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Abstract: The sizes of the protein databases are growing rapidly nowadays, thus it becomes increasingly important to cluster protein 
sequences only based on sequence information. In this paper we improve the similarity measure proposed by Kelil et al, then cluster 
sequences using the Affinity propagation (AP) algorithm and provide a method to decide the input preference of AP algorithm. We 
tested our method extensively and compared its performance with other four methods on several datasets of COG, G protein, CAZy, 
SCOP database. We consistently observed that, the number of clusters that we obtained for a given set of proteins approximate to the 
correct number of clusters in that set. Moreover, in our experiments, the quality of the clusters when quantified by F-measure was 
better than that of other algorithms (on average, it is 15% better than that of BlastClust, 56% better than that of TribeMCL, 23% better 
than that of CLUSS, and 42% better than that of Spectral clustering).

Keywords: clustering, similarity measure, affinity propagation, biological function

http://www.la-press.com
http://www.la-press.com
http://www.la-press.com
mailto:yangfan@uestc.edu.cn


yang et al

138 Evolutionary Bioinformatics 2009:5

1. Introduction
The sizes of protein databases grow rapidly as the result 
of high-throughput genome sequencing projects. Since 
the experimental characterization of a protein is much 
slower than the generation of a new-sequenced protein, 
many proteins are not characterized. Therefore, it is 
desired to determine the function of a new protein from 
amino acid sequences. One approach is to classify each 
family into distinct clusters consisted of functionally 
related proteins. When a new protein is assigned to 
a cluster, the biological function of this cluster can 
be attributed to this protein with high confidence. On 
the other hand, because many new sequences that are 
similar or nearly identical to some existing proteins are 
added to the protein databases, thus slows down the 
database searches. This problem can also be solved by 
clustering protein sequences into groups and then use 
only a representative sequence or consensus of each 
group.1

There are many clustering algorithms documented, 
such as BlastClust,2 SYSTERS,3 ProtoMap,4 ProClust,5 
GeneRAGE,6 TribeMCL,7 CLUSS,1 and Spectral 
clustering.8 Among these algorithms, GeneRAGE, 
ProtoMap, ProClust, SYSTERS, have been designed 
to deal with large sets of proteins. GeneRAGE is a 
fast method using single-linkage clustering algorithm 
for grouping large protein data sets. ProClust extends 
the graph based clustering approach proposed in9 and 
uses profile HMM as post-processing. ProtoMap also 
uses a graph-based approach where edge weights 
represent the score of sequences comparisons to 
obtain a hierarchy of clusters. SYSTERS uses gapped 
BLAST10 to search each sequence against the whole 
sequence database and employs a single-linkage 
clustering based on obtained E-values. However, 
they are not very sensitive to the subtle differences 
among similar proteins, so that they are not effective 
for clustering protein sequences in closely related 
families.1

While BlastClust, CLUSS, TribeMCL, and Spectral 
clustering are more sensitive to the similar proteins. 
BlastClust and CLUSS use hierarchical algorithm 
to cluster proteins. These two algorithms differ in 
the measurement of distances between clusters and 
protein sequences. BlastClust defines the distance 
of two clusters as the distance of the two closest 
elements in two clusters. CLUSS uses a weighted 
average of distance between two clusters. Based on the 

Markov cluster (MCL) approach, TribeMCL describes 
the cluster structure in graphs by a mathematical 
bootstrapping procedure. Spectral clustering computes 
the leading eigenvectors of a matrix obtained from 
the similarity information, and then groups sequences 
into clusters according to the results obtained by 
K-means algorithms for the leading eigenvectors.

Affinity propagation (AP)11 is a new cluster 
algorithm proposed recently. AP algorithm takes as 
input measures of similarity between pairs of data 
points, and transmits real-valued messages between the 
data points. The transmission of messages performed 
recursively until the good clusters of data points 
emerged. AP does not require that similarities of 
data points are symmetric and satisfies the triangle 
inequality. This advantage makes it apply to unusual 
measures of similarity. Another advantage is that AP 
algorithm considers simultaneously all data points 
as possible exemplars and partitions gradually the 
points into clusters. So AP can also be viewed as a 
global method, which is useful for clustering protein 
sequences where related proteins have low sequence 
identity.8 In addition, AP algorithm will identify an 
exemplar in each cluster which would be necessary 
for some protein databases.

In this paper, we provide an improved SMS 
measure, which employed by CLUSS, to estimate the 
similarity between two protein sequences, and use 
AP algorithm to group protein sequences. This paper 
is organized as follows. Section 2 gives the detailed 
description of our improved similarity measure and 
the AP algorithm. Cluster validity index and test 
datasets are also described in Section 2. Section 3 
compared the performance of our method with other 
methods on several datasets. Finally, Section 4 
provides conclusions.

2. Algorithms and Datasets
2.1. Similarity measure
There are many approaches to calculate the 
similarity between two protein sequences. In most 
case, alignments are performed between the target 
sequences and the resulting alignment scores are 
used to calculate a measure of similarity. The 
optimal alignment between sequences can be 
found by using dynamic programming. However, 
it is also noteworthy that dynamic programming is 
computational intensive and consequently unpractical 
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for comparison of a large number of sequences. As a 
result, some heuristics have been designed to reduce 
the running times, as exemplified by BLAST.12 
BLAST and its improved versions Gapped-BLAST 
and PSI-BLAST,10 are extensively used to align the 
sequences and the E-values of the alignments are used 
as a distance measure. Other approaches include Varré 
et al13 based on movements of segments, Scoredist,14 
based on the logarithmic correction of divergence 
calculated from the multiple alignment of sequences, 
and so on.

However, for remote homologues, the above 
algorithms, depended on the alignment, tend to fail. For 
example, the ‘twilight zone’, referred to as a protein 
region with 20% identity, are not satisfactorily 
aligned neither its similarity detected.15 Moreover, for 
hard-to-align sequences, for instance, multi-domain, 
as well as circular permutation and tandem repeats 
protein sequences, these algorithms also suffer from 
accuracy problems.1 Consequently, alignment-free 
methods have been explored as important alternatives 
in estimating sequence similarity. One of the 
comprehensive reviews16 reported several concepts 
of (dis)similarity measures, such as Euclidean 
distance,17 standard Euclidean distance,18 Mahalanobis 
distances,18 Kullback-Leibler discrepancy,19 Cosine 
distance20 and Pearson’s correlation coefficient.21 
These algorithms are all based on L-tuple frequency 
vectors. Recently, several novel alignment-free 
measures have been designed for protein sequences 
analysis, such as the normalized compression distance 
or NCD, computed from the lengths of compressed 
data files,22 and normalized information distance, 
based on the noncomputable notion of Kolmogorov 
Complexity.23 Despite these methods are conceptually 
attractive and elegant, they are not yet fully explored, 
only in a rather limited set of sequences.

The SMS measure, proposed recently, locates 
all matched exactly subsequences with length 
greater than a threshold between two sequences 
and calculates the similarity based on the scores 
of these subsequences. SMS works well especially 
for application to hard-to-align sequences such as 
proteins with different domain structures. However, 
there are some drawbacks about this measure. The 
first is it considers only the identical subsequences 
pairs. For the sequences with low similarity, 
SMS will omit many biological segments, which 

have some mismatches. The second is SMS takes 
no care of the remained sequences of mismatch 
subsequences. For the sequences with high sim-
ilarity, considering matched segments is enough; 
however, for the sake of lesser matched segments 
between the dissimilar sequences, the matched 
segments are not enough to describe the similarity 
between two sequences. Therefore, to present sim-
ilarity more accurately, we propose our measure 
below. The constraint that the matched segments 
must be identical is taken place of by that matching 
score of a segment pair must be larger than a 
threshold. A value come from the comparison bet-
ween the sequences excluding the matched seg-
ments is added for correction.

Our similarity measure between two sequences 
consists of two parts. One is for the conservation part 
of two sequences, another is for the remains. Our 
algorithm for similarity of conservation part resembles 
the SMS algorithm. They differ in the constraint of 
the matched segment. In SMS algorithm, the key 
set of matched subsequences Γx,y,EX Y

l
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where x and y are two identical subsequences belonging 
respectively to sequence X and Y, and Γx,y represents 
the matched subsequence of x and y. While in our 
algorithm, the set of matched subsequences is defined 
as follows:
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where subsequences x and y are not required to be 
identical but the matching score of x and y, W(Γx,y), 
need to larger than e. The detail algorithm can refer to 
the paper.1

For two divergent sequences, the conservation 
of subsequences may account for a small part of 
the entire sequence. In order to calculate accurately 
the similarity between two protein sequences, we 
should consider the similarity between the remained 
sequences which exclude the matched subsequences. 
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Because the divergent sequences, the alignments 
metric and alignment-free metric have same 
discriminate power,24 we use alignment-free metric, 
standard Euclidean distance, which have advantage 
of light computational load.

A protein sequence, X, of length n, is a linear 
succession of n symbols from the alphabet of all 
possible amino acids. An L-tuple is a segment of L 
symbols. The set WL consists of all possible L-tuples 
that can be extracted from protein sequence X, and 
has K elements (Equation 1).

	 WL	= {wL,1, wL,2, ..., wL,K}, K	= 20L	 (1)

The mapping of X into the Euclidean space can be 
defined by representing X by its amino acid L-tuple 
in count, cL

X :

 c c cL
X

L
X

L k
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where cL i
X
,  is the counting occurrences of wL,i with 

overlapping in sequence X.
We use the standard Euclidean distance to 

represent the dissimilarity of remained sequences. 
Supposed sequences X ′ and Y	′ are remains excluding 
the matched subsequences. The standard Euclidean 
distance is defined by
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where s11, …, sKK is the diagonal element of the 
covariance matrix of L-tuple counts.

In order to obtain the similarity between sequences 
X ′ and Y ′, we will use function

 f (d) = e-bd (4)

to transform distance measures to similarity measures. 
The d in Equation (4) denotes the standard Euclidean 
distance, and the b is a positive, tunable parameter. 
Accordingly, the similarity of sequences X and Y is 
defined as follows:

 S S eX Y X Y
M d X YSE

, ,
( , )= + -b ′ ′

 
(5)

where SX Y
M

, represents the similarity of the matched 
subsequence of two sequences.

2.2. Clustering algorithm
Given a set D of N data, the clustering problem can 
be described as follows:

Partitioning the set D into m subsets, C1, …, Cm, 
such that

C C C i j C D i j mi i j i
m

i≠ ∅ ∩ = ∅ ≠ ∪ = ==; , ; ; , , ,1 1 …

Affinity propagation takes as input a collection 
of similarities between each pair of data points and 
outputs a vector c of exemplars, c = [c1, …, cN]. For 
the data di in D, the ci represent its exemplar. Supposed 
there are m different values, e1, ..., em, in vector c, 
a partition of D can be described by Ci	= {Dj	| cj	= ei,	
j	= 1, ..., N}, i	= 1, ..., m. Initially Affinity propagation 
views each data as a potential exemplar, and identifies 
the exemplar by pass massages between data points. 
There are two kinds of massages and each considers 
a different kind of competition. The responsibility 
r(i, k) is sent from data i to the candidate exemplar 
point k, which implies the reliability of point k served 
as the exemplar of point i. The availability a(i, k) 
is sent back from the candidate exemplar point k to 
point i, which denotes the appropriateness for point i 
to choose point k as its exemplar. The update rules are 
described below11:

Initialization:

r(i, k) = 0, a(k, i) = 0 for all i, k

Responsibility updates:

r i k s i k a j i s i j
j j k

( , ) ( , ) max( ( , ) ( , ))
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← - +
≠
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a k k r j k
j j k
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 a k i r k k r j k
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∉
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Making assignments:

 c r i k a k ii
k

* arg max ( , ) ( , )← +  

Here s(i, i) is preference and is inputted by the user. 
The value of s(i, i) reflects the possibility that point i is 
chosen as an exemplar. If there is no priori knowledge, 
the probability for all data points are equal lead to a 
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common preference value. The preference value can 
be varied to produce different numbers of clusters. In 
general, small preference value results in a small number 
of clusters. There is no definite method to choose an 
optimal preference. Frey and Dueck suggested that 
the value of preference could be the median or the 
minimum of the input similarities. But in practical, 
these values do not give a satisfying clustering.

Postaire et al have proposed an assumption that, 
when true clusters exist, stable number of clusters 
appears for a wide range of value of preference.25 
Based on this assumption, the choice procedure 
can be described bellow: running algorithm using 
a range of parameter, choosing such a parameter in 
the middle of the largest range where the number of 
detected clusters remains constant. This procedure has 
proved to be a good method to optimize a number of 
clustering algorithms.26 Therefore, we also apply this 
method to determine the preference. We first choose 
the minimum and maximum of the input similarities 
as the up bound and down bound of preference range, 
respectively, and draw uniformly 100 values as 
preference from the range to run the AP algorithm. 
We then apply the procedure outlined above to find a 
appropriate value of preference.

2.3. Clustering validation
To assess the ability of a clustering algorithm to 
recover true cluster structure it is necessary to define a 
measure of agreement between two partitions; the first 
partitions being a priori known clustering structure 
of the data; and the second partition obtaining from 
the clustering algorithm. The F-measure27 described 
bellow is a measure of agreement between two 
partitions.

Consider C = {C1, …, Cm} is a clustering structure 
given by an algorithm of the test data set X and 
P = {P1, …, Ps} is a defined partition of data. We use a 
contingency table (Table 2) to express the partitional 
agreement. The entry nij denotes the number of proteins 
that are both in clusters Ci and Pj. Let n ni ijj

m
. =

=∑ 1
 

and n nj iji

s
. =

=∑ 1  denote the row and column sums 
of the contingency table, respectively. Clearly, ni. and 
n.j are the number of proteins in classes Ci and Pj and 
n n nii

m
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s
= =

= =∑ ∑. .1 1
 is the number of total proteins.

We define the precision of Ci with respect to 
Pj, Pre(i, j), as the ratio of the number of proteins 
of Pj assigned to Ci to the number of proteins in 

Ci., i.e. Pre(i, j) = nij/ni.; The recall of Ci with respect 
to Pj, Rec(i, j), is defined as the ratio of the number of 
proteins of Pj assigned to Ci to the number of proteins 
in Pj, i.e. Rec(i, j) = nij/n.j; The F-measure is then 
defined as:
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Clearly, an F-measure has a value between 0 and 1. 
The closer the F-measure to 1, the better agreement 
two partitions display and an F-measure of 1 indicates 
identity of two partitions.

2.4. datasets
Dataset A. The database of Clusters of Orthologous 
Groups of proteins (COGs)28 is an attempt on a 
phylogenetic classification of the proteins, currently 
consists of 5665 COGS from 192,987 proteins 
encoded in 66 complete genomes of bacteria, archaea 
and eukaryotes (http://www.ncbi.nlm.nih.gov/ COG). 
The proteins in a COG are considered as orthologs, 
if they come from individual orthologous genes, or 
orthologous sets of paralogs if they belong to different 
lineages. Accordingly, Each COG is assumed to have 
evolved from an ancestral protein. To illustrate the 
efficiency of clustering algorithms in grouping protein 
sequences classified by phylogenetic relationships, 
we draw randomly 412 protein sequences of 7 COGs 
from the COG database.

Dataset B. G proteins,29 short for guanine 
nucleotide-binding proteins, is a family of important 
signal transducing molecules in cells. G-proteins 

Table 1. Contingency table.

P1 P2 … Ps

C1 n11 n12 … n1s n1.

C2 n21 n22 n2s n2.

    
Cm nm1 nm2 … nms nm.

n.1 n.2 … n.s n
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receive the signal from different receptor; altering 
an inactive guanosine diphosphate (GDP) bound 
state to active guanosine triphosphate (GTP) bound 
state, ultimately active according to effectors to 
regulate different cell processes. This family has been 
the subject of a considerable number of publications 
by researchers around the world, so we considered it 
a good reference classification to test the performance 
of clustering algorithms.1 The G-proteins datasets 
consists of 252 protein sequences belonging to 
6 classes, include G protein alpha G(12), G protein 
alpha G(i/o/t/z), G protein alpha G(q), G protein alpha 
G(s), G protein alpha other.

Dataset C. The CAZy (carbohydrate-active 
enzymes)30 database describes the families of 
structurally-related catalytic and carbohydrate-
binding modules (or functional domains) of enzymes 
that degrade, modify, or create glycosidic bonds. 
Glycoside Hydrolases are a widespread group of 
enzymes which hydrolyze the glycosidic bond 
between two or more carbohydrates or between a 
carbohydrate and a non-carbohydrate moiety. The 
proteins belonging to the Glycoside Hydrolases 
families have multi-domain which are known to be 
hard to align and have not yet been definitively aligned. 
To evaluate the performances of clustering algorithms 
with multi-domain protein families, we select 
147 proteins belonging to the Glycoside Hydrolases 
family 8 as the test databases. In addition, we choose 
the 33 (α/β)8 barrel proteins, studied recently by Côté 
et al31 and Fukamizo et al,32 as another test dataset. 
The periodic character of the catalytic module known 
as “(α/β)8 barrel” makes these sequences hard-to 
align using classical alignment approaches.1

Dataset D. The SCOP (Structural Classification 
of Proteins)33 is a database of proteins of known 
structure, among which the structural and evolutionary 
relationship is comprehensively described. It has 

been organized in a hierarchy by manual inspection 
and used by a series of automated methods. The 
fundamental unit of classification is a domain in 
which the structure is determined experimentally. 
Above domain, the hierarchies of SCOP consist of 
Species, Protein, Family, Superfamily, Fold, Class, in 
turn. The proteins in a species are natural or artificial 
variants of a protein. The similar sequences of the same 
function are grouped into Proteins. A Family includes 
the proteins with related sequences but typically 
distinct functions. The structural and functional 
features of the proteins in same Superfamily suggest 
that a common evolutional origin is probable. Fold 
contains the protein with same characteristic features 
and similar structure, whereas proteins in the same 
class share the same secondary structures in same 
arrangement with the same topological connections. 
Because there are many domains in the SCOP dataset 
shared a very high degree of similarity, it is frequently 
helpful to reduce the redundancy for a further task. 
The ASTRAL34 compendium addresses this issue 
by selecting high-quality representative from the 
SCOP dataset according to different thresholds and 
measures of sequence similarity. We use the ASTRAL 
SCOP 1.71 with a threshold of 95%, which means the 
domain sequences from this set share less than 95% 
identity to each other, as test data source. The test 
dataset selected randomly from ASTRAL consists of 
590 protein sequences from 5 superfamilies.

3. Results and Discussion
To illustrate the efficiency of our method, we tested 
AP algorithm with our similarity measure extensively 
on all the protein datasets above and compared it with 
several widely used clustering algorithms, CLUSS, 
BlastClust, TribeMCL, Spectral clustering. In order to 
display the influence of different similarity measures, 
we performed tests on all datasets using three measures, 

Table 2. Evaluation of protein clustering tools and similarity measures using F-measure.

BlastClust TribeMCL CLUSS Spectral Ap
+blast +SMS +ISMS +blast +SMS +ISMS

Cog 0.85 0.46 0.85 0.63 0.66 0.66 0.97 0.93 0.97
g-protein 0.60 0.40 0.73 0.60 0.54 0.63 0.72 0.68 0.73
gh8 0.75 0.79 0.51 0.54 0.57 0.55 0.67 0.80 0.83
SCoP 0.51 0.46 0.50 0.42 0.43 0.57 0.46 0.45 0.58
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which server as the input of Spectral clustering and 
AP algorithm. These measures include blast, which 
chose the negative logarithm of BLAST E-values as 
a similarity measure between two sequences, SMS 
and our similarity measure ISMS (improved SMS). 
In order to obtain the best possible performance of 
TribeMCL, we varied the input parameters, inflation, 
to evaluate the results on the same data. And the same 
things were done to BlastClust. Here we present the 
results of each algorithm obtained on all datasets of 
experiments in Table 2 and the obtained numbers of 
clusters in Table 3.

From Table 2 and Table 3, we can observe that the 
AP clustering with ISMS clearly outperforms the other 
methods. First of all, it detects a number of clusters 
which is close to the correct number of dataset. For 
instance, in G-protein dataset, AP+ISMS method 
detects 9 clusters; at the same time, BlastClust detects 
69 clusters, the TribeMCL detects 19 clusters, CLUSS 
detects 24 clusters and Spectral clustering detects 
15 clusters (Spectral + blast). On the other hand, the 
better quality of the clustering is quantified by the 
F-measure. For each of the protein dataset, the results 
in Table 2 show clearly that Affinity propagation 
obtained the best F-measure. In our experiments, on 
average, the value of the F-measure given by AP + 
ISMS is 15% better than BlastClust, 56% better than 
TribeMCL, 23% better than CLUSS, and 42% better 
than best results of Spectral clustering.

We also observe that using same similarity measure 
the AP achieves best cluster quantity. We first analyze 
the influence of similarity measure on clustering 
quality. For COG and G-protein datasets, AP algorithm 
gets almost same F-measure. The reason is that 
sequences in COG and G-protein datasets share high 
similarity which leads to similar similarity measures 
given by three methods. In fact, the strategy of blast 

to calculate the similarity bears some resemblance to 
the one of SMS. They also depend on the conserved 
segments between two sequences. The difference lies 
in that blast does not take into account the circular 
permutation and tandem repeats of segments. 
However, in COG and G-protein datasets, there are 
not these hard-to-align protein sequences. So blast 
and SMS tend to obtain similar similarities. As for 
ISMS, high similarities between sequences result in 
that the dissimilar parts between two sequences play 
little role in calculation of similarity. Consequently, 
three methods obtain the similar similarity measures. 
These results imply that it is AP algorithm that leads 
to better clustering quality.

While on GH8 dataset, AP algorithm gains better 
clustering quality using SMS and ISMS than blast. 
Because GH8 is a multi-domain protein family, 
similarity measures based on alignment, for instance, 
blast, cannot describe accurately similarity between 
sequences in this family. For sequences in SCOP 
dataset, which share low sequence similarity, ISMS 
which take into account homogeneous segment pairs 
and dissimilarity parts, will describe the similarity 
better than blast and SMS do. For datasets from 
SCOP, BlastClust and TribeMCL tend to create more 
clusters than reference clusters. We will analyze the 
reason from the algorithm point of view.

In BlastClust, two sequences are considered to 
be neighbored if their similarity is above a certain 
threshold. If a sequence is a neighbor to at least one 
sequence in a cluster, this sequence will be put into 
this cluster. Too many clusters achieved by BlastClust 
mean that the similarities of many sequences were 
not detected by blast. On the other hand, TribeMCL 
is based on random walks on the similarity graph, 
where a vertex represents a sequence and an edge 
connecting two vertices is weighted by the similarity 

Table 3. Clustering results of the dataset. Number of clusters obtained by clustering the protein sequences of 4 datasets (rows) 
with each of the clustering algorithms tested (columns). The last column represent the number of clusters of references sets.

BlastClust TribeMCL CLUSS Spectral Ap Dataset
+blast +SMS +ISMS +blast +SMS +ISMS

Cog 10 250 7 8 30 20 10 6 8 7
g-protein 69 19 24 15 21 21 9 8 9 6
gh8 39 39 58 3 10 19 5 3 3 11
SCoP 145 252 15 8 30 7 23 13 6 5
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Table 4. Clustering results of the 33 (α/β)8 barrel protein. Each of rows represent a 33 (α/β)8 barrel protein. The corresponding 
cluster obtained by Côté et al. and Fukamizo et al. is represented in the first column of the table as reference. The other 
columns correspond to the clustering results of tested algorithms. Each number in the table represents the corresponding 
cluster of the row’s protein sequence obtained with the column’s method. They are italic when they don’t correspond to 
reference classification. The symbol “/” means that the row’s protein sequence is unclustered.

protein 
sequences

côté 
Fukamizo

CLUSS BlastClust TribeMCL Spectral Ap

+blast +SMS +ISMS +blast +SMS +ISMS
gaEco 1 1 1 1 1 1 1 1 1 1
gaA 1 1 / 1 1 1 1 1 1 1
gaK 1 1 / 1 1 1 1 1 1 1
gaC 1 1 / 1 1 1 1 1 1 1
gaEcl 1 1 1 1 1 1 1 1 1 1
gaL 1 1 1 1 1 1 1 1 1 1

MaA 2 2 2 1 2 / 2 2 2 2
MaB 2 2 2 2 2 2 2 2 2 2
Mah 2 2 2 2 2 2 2 2 2 2
MaM 2 2 2 2 2 2 2 2 2 2
MaC 2 3 2 1 2 / 2 2 3 2
MaT 2 3 2 1 2 / 2 4 3 2

UnA 3 3 3 2 2 3 3 2 3 3
UnBv 3 3 3 2 2 3 3 2 3 3
UnBc 3 3 / 2 2 3 3 2 3 3
UnBm 3 3 3 2 2 / 3 2 3 3
UnBp 3 3 3 2 2 / 3 2 3 3
UnR 3 3 3 2 2 3 3 2 3 3

CsAo 4 4 / 1 2 / 4 2 4 4
CsS 4 4 4 1 2 / 4 4 4 4
Csg 4 4 4 1 2 4 4 4 4 4
CsM 4 4 4 1 2 4 4 4 4 4
CsN 4 4 / 1 2 4 4 4 4 4
CsAn 4 4 / 1 2 4 4 4 4 4
Csh 4 4 4 1 2 4 4 4 4 4
CsE 4 4 4 1 2 4 4 4 4 4

gIC 5 5 5 1 1 5 5 5 5 5
gIE 5 5 5 1 1 5 5 5 5 5
gIh 5 5 5 1 1 5 5 5 5 5
gIL 5 5 5 1 1 5 5 5 5 5
gIM 5 5 5 1 1 5 5 5 5 5
gIF 5 5 5 1 1 5 5 5 5 5
gIS 5 5 5 1 1 5 5 5 5 5
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between these two vertices. A random walk on a 
graph is a stochastic process which randomly jumps 
from vertex to vertex. The idea of the TribleMCL 
algorithm is that, if the random walks can somehow 
be biased, say by pruning weak edges (low 
weight) and reinforcing strong edges (high weight) 
simultaneously, clusters may emerge from the graph. 
Formally, the transition probability of jumping in one 
step from vertex i to vertex j is proportional to the 
edge weight wij. Creating too many clusters means 
that, for the sake of similarities, random walks can 
not jumps from some vertices to other vertices which 
are in same reference cluster. Therefore, from the 
results of BlastClust and TribeMCL, we can imply 
that Blast is not capable to detect the similarities 
between sequences in the SCOP. SMS also can 
not effectively describe the similarities between 
sequences in the SCOP, which can be confirmed by 
the fact that Spectral clustering and AP achieve almost 
same F-measure when using Blast and SMS measure, 
respectively. However we obtain an improvement of 
F-measure when Spectral clustering and AP apply 
ISMS to measure the sequence similarities. These 
results provide good evidences supporting our points 
that ISMS can measure similarities more accurately 
than Blast and SMS do on condition that sequence 
similarities is low.

The experimental results for 33 (α/β)8 barrel 
proteins with the different algorithms are summarized 
in Table 4, which shows the cluster correspondence of 
each of the sequences by algorithm used. The 33 (α/β)8 
barrel proteins are subdivided by Affinity propagation 
with ISMS as the input into five subfamilies, 
corresponding to their known biochemical activities. 
Further, in contrast with other algorithms, Affinity 
propagation algorithm with ISMS classified all the 33 
(α/β)8 barrel proteins in the same subfamilies obtained 
by Côté, et al. The first cluster includes enzymes with 
“b-mannosidase” activities; the second cluster includes 
enzymes with “b-mannosidase” activities; the third 
cluster includes enzymes with “b-glucuronidase” 
activities; the forth cluster includes enzymes with 
“b-galactosidase” activities; the fifth cluster includes 
enzymes with “exo-b-D-glucosaminidase” activities. 
While the other algorithms do not succeed to obtain 
clustering results that correspond to the functional 
classification of 33 (α/β)8 barrel proteins. Since, 
CLUSS has classified the two proteins MaC and MaT 

with wrong cluster. As for BlastClust and TribeMCL, 
there are a number of proteins which could not be 
classified by BlastClust, and a number of proteins 
which were wrongly classified by TribeMCL. These 
results show the superiority of our method over other 
algorithms. When we take the similarity matrices 
obtained by our method ISMS as the input of Spectral 
clustering (8th column, Table 4), this algorithm can also 
group proteins into correct cluster. In addition, there 
are also a few proteins are classified to wrong cluster 
when using Spectral clustering and AP algorithm with 
blast and SMS similarity as input. These results show 
that our method can estimate the similarity between 
two proteins more accurately than other methods 
do. That is to say, ISMS more accurately highlights 
the characteristics of the biochemical activities and 
modular structures of the clustered protein sequences 
than do other similarity measure.

4. conclusions
Clustering of protein sequences into correct 
evolutionary related protein groups using only sequence 
information is a difficult problem. In this paper, we 
have proposed an improved similarity measure ISMS 
based on which we group the protein sequences using 
Affinity propagation algorithm. We have compared 
the results obtained by AP algorithm with those 
obtained by BlastClust, TribeMCL, CLUSS and 
Spectral clustering on extensive datasets. The AP 
algorithm used jointly with ISMS yields an improved 
performance over the other methods in terms of the 
quality of the clusters as measured by the F-measure. 
Moreover, the number of clusters returned by the AP 
algorithm with ISMS is in general much closer to 
the correct one than the one returned by the other 
methods. Moreover, using the similarities estimated 
by ISMS on 33 (α/β) 8-barrel proteins dataset, Spectral 
clustering and AP all retain the correct clusters. This 
means that our improved similarity measure reflects 
biologically correlation between two sequences than 
the other measures do.
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