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Abstract: Cancer is a disease associated with the deregulation of multiple gene networks. Microarray data has permitted researchers 
to identify gene panel markers for diagnosis or prognosis of cancer but these are not sufficient to make specific mechanistic assertions 
about phenotype switches. We propose a strategy to identify putative mechanisms of cancer phenotypes by protein-protein interactions 
(PPI). We first extracted the logic status of a PPI via the relative expression of the corresponding gene pair. The joint association of a 
gene pair on a cancer phenotype was calculated by entropy minimization and assessed using a support vector machine. A typical predic-
tor is “If Src high-expression, and Cav-1 low-expression, then cancer.” We achieved 90% accuracy on test data with a majority of predic-
tions associated with the MAPK pathway, focal adhesion, apoptosis and cell cycle. Our results can aid in the development of phenotype 
discrimination biomarkers and identification of putative therapeutic interference targets for drug development.
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The evolution of systems biology out of molecular 
biology has redefined the concept of a biomarker 
from a traditional single parametric measure to that 
of a profile involving multiple genes.1 This type of 
approach has identified several gene expression sig-
natures of breast cancer for prognosis prediction,2–6 
although these signatures do not yet provide enough 
understanding of how these genes cooperatively pre-
dict the phenotypes. Recently, analysis of pathway-
derived signatures achieved better prediction power 
in an independent cohort.7 However, this method 
still lacks the capability to make specific mechanistic 
assertions about the phenotype discrimination. Thus, 
resolving pathway signatures into specific genes, or 
interaction of genes, can provide additional insight 
regarding the behavior of a system as a whole, and 
may assist in the identification of potential targets for 
future drug development.8,9

Here we propose a novel approach to identify syn-
ergistic protein-protein interactions associated with a 
cancer phenotype discrimination. The genome-wide 
protein interaction data provides unique prior knowl-
edge as a physical basis of cellular signaling pathways. 
When coupled with gene expression profiling data, it 
becomes feasible to evaluate the role of protein interac-
tions in a cancer phenotype discrimination. In this pilot 
study, gene pairs involved in protein-protein interac-
tions were binarized into two states: “high-expression/
low-expression” or “on/off ”. Thus there are four states 
(00, 01, 10, 11) for each gene pair and the uncertainty 
that a given state falls into a certain phenotype can be 
evaluated by a Shannon entropy calculation. The pairs 
which have minimum entropy for a given cancer phe-
notype were selected as the pairs most likely associated 
with that phenotype. The phenotype prediction perfor-
mance of two-genes pairs were evaluated by a support 
vector machine (SVM) classifier. The output of the 
above analysis pipeline is a set of logic statements on 
phenotype discrimination in the form of: “If gene A is 
high-expression and gene B low-expression, then this 
sample is cancerous (or normal)”.

Materials and Methods
Data set
Adjacent normal-tumor matched lung cancer sam-
ples were analysed by the Affymetrix GeneChip 
Human Genome U133 Array Set HG-U133A. A total 
of 66 samples were used for microarray analysis, 

including pair-wise samples from 27 patients.10 The 
accession number in the Gene Expression Omnibus 
(GEO) is GSE7670. The protein-protein interaction 
data was downloaded from the Human Protein Ref-
erence Database (HPRD) (09/01/2007 release).

entropy minimization
The joint association of gene pair expression states 
with phenotype was evaluated by calculation of 
the entropy. Here we adapted a simple formulation 
called Entropy Minimization and Boolean Par-
simony (EMBP).11 Firstly, the logarithmic trans-
formed expression value of each gene was binarized 
into two states: 1 as “high-expression” and 0 as 
“low-expression” using the corresponding average 
value across samples as the threshold. Then there are 
four possible states for each gene pair (Table 1). For 
each state (S) we counted the number of times, N0, 
that the state S appeared in normal samples and the 
number of times, N1, that it appeared in cancerous 
samples. Then we defined q = N1/(N0 + N1) as our 
estimation of the probability that state S is encoun-
tered in the cancer phenotype.

The uncertainty of determining whether or not the 
state is encountered in a cancer phenotype was esti-
mated from the entropy H(q):

 H(q) = −qlog2(q) – (1−q)log2(1 − q) 

H(q) approaches 0 for values of q that are close 
to either 0 or 1, and takes a maximum value of 1 for 
q = 0.5. If N1 or N0 is equal to 0, then q equal 0 or 1, 
thus H(q) cannot be defined according to above for-
mula. We set N0 or N1 equal to 1 in this situation. 
To find the most informative predictive gene pairs 

Table 1. example of entropy calculation from protein-protein 
interaction data for a gene pair.

Module  
state

Gene 1  
state

Gene 2  
state

n0 n1 H

[0 0] 0 0 28 27 0.9998
[1 0] 1 0 1 50 0.1396
[0 1] 0 1 30 16 0.9321
[1 1] 1 1 23 5 0.6769
n0, number of times that the state s appeared in normal samples. n1, the 
number of times it appeared in cancerous samples. h, entropy.
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associated with a phenotype, we therefore selected 
those with an H(q) below a particular threshold value 
(,0.3) for further analysis.

We then performed a label-randomizing permu-
tation test 105 times, to assess whether any selected 
predictive gene pairs differed significantly from those 
selected at random. The permutation P value were 
calculated by comparing the H with the randomly 
permutated H.

SVM classification
To evaluate the prediction performance of gene pairs 
as biomarkers, we use a support vector machine 
(SVM) as a classifier to test the classification power. 
For each gene pair, we used the expression values of 
the two genes as the inputs. The kernel was polynomial 
(degree 1), and the prediction accuracy on leave-one-
out cross-validation was evaluated by the GeMS tool 
with default setting12 (http://www.gems-system.org/).

Results and Discussion
The gene pairs most strongly associated with the phe-
notype for human lung cancer are listed in Table 2. 
Almost all of the 16 gene pairs listed showed a predic-
tion accuracy .90% and all modules had a P-value 
,10−5 in the permutation test. Three gene pairs, 
Pafah1b1-Ndel1, Cav1-Src and Nos3-Cav1, showed 

a clear distribution skewness in cancer samples 
(N1 = 26 vs N0 = 1).

To determine whether these identified gene pairs 
played a role in the mechanism of tumorigenesis, we 
further investigated the enriched gene functional cat-
egories and pathways, and the genetic association of 
these informative gene pairs with cancer using the 
National Cancer Institute (NCI) DAVID tool (http://
david.abcc.ncifcrf.gov). A total of 354 genes involved 
in gene pairs which entropy ,0.3 were selected for 
further analysis. We defined these 354 genes to be 
the “ensemble signatures”, and the 187 genes that 
showed a “high-expression” status in cancer samples 
as the “cancer-specific signatures”.

Of the 354 genes with ensemble signatures, there 
were 24 (7.1%) that had a genetic association with 
human cancer, and of the 187 genes with cancer-
specific signatures, there were 18 (9.6%) with a 
similar genetic association (Table 3, gene-disease 
association is based on The Genetic Association 
Database, http://geneticassociationdb.nih.gov/). The 
most enriched gene function according to Gene 
Ontology function association in all signatures was 
“signal transduction” (39.6%, P-value 5.1E-11) and 
“cell cycle” (15.5%, P-value 4.9E-9, Table 4). In 
general, the enriched ratio of cancer-specific signa-
tures was higher than ensemble signatures. The most 

Table 2. Protein interaction modules predicted to be the most discriminating markers of cancer phenotype.

Gene module n0 n1 H prediction 
accuracy

Id Gene1 Gene2 Gene1 state Gene2 state
1 CAnX FAM107A 0 1 27 1 0.222285 0.94
2 ABCB1 CAV1 1 1 27 1 0.222285 1.00
3 COL10A1 P4hB 0 0 27 1 0.222285 0.98
4 PAICs ChD3 0 0 26 1 0.228538 0.98
5 CAV1 srC 1 1 26 1 0.228538 0.89
6 TnFrsF1B ssr4 1 0 26 1 0.228538 0.91
7 LMO2 MAPre3 1 0 26 1 0.228538 0.96
8 sMAD3 ePAs1 0 1 26 1 0.228538 0.94
9 nOs3 CAV1 0 1 26 1 0.228538 0.94
10 COL10A1 P4hB 0 0 26 1 0.228538 0.96
11 PDK1 ePAs1 0 1 26 1 0.228538 0.96
12 LMO4 TCF21 0 1 26 1 0.228538 0.96
13 sKIL sAsh1 1 1 26 1 0.228538 0.96
14 PAFAh1B1 nDeL1 0 0 1 26 0.228538 0.89
15 CAV1 srC 0 1 1 26 0.228538 0.89
16 nOs3 CAV1 0 0 1 26 0.228538 0.94

n0, number of times that the state s appeared in normal samples.n1, the number of times it appeared in cancerous samples. h, Calculated entropy, 
Prediction Accuracy is calculated applying Leave-one-out cross-validation on SVM classifier (see Materials and Methods for more details).
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Table 3. Association of gene signatures with diseases.*

signatures Term count enrichment ratioa P valueb Genes

ensemble 
signatures  
(354 genes)

CAnCer 25 7.06% 5.60e-06 TP53, PTgs2, CDKn1B, ABCB1, sFn, 
CCnD1, Ar, TgFA, esr1, CDKn1A, egFr, 
IL6, VDr, CBFB, Ager, BCL2, FAs, ALDh2, 
erBB2, CDK4, nMe1, hrAs, MC1r, 
CTnnB1, IL8

LUng 
CAnCer

4 1.13% 0.036935 TP53, PTgs2, CCnD1, CDKn1A

Cancer- 
specific 
signatures  
(187 genes)

CAnCer 18 9.63% 6.70e-05 IL6, CTnnB1, ALDh2, CDKn1A, ABCB1, 
CBFB, BCL2, TP53, TgFA, hrAs, Ager, 
erBB2, sFn, esr1, nMe1, egFr, PTgs2, 
Ar

LUng 
CAnCer

3 1.60% 0.09121 CDKn1A, TP53, PTgs2

*354 genes involved in gene pairs which entropy ,0.3 were selected for further analysis using the DAVID tool (http://david.abcc.ncifcrf.gov) which 
considers the functional assignment of the genes according to the Gene Ontology Index. These genes were defined to be the “ensemble signatures”, 
and the 187 genes that showed an “high-expression” status in cancer samples were defined as “cancer-specific signatures”. aenrichment ratio means the 
percentage of input genes are annotated on given term. bP value is calculated by DAVID tool.

Table 4. gene ontology enriched in gene signatures.

Biological process ensemble signature Cancer specific signatures

count ratio P-valueb count ratio P-valueb

signal transduction 128 36.16% 7.10e-14 74 39.57% 5.05e-11
Cell cycle 52 14.69% 2.55e-14 29 15.51% 4.92e-09
Cell proliferation 40 11.30% 2.53e-11 22 11.76% 5.46e-07
Protein kinase cascade 20 5.65% 1.10e-05 15 8.02% 3.09e-06
regulation of metabolism 93 26.27% 1.10e-07 50 26.74% 4.31e-05
Apoptosis 34 9.60% 1.36e-07 17 9.09% 4.85e-04
Mitotic cell cycle 19 5.37% 5.41e-07 10 5.35% 5.18e-04
regulation of transcription 77 21.75% 6.31e-05 40 21.39% 4.10e-03
bP value is calculated by DAVID tool.

enriched signaling pathway was the MAPK pathway 
(9.1%, P-value 1.1E-4, Table 5).

An important advantage of our method is that it 
might reveal cancer-associated expression pattern 
of gene pairs involved in particular protein-protein 
interactions. For example, it is widely accepted that 
Cav-1 might play an important role in oncogenic 
transformation and metastasis.13 Cav-1 normally 
functions as a tumor suppressor gene candidate 
and could act as a negative regulator of the Ras-
p42/44 MAP kinase cascade.14,15 Here we show 
that Cav-1 is involved in five gene pairs which is 
“high-expression” in normal samples (ID = 2, 5, 9, 
Table 2) and “low-expression” in cancer samples 

(ID = 15, 16, Table 2). More significantly, the 
combination of its status with Src or NOS3 (eNOS) 
could discriminate between cancer and normal pheno-
types (Table 6). Src is an oncogene which can down-
regulate Cav-1 expression through transcriptional 
mechanisms.16,17 Our results clearly demonstrated 
this pattern: “If Src high-expression, and Cav-1 low-
expression, then leads to cancer”, and “If Src high-
expression, and Cav-1 (still) high-expression, then 
leads to normal” (Table 6). It suggests that different 
outcomes of the down-regulation action of Src on 
Cav-1 might determine the phenotype discrimination. 
This is summarized concisely in Table 6 and suggests 
that the discovery of novel relationships between 
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Cav-1 and a variety of signaling pathways will offer 
novel opportunities to develop anti-cancer therapies 
that target Cav-1.13

The idea of extracting synergistic gene pairs for 
biomarker identification is not new, but our method 
has several advantages: (1) Interpretability. Com-
pared to methods which search all possible syner-
gistic gene pairs without biological evidence,18 the 
cancer signatures identified in the present study are 
based on protein-protein interactions, which is recog-
nized as the molecular basis of signaling pathways. 
Furthermore, phenotype discrimination based on 
protein-protein interactions could contribute to elu-
cidation of the tumorigenesis mechanism. (2) Effi-
ciency. Compared to other global search methods, 
the use of protein-protein interaction data optimizes 
exploration of the protein-protein interaction space 
by focusing on regions which are more likely to yield 
synergistic gene pairs. (3) Application. Our approach 
for describing synergistic phenotype discrimination 
suggests that our method might play a useful role in 
the identification of combinatory drug targets.

Table 5. Kegg pathway enriched in gene signatures.

Term count % P valueb Genes

MAPK sIgnALIng  
PAThWAY

17 9.09 1.07e-04 TrAF6, IKBKg, TP53, gADD45B, AKT3, MAP3K1, 
MAP3K3, hrAs, ChUK, MAP3K14, nFKB2, egFr, 
MAP3K7IP1, TnFrsF1A, IKBKB, PrKCg, IKBKe,

FOCAL ADhesIOn 14 7.49 3.62e-04 CTnnB1, BCL2, srC, AKT3, CAV2, hrAs, erBB2, CAV1, 
FYn, egFr, LAMB2, PrKCg, shC1, VCL,

APOPTOsIs 12 6.42 1.98e-06 BCL2L1, MAP3K14, ChUK, IKBKg, BCL2, TP53, nFKB2, 
AKT3, IKBKB, TnFrsF1A, IrAK1, TrADD,

CeLL CYCLe 12 6.42 1.35e-05 YWhAZ, CDK2, CDKn1A, MAD2L1, sFn, PCnA, TP53, 
sMAD3, gADD45B, CCne1, CreBBP, MCM6,

ADherens JUnCTIOn 11 5.88 3.61e-06 TJP1, CTnnB1, erBB2, Insr, FYn, sMAD3, srC, egFr, 
PArD3, CreBBP, VCL

bP Value is calculated by DAVID tool.
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