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Abstract: When confronted with a small sample, feature-selection algorithms often fail to find good feature sets, a problem exacerbated 
for high-dimensional data and large feature sets. The problem is compounded by the fact that, if one obtains a feature set with a low error 
estimate, the estimate is unreliable because training-data-based error estimators typically perform poorly on small samples, exhibiting 
optimistic bias or high variance. One way around the problem is limit the number of features being considered, restrict features sets to 
sizes such that all feature sets can be examined by exhaustive search, and report a list of the best performing feature sets. If the list is 
short, then it greatly restricts the possible feature sets to be considered as candidates; however, one can expect the lowest error estimates 
obtained to be optimistically biased so that there may not be a close-to-optimal feature set on the list. This paper provides a power 
analysis of this methodology; in particular, it examines the kind of results one should expect to obtain relative to the length of the list 
and the number of discriminating features among those considered. Two measures are employed. The first is the probability that there is 
at least one feature set on the list whose true classification error is within some given tolerance of the best feature set and the second is 
the expected number of feature sets on the list whose true errors are within the given tolerance of the best feature set. These values are 
plotted as functions of the list length to generate power curves. The results show that, if the number of discriminating features is not too 
small—that is, the prior biological knowledge is not too poor—then one should expect, with high probability, to find good feature sets.
Availability: companion website at http://gsp.tamu.edu/Publications/supplementary/zhao09a/
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Introduction
One of the most challenging issues facing cancer 
informatics, and bioinformatics in general, is fea-
ture selection for classification. A typical microarray 
contains tens of thousands of genes from which a set 
must be chosen to form the features for whatever kind 
of discrimination is desired, be it for diagnosis or 
prognosis. Not only is feature selection problematic 
in high-dimensional settings; it is made more difficult 
by small samples, which are commonplace in high-
throughput genomics and proteomics.

The supplementary table lists 20 cancer classifi-
cation studies, showing the sample size, method of 
cross-validation error estimation, and classification 
problem for each. As we will discuss, finding and val-
idating a single good feature set for these sample sizes 
is virtually impossible; on the other hand, reporting a 
list of small feature sets can, with high probability, 
assure one of obtaining one or more well-performing 
feature sets.

Numerous feature-selection algorithms have been 
proposed during the last few decades1,2 and this num-
ber has increased dramatically since the advent of 
high-throughput genomic technology.3,4 All feature-
selection methods suffer from two problems, one 
inherent in the multivariate nature of classification 
and the other a consequence of sampling. First, even 
given the joint distribution of all the features and 
labels, if one wishes to select the best feature set of 
size k from among a family of n features, then all fea-
ture sets must be checked to be guaranteed that the 
best one is selected.5 Nothing but an exhaustive search 
can assure finding the best feature set. Second, even if 
a feature-selection algorithm is capable of generally 
finding good feature sets given full knowledge of the 
joint distribution, in practice, feature selection must 
proceed from sample data and here even an exhaus-
tive search can fail to produce a good feature set, even 
if one exists, the situation becoming more problem-
atic as sample size decreases.

Perhaps the most well-known consequence 
of sample-based feature selection is the peaking 
phenomenon.6–9 With full knowledge of the feature-
label distribution, increasing the number of features 
cannot produce poorer classification; however, when 
using sample data, increasing the number of features 
beyond a point can degrade classification. For certain 
classification rules and feature-label distributions this 

point may consist of very few features when samples 
are small. Classically, peaking has been studied in 
the absence of feature selection, meaning that the 
features are added in a pre-determined manner. Peak-
ing becomes far more complicated in the presence 
of feature selection.10 Moreover, classical studies do 
not consider the extremely large numbers of features 
found in genomics, so that feature-selection perfor-
mance for moderately large feature families must be 
re-examined in the framework of high-throughput 
biology.11 In sum, the peaking phenomenon argues 
for limiting the number of features unless there is rea-
son to believe that peaking will not be a problem.

When applying a feature-selection algorithm, given 
a classifier design rule, two basic related questions 
arise12: (a) Can one expect feature selection to yield 
a feature set whose error is close to that of an optimal 
feature set? (b) If a good feature set is not found, should 
one conclude that good feature sets do not exist? These 
questions translate quantitatively: (a) Given the error 
of an optimal feature set, what is the conditionally 
expected error of the selected feature set? (b) Given the 
error of the selected feature set, what is the condition-
ally expected error of an optimal feature set? Rather 
than using the conditional expectation, one can take a 
simpler route and look at the linear regression in both 
cases. For small samples it is commonplace to have 
very little regression in both cases and little correla-
tion between the two errors. Thus, one cannot expect 
to find a close-to-optimal feature set or draw any con-
clusion regarding the existence of a good feature set 
when a good one is not found.12

Perhaps one might be fortunate and select a good 
feature set. But how would it be known that the fea-
ture set is good? Since the sample size is small, error 
estimation will be done on the training data and, when 
samples are small, error estimators such as cross-vali-
dation and bootstrap give generally poor results,13 and 
the performance of these error estimators gets even 
worse when used in conjunction with feature selec-
tion.14,15 The problem is that, with small samples and 
a large number of features (using feature selection or 
not), these error estimators have substantial variance, 
especially cross-validation, and they possess little 
correlation or regression with the true error.16

To address the dual problems of feature selec-
tion and error estimation, one can invoke two con-
straints. First, the number of potential features can be 

http://www.la-press.com


Effectiveness of reporting lists of small feature sets

Cancer Informatics 2010:9	 51

cut without using the data by restricting attention to 
features known to have some relation with the labels 
to be classified, say to a particular cancer of interest, 
and by not considering features whose measurements 
are suspect, say by throwing away features with miss-
ing values. Second, one can use small feature sets. 
Not only does this avoid the peaking phenomenon 
and enhance error estimation, it can also avoid fea-
ture selection altogether by facilitating an exhaustive 
search of feature sets. By only considering feature sets 
of size 1, 2, and 3, so long as the total number of fea-
tures is not too large, one can test every feature set. 
Not only does such a restriction mitigate the statistical 
and computational issues, it also facilitates biological 
understanding. Studies have shown good classification 
can be achieved with 2 or 3 genes when re-examining 
data from studies that had originally used much larger 
feature sets,17,18 with the advantage that the error esti-
mates for the small gene sets are more credible.

While small feature sets help reduce the uncertainty 
introduced by feature selection and error estimation, 
even an exhaustive search with small feature sets does 
not fully overcome the problem.19 Rather than report 
a single feature set when samples are small, report-
ing a list of the best performing feature sets increases 
the likelihood of finding good features sets, the idea 
being that some in the list of top-performing feature 
sets will be close to optimal. This strategy has been 
taken in a number of cancer classification studies that 
give lists of the best performing 1, 2, and 3 gene fea-
ture sets.20–23 Given the list, one can either focus on 
the feature sets in the list for further sampling or take 
a classical wet-lab approach to determining which 
ones are predictive.

For illustration purposes, we briefly describe some 
results from a study that designed linear classifiers to 
distinguish four types of glioma (leaving details to the 
original paper): oligodendroglioma (OL), anaplas-
tic oligodendroglioma (AO), anaplastic astrocytoma 
(AA), and glioblastoma multiforme (GM)—in partic-
ular, classification of OL from others, AO from oth-
ers, AA from others, and GM from others.20 The study 
involved 25 patients and the gene list was reduced to 
597 genes prior to utilizing the data. Table 1 gives 
the best 5 single-gene sets and the best 10 two-gene 
sets based on the estimated errors. It also gives the 
three-gene sets among the top 50 three-gene sets for 
which the estimated error of the three-gene set is at 

least 0.03 less than the estimated error of its best two-
gene subset. The purpose for placing this requirement 
on the marginal gain of a three-gene set over its two-
gene subsets is to avoid redundancy caused by adjoin-
ing features to already strong performing feature sets. 
For each feature set, the table gives the error and the 
marginal gain.

The risk with this strategy is that, just as selecting 
a single feature set may be biased by a low error esti-
mate, and thereby in actuality provide a poor feature 
set, an exhaustive list will be affected at the low end 
by optimistic error estimates and at the high end by 
pessimistic error estimates. The problem is illustrated 
in Figure 1, in which the x-axis shows the ranks of the 
selected feature sets and the y-axis shows their errors. 

Table 1. Errors and increments for discriminating AO from 
other gliomas.

Gene1 Gene2 Gene3 Error Gain
DNaseX 0.1556
TNFSF5 0.1658
RAD50 0.1659
HBEGF 0.1670
NF45 0.1731
DNaseX TNFSF5 0.0750 0.0806
DNaseX PTGER4 0.0784 0.0772
TNFSF5 GNA13 0.0826 0.0832
DNaseX HGF 0.0892 0.0664
TNFRSF5 PTGER4 0.0907 0.0947
TNFSF5 RAB5A 0.0909 0.0749
TNFSF5 SNF2L4 0.0950 0.0708
erbB4 PTGER4 0.1012 0.0841
DNaseX β–PPT 0.1013 0.0544
TNFSF5 MERLIN 0.1020 0.0638
DNaseX TNFSF5 RAB5A 0.0441 0.0309
DNaseX TNFSRF5 PTGER4 0.0454 0.0330
TNFSF5 RAB5A GNA13 0.0464 0.0362
DNaseX PTGER4 SAP97 0.0476 0.0308
TNFSF5 GNA13 HGF 0.0526 0.0300
TNFSF5 β–PPT PKAC–α 0.0529 0.0549
DNaseX β–PPT RkB 0.0534 0.0479
TNFSF5 PKAC–α LIG4 0.0591 0.0488
TNFSF5 LIG4 HBGF–1 0.0616 0.0474
TNFSF5 β–PPT SMARCA4 0.0625 0.0325
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The red, green, and black curves show the estimated 
error, true error and difference between the true and 
estimated errors, respectively. The curves are select-
ing 2 features out of 50 for linear discriminant analy-
sis (LDA) classification in a Gaussian model. At the 
top end of the ranking the estimated errors are opti-
mistic; at the low end, they are pessimistic. We only 
care about the top end. If the list is too short, then, 
there may not be any good features sets in the list; if 
the list is too long; then there will likely be good fea-
ture sets but the list will be impractically long.

This paper uses a model-based approach to inves-
tigate the kind of results that can be expected from 
generating feature-set lists. This is accomplished via a 
characterization of the goodness of the list relative to 
the number of potential features and the sample size. 
Since our purpose is to quantify the effects of forming 
a feature list and since quantification depends on the 
number of potential features selected by the biologist 
for consideration and the number of those features that 
are significant contributors to discrimination, only a 
model-based approach can provide meaningful results, 
since the contributive and non-contributive features 
are not known a priori for real data and could only be 
determined with certainty if we knew the distribution 
from which the real data arise, which we do not.

Systems and Methods
Ranking power
We define a measure of goodness for the list based 
on the closeness of the estimate-based feature 

sets to optimality. It depends on the feature-label 
distribution, the classification rule, the total number D 
of features, the number d of features to be selected, the 
sample size n, and the list length m. Let Abest be the best 
feature set relative to the feature-label distribution, 
A(1), A(2), …, A(m) be a list of feature sets, ε0 be the true 
error of the classifier for Abest designed on the sample, 
ε1, ε2, …, εm be the true errors, listed from lowest to 
highest, for A(1), A(2), …, A(m) in the estimated-error list, 
and r . 0. We define the ranking power of the list by

	 ∆D d
n r

,
, ( ) ( ).m P r= ε1 0− <ε 	 (1)

The ranking power gives the probability that at 
least one feature set in the list has error within r of the 
best feature set. We would like ∆D d

n r m,
, ( ) to be close to 

1 when m is relatively small. In practice, A(1), A(2), …, 
A(m) are obtained by ranking the feature sets accord-
ing to their estimated errors, (1) (2) ( )ˆ ˆ ˆ, , ,… mε ε ε , among 
all feature sets considered. Notice that the ith lowest 
estimated error ( )ˆ iε  corresponds to the feature set A(i) 
however, the ith lowest true error εi may not neces-
sarily correspond to the feature set A(i). It could arise 
anywhere from the top m list. Our interest is to see if 
the top m list can produce at least a close to optimal 
feature set.

We consider ranking power curves ∆D d
n r m,

, ( ) as a 
function of m. For fixed D, d, and r, we are inter-
ested in the minimum m for which ∆D d

n r m,
, ( )  0:95 

(or some other threshold). For small r, the minimum 
m gives the length of the list required to get within r 
of the best feature set with probability 0.95.

In a sense ∆D d
n r m,

, ( ) represents a minimal measure 
of goodness because it requires at least one feature set 
satisfying the requirement. We can also consider the 
expected number of feature sets in the estimated-error 
list satisfying the requirement; to wit, we define

	 ∆D d
r

i im E card r,
, ) : }n ( { ,= −[ ]ε ε ε0 < 	 (2)

where card denotes cardinality (number of elements 
in the set).

In the remainder of this paper we will investigate 
properties of these power curves, in particular, how 
they are affected by D, d, and the number of marker 
features among the total number.
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Figure 1. Error curves for a gaussian model.
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Model
We consider a hybrid Gaussian model M containing 
marker and noise features. The marker features 
come from a two-class Gaussian model Mµ with 
equally likely classes and class-conditional den-
sities having common covariance matrix Σµ. One 
class mean is located at the origin 


0 and the other at 

µ
µ

= ( , , , ,a DD1 )a a T
2 … µ  is the total number of mark-

ers, these are divided among B blocks, and a1, a2, …, 
aDµ are evenly spaced between 1 and 0.8, with a1 = 1 
and aDµ = 0.8. In this setting, every marker performs 
well, but not exactly the same.

The covariance matrix, Σµ, for Mµ is blocked:

	 ∑ =

∑
∑

∑



















µ

ρ

ρ

ρ

0 0
0 0

0 0

…
…

   
…

  
B blocks

where Σρ has variance σ µ
2 along the diagonal and 

correlation coefficient ρ off the diagonal. Features 
from the same block have the same correlation, ρ, 
while features from different blocks are uncorrelated, 
thereby simulating the situation where genes in the 
same pathway are strongly correlated but those in dif-
ferent pathways are uncorrelated.

The noise features are modeled as zero-mean ran-
dom Gaussian noise, with a total of Dn noise features, 
with Dn .. Dµ. For the hybrid model M, there is a 
total of D = D0 + D1 features. D0 reflects biologists’ 
input to the classification problem and the larger D0, 
the better the classification. In this vein, we will com-
pare the ranking power with respect to different D 
and D0. In the simulations, we will assume a given 
D0, the size of D0 reflecting the extent of the prior 
knowledge, and then D0 and D1 features will be ran-
domly chosen from the useful and noise features, 
respectively.

Given the adopted model, for any feature set of 
size d, the Bayes classifier and corresponding Bayes 
error can be found. Assuming equal covariance matri-
ces and equal prior probabilities for the classes, the 
Bayes error for feature set A is given by Φ(–∆/2), 
where Φ is the standard normal cumulative distribution 
function and ∆ is the Mahalanobis distance between 
the class-conditional distributions corresponding to 

A. Abest is the feature set possessing minimum Bayes 
error, equivalently, the largest Mahalanobis distance. 
Note that we do not have to consider noise features 
when searching for the best feature set.

Two points regarding Abest should be recognized. 
First, although Abest provides the minimum error rela-
tive to the feature-label distribution, we design clas-
sifiers from samples and the error of the designed 
classifier for Abest may not be minimal for a given 
sample; nevertheless, Abest represents the gold stan-
dard for the feature-label distribution and therefore 
we use the error of its designed classifier as the 
benchmark. Owing to the direction of the inequality 
in Eqs. 1 and 2, no problem arises should the error 
of the classifier designed for Abest not be minimal. 
Second, Abest is designed relative to Dµ, not D0. Once 
the classification problem is given, Abest should not 
change because it indicates the best we can do for the 
problem at hand. D0 depends on the extent of the prior 
knowledge and the poorer that knowledge, the poorer 
we should expect to do compared to Abest.

To find the true error of a designed classifier we 
generate a very large test set of independent data from 
the feature-label distribution and compute its error 
rate on the test set. Estimated errors are computed 
by bolstered resubstitution, which has been shown 
to perform well in comparison with other training-
sample-based error estimators when it comes to rank-
ing feature sets.19

To illustrate the advantage of obtaining a list of 
feature sets by exhaustive search, we compare the list 
to ordinary feature selection by computing

	 ΩD d
n r

FSm P r,
, ( ) ( ),= − <ε ε0 	 (3)

where εFS is the true error of the feature set found by 
feature selection. We use a two-stage approach for 
feature selection. The t-test is used in the first stage to 
reduce the number of features and sequential forward 
search (SFS) is use in the second stage to arrive at a 
feature set.

Implementation
We focus on the LDA classification rule, the power 
curve method being applicable to any classification 
rule. We utilize the following simulation procedures:

Compute ∆D d
r
,
, ( )n m :
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  1.  Set up Mµ and Mn, and determine Abest from Mµ.
  2. � Randomly select D0 features from Dµ and D1 fea-

tures from Dn, and set D = D0 + D1, the number of 
features in the hybrid model M.

  3. � Generate n-point sample sets for Mµ and Dn (n/2 
samples per class) to obtain an n-point sample T 
for M.

  4. � Compute the true error, ε0, for Abest using the sam-
ples from Mµ.

  5. � For every feature set of size d, design a classifier 
from T.

  6. � Compute the true and estimated errors for the 
classifiers from step (5).

  7. � Rank all the feature sets by their estimated errors 
to get the top m estimated-error list.

  8. � Select the feature set in the list with the lowest 
true error, ε1.

  9.  If ε1 – ε0 , r, set count = count + 1.
10. � Repeat steps (2) through (9) a total of N times to 

get ∆D d
r
,
, ( )n m  = count/N.

	   Compute ΩD d
n r m,

, ( ):

1–4. �Repeat the steps of the procedure Compute 
∆D d

r
,
, ( )n m .

  5. � Use the t-test to select the first dstage1 features and 
then use SFS to select the final d features.

  6. � Find the true error, εFS, of the designed classifier 
for the feature set found in step (5).

  7.  If εFS – ε0 , r, set count = count + 1.
  8. � Repeat steps (3) through (7) a total of N times to 

get ΩD d
n r m,

, ( ) = count/N.

A summary of the experimental parameters is pro-
vided in Table 2.

Experimental Results
For a given model we are mainly interested in the 
effects of D, D0, and d. As should be expected, larger 
sample sizes will produce better results. In the paper 

we restrict ourselves to n = 40, results for n = 60 
being given on the companion web-site. Except when 
otherwise specified, σ µ

2 1=  and ρ = 0.8. From an 
experimental perspective, D is the size of the feature 
list provided by the biologist, D0 is the number of 
marker features in the provided list, and d is the feature 
set size. Each graph of Figure 2 shows power curves 
∆D d

r
,
, ( )n m  for r = 0.03, 0.05, 0.07 for a value of D = 50, 

100, 150, a value of D0 = 20, 10, 5, and a value of d = 2 
(part a) or d = 3 (part b). The x-axis gives the number 
m of feature sets in the list, the y-axis gives the prob-
ability ∆D d

r
,
, ( )n m , and the horizontal dotted lines mark 

probability 0.95. Figure 3 shows corresponding curves 
for ∆D d

n r m,
, ( ). For fixed D, as D0 decreases, the power 

decreases, which reflects the fact that the list provided 
by the biologist contains fewer markers. Matters only 
get bad when D0 = 5, which means the prior informa-
tion is very poor. For instance, when D = 150 and D0 = 
5, only 3% of the suggested features are markers.

A related effect concerning prior knowledge has 
been discussed.24 In current molecular epidemiology 
studies, it is common to claim an association between 
a genetic variant and a disease when the correspond-
ing P value is below a certain level, say 0.05. How-
ever, the false positive report probability (FPRP) can 
be close to 1 if the prior probability of the true asso-
ciation is below 0.01. In our paper, this corresponds 
to the situation where a low percentage of suggested 
features are markers and, consequently, the power 
curves will be significantly lowered (Fig. 2).

The effect of increasing D and d is seen in Figure 4, 
in which the top and bottom rows correspond to d = 2, 
3, respectively, the columns, left to right, correspond 
to D = 50, 100, 150, and D0 = 20. The graphs show 
the error curves for ranking up to rank m = 400, the 
horizontal axis being the estimated-error rank and 
the red, green and black curves showing the esti-
mated error, the true error and the difference between 
the errors, respectively. The detrimental aspect of 

Table 2. Summary of experiments. ES stands for exhaustive search methods and FS stands for feature selection methods.

Exp n Dµ
Dn ρ B D D0 d r

ES 1 40, 60 50 1000 0.8 5 50 50, 20, 10, 5 2, 3 0.01 – 0.1
ES 2 40, 60 50 1000 0.8 5 100 50, 20, 10, 5 2, 3 0.01 – 0.1
ES 3 40, 60 50 1000 0.8 5 150 50, 20, 10, 5 2, 3 0.01 – 0.1
FS 1 40, 60 50 1000 0.8 5 1050 50 2, 3, 4, 5 0.01 – 0.1
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Figure 2. Power curves for different model parameters. Red: r = 0.03, green: r = 0.05, black: r = 0.07.
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Figure 3. Average good features for different model parameters. Red: r = 0.03, green: r = 0.05, black: r = 0.07.
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Figure 4. Error difference curves. Green: true error, red: estimated error, black: error difference.

larger D and d is seen in the difference curves, which 
show the increased optimistic bias for larger D and d 
resulting from ranking according to estimated error. 
Better discovery may result from using more fea-
tures but one must expect greater optimistic bias in 
the results.

Figure 5 illustrates the effect of variance in the 
marker model Mµ. We set D = 150, D0 = 10, d = 2 
ρ = 0.8, and r = 0.05, and show power curves for 
σ µ

2  = 0.5, 1, and 2. As the variance grows, the power 
decreases, reflecting greater difficulty in finding the 
top feature sets.

Figure 6 shows the effect of a different number of 
blocks, a larger number of blocks representing fea-
tures that are spread among more pathways. We set 
D = 150, D0 = 10, d = 2, ρ = 0.8, σ µ

2  = 1, and r = 0.05, 
and show power curves for B = 2, 5, and 10. It is 
easier to find good features with more blocks, since 
the features are then less correlated.
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Figure 7 shows the effect of correlation. We set 
D = 150, D0 = 10, d = 2, σ µ

2  = 1, and r = 0.05, and 
show power curves for ρ = 0.1, 0.5, and 0.8. Increas-
ing the correlation makes it slightly harder to find 
good features.

It is informative to compare the ability of feature-set 
lists created by exhaustive search to what one obtains 
using feature selection. Table 3 shows the probabil-
ity of finding a feature set whose error is within r of 
the error for Abest when using the t-test to reduce the 

original 1050 features, 50 markers and 1000 noise 
features, to 100 features, followed by SFS to reduce 
to a final feature set of 2, 3, 4, or 5 features, for sample 
size n = 40. Even at r = 0.05, the probability of finding 
a satisfactory feature set of size d = 3 is only 0.309. 
The difficulty is exemplified in Figure 8, which shows 
the regression of the error, εFS, for the selected feature 
set on the error, εbest, for Abest and the regression of εbest 
on εFS. Not only is there little regression in either case, 
the dispersion of the scatter plots is substantial.

Conclusion
The problem of developing a classifier based on bio-
logical features such as SNPs, patterns of differential 
gene expression, or differential protein abundances, 
with sufficient sensitivity and specificity for medical 
use has proven much harder than originally hoped. 
Indeed, a current question frequently raised in the field 
is whether it is possible to find features that are even 
of the same reliability as the clinical features devel-
oped by physicians in the course of treating particular 
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diseases. One reason for the current low levels of 
production of these molecularly-based classifiers is 
that a researcher attempting to discover such features 
typically starts by using a “non-biased” approach 
where as many features are tested for candidacy as is 
possible with the current high-throughput methodolo-
gies appropriate for the kind of marker being studied. 
Such an approach has the virtue of not missing the 
opportunity to evaluate a candidate feature that might 
have been missed if a smaller set of features were 
examined. The approach carries the liability of not 
being able to recognize predictive features because the 
availability of sample data and the cost of the analysis 
has restricted the study to examining too few individ-
uals from the study populations to provide a reliable 
estimate of the discriminatory power of the features. 
A validation study of a large number of SNP asso-
ciations with acute cardiovascular syndromes based 
on sample sets containing no more than hundreds of 
sample points has produced the most explicit example 
of how devastating the inability to accurately estimate 
predictive error in such sample sets can be.25

This study further illustrates the degree of diffi-
culty of producing classifiers by showing that even 
under highly idealized, mathematically favorable 
conditions—two Gaussian classes sharing the same 
uncorrelated-block covariance matrix and zero-mean 
random Gaussian noise—it is still difficult to find 
a close-to-optimal feature set with small samples 
(Table 3). These idealized conditions are far from 
most biological situations, since the array of cellular 
processes that play a role in a disease are highly inte-
grated with other processes, have varying degrees of 
correlations with other cellular processes, and must 
be searched for not in a milieu of random operations, 
but in a setting of other processes that do not display 
a great deal of randomness.

The findings in this study suggest an alternative to 
the current sequence of operations employed in “non-
biased” discovery methods that start with a small 
sample set and many thousands of candidate features. 
The suggestion is to apply as much biological prior 
knowledge and insight about the disease as possible to 
limit the list of features to be examined in the study. In 
“non-biased” discovery, prior knowledge and insight 
are applied after the classifier design process has been 
run in order to further prioritize the candidates for val-
idation studies. If the process has failed to nominate 

predictive features that can be recognized on the basis 
of the possible fit of their functions with the disease, 
then they will be lost to the analyst. Alternatively, if 
the biologist had correctly proposed as few as five 
valid features as candidates for analysis in a list of 
fifty such candidates, then even in an examination of 
as small as fifty sample points, then the analyst would 
have an excellent chance of recognizing the predic-
tive power of several of those features (Fig. 2).

This and previous studies9,13,16 suggest that experi-
mental campaigns to establish classifiers with the 
predictive strength required for medical use can be 
defensibly mounted in two ways. For those indica-
tions where the existing biological knowledge is 
insufficiently certain that well-informed experts feel 
that they are unlikely to be able to produce a can-
didate list of one to two hundred genes with five to 
ten percent accuracy and where a predictive classi-
fier would produce sufficient benefit to justify a well-
powered study (thousands of sample points), a large 
study examining many features could be carried out. 
If, on the other hand, the indication is well enough 
studied that a candidate list with a hit rate of five 
to ten percent could be expected to be developed, 
a modest sample set is available, and the classifier 
would justify a smaller-scale study, then this type of 
study could be run. Studies between these bounds, 
which lack either sufficient sample size to success-
fully recognize predictive features or sufficient prior 
knowledge to reduce the set of candidate features to 
a level where they can be successfully identified with 
smaller sample sets, are unlikely to provide classifi-
ers that could be validated and should be avoided.
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Table 3. Probability of finding a good feature set using 
feature selection: ΩD d

n m,
, ( )r .

 d = 2 d = 3 d = 4 d = 5
r = 0.02 0.3490 0.1580 0.0740 0.0390
r = 0.03 0.4140 0.2090 0.1100 0.0560
r = 0.04 0.4630 0.2510 0.1360 0.0840
r = 0.05 0.5020 0.3090 0.1770 0.1260
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