0351 to 0.0109). 
Meanwhile, although deprivation of 22-22 and 22-1 
do render node 4 the sensitivity, addition of them to 
the network backbone does not change the sensitivity 
at all. Similar results are observed in over-expression 
simulation, except that the addition of 22-4 feedback 
to the backbone deprives node 4 sensitivity. It is thus 
concluded that the feedback interactions 22-4 and 
19-4 are responsible for the non-perturbation of node 
4 by nodes 16 and 20. Interestingly, the upstream of 
node 16 and 20, namely nodes 8, 9 and 23, all use 
node 4 to reach other nodes, but they do not have any 
perturbation effects on other nodes in the full net-
work, indicating that stabilization in node 4 renders 
the sub-network robust against certain perturbations.

Discussion
In this study we used a Th cell differentiation model 
to analyze the relationship between network structure 
and dynamic robustness. We used half of the maxi-
mum activity (0.5) as the initial state for all nodes. 
This homogeneity of the initial state is to ensure that 
any potential changes in the nodes in response to a 
perturbation will be observed. For example, if the 
initial activation is set to 0 or 1, no further inhibi-
tion or activation could be observed. Although it was 
argued that certain cell types are associated with a spe-
cific cytokine profile, controversial results were also 
reported,9,10 leaving the in vivo existence of this homo-
geneity state of the network unclear. We also adopted 
unified parameter values for all nodes, partly due to a 
lack of detailed data for deducing exact parameters, 
but most importantly, such practice can ensure that 
any observed dynamic behavior of the network will 
be completely determined by its structure, a valuable 
prerequisite for the purpose of this study. As shown by 
Mendoza and Xenarios,8 a variety of initial states of 
this model converges to one of the three steady states. 
With the particular initial state used in this study, the 
system is attracted to the Th1 region. However, a shift 
of steady states is observed for several perturbations. 
Specifically, a single negative perturbation in IFN-β, 
IFN-βR, JAK1 or STAT1 shifts the attraction to Th0, 
while a knock-down of T-bet shifts the attraction to 
Th2. Single over-expression in GATA3, IL-4R or 
STAT6 keeps the system at Th0. These results are com-
parable to that of Mendoza and Xenarios.8 A shift of 

the differentiation from towards Th1 to towards Th2 at 
low T-bet is also in agreement with recent experimen-
tal results in which CD4+ cells from T-bet-/- mice are 
skewed toward Th2 differentiation.11 This pre-steady 
state displays robustness to other positive or negative 
perturbations. Resistance to IL-4 and IL-10 perturba-
tion indicates that as long as the system is determined 
to differentiate towards Th1, Th2 lymphokine can not 
reverse the process. In conclusion, although the in vivo 
homogeneity and pre-steady state of the network is 
not clear, its use as an initial state ensures capturing 
several important biological features of the network 
components.

We have confirmed with continuous modeling that 
structural reachability in the network does not guar-
antee a dynamic perturbation. It is likely that most 
of the non-perturbation for the reachable node pairs 
is due to the long length of the pathways (Fig. 3). 
Indeed, we observe signal decay along a long path-
way spanning 12 steps from NFAT to STAT3 in the 
backbone network, in which the velocity of the decay 
seems dependent on the signal itself (data not shown). 
However, the decay reaches a valley at a change ratio 
of 0.005, and much longer pathways seem necessary 
to decrease the ratio of change under the perturba-
tion cutoff (data not shown). Thus the pathway length 
alone could not explain non-perturbation. We propose 
that enrichment of non-linear structural motifs, such 
as feedback and feed-forward loops, with the elonga-
tion of the pathways, could be the reason for complex 
and non-intuitive network dynamics. By using con-
ditional perturbation simulation, we identified two 
feedback interactions (from T-bet and STAT3 respec-
tively) which stabilize IFN-γ against a perturbation 
from its upstream effectors (TCR/NFAT, IL-12/STAT4 
and IRAK). The stabilizing effect of T-betIFN-γ is 
larger than that of STAT3-|IFN-γ, as revealed by con-
ditional perturbation simulation. This is in agreement 
with the domain knowledge that T-bet is the master 
transcription factor in a Th1 cell and is sufficient to 
direct Th1 commitment.12–14 The greater effect of 
T-betIFN-γ than STAT3-|IFN-γ is, most probably, 
due to the fact that the feedback loop via T-bet is 
purely positive, while the feedback loops via STAT3 
are all double-negative, hence as the Th2-related 
subnet (composed of GATA3, IL-10, IL-10R, IL-4, 
IL-4R, STAT3 and STAT6) is inhibited by the Th1-
related subnet (composed of IFN-γ, IFN-γR, JAK1, 
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SOCS1, STAT1 and T-bet) via the inhibitory inter-
actions STAT1-|IL-4, T-bet-|GATA3 and SOCS1-
|IL-4R, STAT3-|IFN-γ would no longer be in action. 
The third positive feedback interaction to IFN-γ from 
IRAK does not contribute to the robustness at all, nor 
has it perturbation to IFN-γ. Indeed, even in the back-
bone network, the signal transduction stops at IL-18R 
which receives a negative regulation from STAT6 
(data not shown), in contrast to GATA3 which also 
receives an input, yet a positive input, from STAT6, 
indicating a different effect on the signal transduction 
of a double-negative interaction along the pathway. 
As TCR, IL-12 and IL-18 are all Th1 inducers, loss of 
IFN-γ sensitivity to them indicates that as long as the 
network is determined to differentiate towards Th1, 
further enhancement of this trend is not necessary and 
will be rejected. Together with the last paragraph, the 
entering of Th1 differentiation insulates the system 
from all perturbation in relevant lymphokines.

In conclusion, we showed in this paper the rela-
tionships between network structures and robust-
ness against perturbation in node concentrations. In 
particular we provided evidence of multiple posi-
tive feedback loops as the source of robustness with 
simulation experiments on a T helper cell differen-
tiation network. It is possible, however, that the size 
and topological complexity could be larger in other 
networks. Further investigations are thus needed with 
larger and more complex networks to characterize 
their structure and robustness relationships.
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