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Abstract: Achievement of the best balance between the accuracy and efficiency is always an important issue when searching a tree 
space of large data sets. In the 5th issue in 2009, Rodrigo et al used bootstrapped topologies as fixed genealogies to distribute an MCMC 
analysis across a cluster of computers, resulting in an efficiency yielding results 37 times faster than in the standard MCMC methods. 
Tree searches can seldom be guided with certainty, so that such snapshots sampling partial but “more-likely” tree space facilitated by 
parallel programs on computer clusters may provide great promise among a few choices that are computationally affordable when tree 
space is large and complicated.
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The technical task underlying the reconstruction of 
phylogeny and evolutionary history centers on the 
location and evaluation of the globally optimal or 
best-scoring tree(s) according to an optimality crite-
rion. This search occurs within a tree space composed 
of every possible relationship among sampled genes 
or organisms. In theory, one could simply perform an 
exhaustive evaluation of every tree in the corre-
sponding tree space. However, the number of trees 
increases tremendously as the number of sampled 
taxa increases, rapidly making exhaustive enumera-
tion of a tree space computationally expensive. For 
more than trivial levels of taxon sampling, exhaus-
tive search is a mission impossible for even the most 
powerful computers.1 Thus, the development of 
methods for analysis of large data sets is a challenge 
within computer science, but it is much more than 
that: it is vital for the future progress of taxonomy, 
for predicting gene function and functional residues, 
and for classifying environmental DNA sequences.

Methods arising from diverse philosophies (e.g. 
parsimony, likelihood, and Bayesian) have featured 
strengths and suffered from weaknesses in stochastic 
algorithmic searches for the best-scoring trees in 
tree space. Even for small data sets, use of tradi-
tional and Bayesian approaches to inferring phylog-
eny have distinct algorithmic consequences.2 For 
inference of phylogeny from large data sets, one of 
the core algorithmic challenges faced has been bal-
ancing the need to arrive at the tree that best reflects 
the evolutionary history with the speed to find the 
best score or to estimate robustness of a phylogeny 
in the shortest time. Methods such as the Parsimony 
Ratchet,3 FastTree,4 MrBayes,5 PHYML,6 fastDNAml,7 
and RaxML8,9 that are still themselves evolving, have 
become popular to infer phylogeny from data sets 
incorporating extensive taxon sampling, and perfor-
mance of some of these methods has been evalu-
ated on both synthetic and real data alignments.7,8 

As the gathering of data accelerates, the memory 
and CPU requirements of previous approaches are 
becoming prohibitive; current Maximum Likeli-
hood (ML)-based tree reconstruction programs can 
make reasonable tree topology inferences from data 
sets encompassing up to thousands of sequences of 
a few genes.9 With the current rapid improvement in 
sequencing throughput, larger and larger data sets 
with thousands of distinct sequences are imminent 
(Table 1). For example, in the iPlant collaborative 
(http://iptol.iplantcollaborative.org), a phylogeny of 
approximately 500,000 organisms is targeted. This 
size of analysis will require at the very least an order 
of magnitude improvement in the throughput of cur-
rent computational methods. How might we possi-
bly achieve these goals?

The most promising methods will take advantage 
of both algorithmic finesse and technical advances 
in parallel computing. Some programs for phylo-
genetic inference support parallel computing.5,7,8 
Among them, Bayesian Markov chain Monte Carlo 
(MCMC) sampling as in MrBayes has become increas-
ing popular as a rapid method that both estimates 
an optimal topology and supplies measures of con-
fidence in individual nodes in comparatively short 
computation time. While Bayesian posterior proba-
bilities have come to be interpreted as upper bounds 
of nodal support, bootstrap proportions are com-
monly interpreted as lower bounds of node reliability. 
One recent hybrid algorithm to evaluate the robust-
ness of  large phylogenies supplied bootstrapped data 
matrices to MrBayes, yielding a “Bayesian boot-
strap proportion” support value for each branch.10 
Although no research yet has established the map-
ping between the distribution of the most likely 
topologies based on an empirical dataset and the dis-
tribution of optimal topologies from bootstrapped 
character matrices, several studies have revealed 
strong correlations between posterior probabilities, 

Table 1. The largest taxon-sampling phylogeny deposited at TreeBase each year from 1999 to 2009 (data kindly provided 
by Dr. William Piel at www.treebase.org). Size of data alignments (number of characters) was provided correspondingly.

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Number of  
sampled taxa

131 160 318 154 233 329 330 295 400 574 375

Alignment  
length (nchar)

897 3453 1434 317 357 1711 142 829 781 844 4714 
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Bayesian bootstrap proportion, and ML bootstrap 
support.11,12

On page 97–105 in the 5th issue in 2009, Rodrigo 
et al13 introduced an alternative way to combine 
bootstrapping and Bayesian MCMC—an approach 
using bootstrapped topologies as fixed genealogies 
to distribute the MCMC analysis with coalescent 
models across a cluster of computers. Instead of per-
forming a heuristic MCMC search of the tree space, 
a set of Maximum Likelihood bootstrap trees were 
generated and parallelized onto a number of CPUs 
as fixed topologes for MCMC sampling of posterior 
probability based parameters against the data set. 
They described a computational efficiency yielding 
results 37 times faster than in the standard MCMC 
methods for achieving stationarity, facilitating esti-
mation of the target posterior probability for large 
sample sizes. In the paper this idea was credited to 
Felsenstein, who actually argued that the bootstrap 
histories are not guaranteed to be the “more likely” 
histories in any technical sense, and pointed out 
zero-length branch issues raised by the bootstrap-
ping approach.14 It would be interesting to see how 
well the approach functions on data sets simulated 
with slow, fast, or mixed evolutionary rates, particu-
larly assessing the extent of the diversity of boot-
strap trees generated. In this context, tree space is 
being explored by evaluating the bootstrap trees, but 
in principle, trees should be accepted only by the 
evaluation of optimality criteria on data. In practice, 
data consisting of characters that lead to unresolved 
phylogenies with low-confidence or “not likely” 
bootstrap histories usually are of little interest for 
phylogenetics. However, bootstrap support has served 
as the most common estimator of node confidence in 
published phylogenies, and bootstrap trees have been 
successfully specified as starting trees for maximum 
likelihood analyses on large datasets. For example, 
a recent plant phylogeny analysis with more than 
4000 species in taxon sampling and over 100 mega-
bases in sequence data was aided by this approach.15 
One hopes that it is safe to say that bootstrap trees 
constitute an assemblage of “more likely” histories—
at least for informative data. Informative data fea-
tures signal for the historical epoch under study 
without also imposing a burden of noise. Many phy-
logenetic studies select their data based on personal 
or second-hand experiences and referenced studies. 

More recently, direct measures of data quality or 
potential phylogenetic informativeness are begin-
ning to become available.16 However, good data 
will still not guarantee that bootstrap sampled trees 
locate preferentially to peaks of likelihoods in the 
tree space—Bootstrap trees can be seen as hurried—
yet probably still not quick enough—snapshots of 
the tree space, from a platform floating up and down 
as columns of the data set are being resampled and 
replaced.

Aside from selecting informative data and having 
access to a computational cluster, using the approach 
of Rodrigo et al on real data sets will require further 
decisions regarding some issues of technique, such 
as the heuristic searching criteria to be used for boot-
strapping, the number of bootstrap trees to be gener-
ated, and how to deal with short or zero branches in 
bootstrap trees. An alternative would be to separate the 
tree-generation and parameter-MCMC and analyze in 
parallel the posterior trees generated with Bayesian 
approaches, but such an approach is unlikely to be 
realistic for large data sets, considering the uncer-
tainty in the amount of time to reach the stationarity.

As the authors pointed out, there is always a trade-
off between efficiency and accuracy when researchers 
deal with large data sets. Their approaches took good 
advantage of cluster computation, greatly improving 
computational efficiency without sacrificing much 
accuracy of estimation. A similar approach might also 
increase the efficiency of analyses of multilocus data 
by parallelization of STEM, BEST and other recently 
developed gene trees to species trees methods.17–19 
Each gene set could be analyzed in parallel, then 
compiled into a set of fixed topologies to be analyzed 
as concatenated data on computer clusters for species 
trees. In photography, a snapshot camera is typically 
programmed to achieve a deep depth of field and high 
shutter speed so that as much of the image is in focus 
as possible, providing well-resolved images that 
nevertheless depict only part of the story underlying 
large and chaotic scenes. As the phylogeny can seldom 
be guided with certainty and Bayesian methods can 
in principle integrate over a suite of genealogies to 
recover a posterior probability distribution, snapshots 
of tree space followed by MCMC parallel analyses 
may provide great promise among a few choices that 
are computationally affordable when tree space is 
large and complicated.
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