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enhanced expression of Radiation-induced Leukocyte 
CDKN1A mRNA in Multiple primary Breast cancer patients: 
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Abstract: This study was designed to discover blood biomarkers of cancer susceptibility using invasive multiple (n = 21), single 
primary breast cancer (n = 21), and control subjects (n = 20). Heparinized whole blood was incubated at 37 °C for 2 hours after 0–10 Gy 
of radiation, then cell cycle arrest marker CDKN1A and apoptosis marker BBC3 mRNA were quantified. This epidemiological study was 
practically feasible because radiation-induced mRNA was preserved for at least 1 day whenever blood was stored at 4 °C (r2 = 0.901). 
Moreover, blood could be stored frozen after radiation treatment (r2 = 0.797). Radiation- induced CDKN1A and BBC3 mRNA were dose 
dependent, and the degree of induction of CDKN1A was correlated with that of BBC3 (r2 = 0.679). Interestingly, multiple primary cases 
showed higher induction of CDKN1A mRNA than single primary and control groups, whereas BBC3 did not show such differences. 
The results suggested that cancer susceptibility represented by the multiple primary breast cancer cases was related to over-reaction of 
CDKN1A mRNA, not BBC3. The study also suggests that ex vivo gene expression analysis could potentially be used as a new tool in 
epidemiological studies for cancer and radiation sensitivity research.
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Introduction
An alteration of DNA functions either by mutation 
or epigenetic changes is considered to play a crucial 
role in cancer development. Each cell in our body fre-
quently encounters various challenges of DNA altera-
tions, but our cells repair these problems appropriately 
without inducing cancer or precancerous status in 
most cases. For sporadic cancer cases, agents caus-
ing DNA alterations may be too strong or persistent 
beyond such repair functions in the target cells, how-
ever, for high cancer risk individuals, it is reasonable 
to speculate that such repair function may be weak or 
altered congenitally or secondarily by acquired status. 
In fact, poor DNA-damage-response in ataxia telan-
giectasia,1 is known to be associated with the devel-
opment of cancer, and this hereditary cancer risk is 
related to the mutation of transcription factor tumor 
protein p53 (FLJ92943, LFS1, p53, TRP53) (TP53 
is an offical name).2 Mutation of TP53 is also found 
frequently in many types of cancer cells,3 and single 
nucleotide polymorphism (SNP) of TP53 is now con-
sidered as one of risk factors of cancer susceptibility.4

The primary function of DNA is to transcribe 
appropriate mRNA. If DNA function is critically 
altered either by mutation or epigenetic changes, 
the resultant mRNA may be altered. Since TP53 is 
known to activate cyclin-dependent kinase inhibitor 
1A (p21, Cip1) (CDKN1A is an official name)5 and 
BCL2 binding component 3 (JFY1, PUMA) (BBC3 is 
an official name) mRNAs,6–8 we thought in this study 
that the function of TP53 would be assessed quanti-
tatively by measuring the induction of these genes. 
Although many hot spots of SNP were identified on 
TP53, each SNP is not always linked to the function 
of the gene. The mRNA assay has clear advantages 
over SNP because it is applicable as a screening tool 
beyond previously identified hot spots on TP53, and 
provides quantitative results.

Radiation-induced DNA damage was extensively 
studied using human peripheral blood lymphocytes, 
and various mRNAs were identified as potential 
biomarkers for cancer susceptibility as well as an 
assessment of individual radiation sensitivity.9–13 Our 
group has also been focused on the quantification 
of DNA-damage response using a unique method 
we developed,14 and found that CDKN1A and BBC3 
were the most sensitive and universal marker mRNA 

for DNA damage in human whole blood.15,16 In this 
study, this assay was used to characterize cancer sus-
ceptibility, although we do not know the results in 
blood samples are representative to other tissues. We 
chose multiple primary cancer cases as a model of 
cancer susceptibility.

Materials and Methods
subjects
Preliminary studies (Fig. 1) were carried out using 
blood samples collected from healthy adult donors 
(APEX Research Institute, Tustin, CA, institutional 
review board (IRB)-approved). Informed consent 
was obtained from each donor, and only limited 
demographic information (gender, age, and ethnicity 
only) was provided to us. For epidemiological stud-
ies (Figs. 2–4), the study protocol was approved by 
another IRB (University of California, Irvine (UCI)). 
We identified 38 breast cancer cases from the local 
cancer registry who were diagnosed with invasive 
multiple primary breast cancer (MP). The number 
of cases who were eligible and agreed to partici-
pate in the study was 21 cases. We then used their 
characteristics to choose single primary cases (SP) 
(n = 21) and unaffected control (UC) (n = 20) who 
were matched for age and ethnicity (Table 1). After 
informed consent was obtained, blood samples were 
collected by clinical nurses who went to their home 
for the blood collection and to fill out a questionnaire. 
Blood samples were drawn in 2 tubes, one for a com-
plete blood count, and the other for mRNA analysis. 
Blood samples were immediately transferred at 4 °C 
to the laboratory. After radiation treatment (cesium-
137, at Radiation Oncology, UCI) on the same day 
of blood draw, these samples were incubated at 37 °C 
for 2 hours, then stored frozen at -80 °C.

mrnA analysis
The mRNA and cDNA were prepared from whole 
blood as shown previously,14–18 where 50 µl of blood 
samples were dispensed into 96-well filterplates to 
collect leukocytes. Sixty µl of lysis buffer containing 
a cocktail of specific reverse primers was applied to 
the wells in the filterplate, and the resultant cell lysates 
were transferred to oligo(dT)-immobilized micro-
plates (GenePlate, RNAture) for poly(A)+ mRNA 
purification. The cDNA was directly synthesized in 
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30 µl solutions at each well: specific primer-primed 
cDNA in the liquid phase and oligo(dT)-primed 
cDNA in the solid phase. Four µl cDNA solution was 
used for TaqMan PCR (Applied Biosystems),19 and 
SYBR green PCR (Bio-Rad).20 Each gene was ampli-
fied individually. The cycle threshold (Ct), which 
was the cycle of PCR to generate certain amounts of 
PCR products (fluorescence), was determined using 
analytical software (SDS, Applied Biosystems). The 
Ct values of radiation-treated triplicate (Fig. 1) or 
quadruplicate (Figs. 2–4) samples were subtracted by 
the mean Ct values of control samples (37 °C incuba-
tion without radiation treatment) to calculate ∆Ct, and 
the fold increase was calculated as 2^(-∆Ct). Primers 
and TaqMan probes were published previously.14–17

Results
As shown in Figure 1A, radiation response was pre-
served for at least 1 day whenever whole blood was 
stored at 4 °C (r2 = 0.901, n = 54), although such function 
was reduced significantly after 2 days (data not shown). 
Furthermore, radiation-induced mRNA expression 
was maintained even when whole blood was stored 
frozen after radiation treatment (r2 = 0.797, n = 54) 

(Fig. 1B). These results made epidemiological studies 
feasible, because blood samples were collected one at 
a time over several months, then mRNA assay was 
performed simultaneously to minimize the cost and 
labor of the experiment as well as to avoid assay-
to-assay variation. The fold increase of β-actin (ACTB) 
mRNA was all less than 1.5 (Figs. 1AB, •), suggesting 
that the experiments were performed appropriately. 
Time course and dose responses of radiation-induced 
CDKN1A and BBC3 were previously published.15

As shown in Figures 2 and 3, radiation induced both 
CDKN1A and BBC3 mRNA in a dose dependent manner, 
and the degree of induction of CDKN1A was correlated 
with that of BBC3 (r2 = 0.679, n = 62), although some 
discrepancy was found between 2 genes (Fig. 2). The 
leukocyte counts (6,300 ± 1,209 (MP), 5,580 ± 1,710 (SP), 
5,230 ± 1,290 (UC), respectively) and demographic 
characteristics (Table 1) among 3 groups were not sta-
tistically significant. Although no significant difference 
was found among MP, SP, and UC for BBC3 mRNA 
(Fig. 3B), CDKN1A in MP was significantly higher than 
SP and UC in all doses of radiation (0.1, 1, and 10 Gy) 
(Fig. 3A), except MP versus SP at 1 Gy, where 3 indi-
viduals in SP showed very high fold increases. If these 
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Figure 1. Validation of assay condition. A) Blood storage at 4 °c. B) Applicability of frozen whole blood. heparinized human blood samples were 
collected from 6 adult donors (APeX research Institute), and were stored at 4 °c for 4–6 (Day 0), 24 (Day 1), or 48 hours (Day 2). Blood samples were 
then stimulated with 10, 1, 0.1 and 0 gy of radiation (cesium-137) in triplicate, followed by the incubation at 37 °c for an additional 2 hours. One set of 
samples was stored at -80 °c, and the other set was processed immediately without freezing procedure. Frozen samples were analyzed 1 week later. 
ACTB (•), CDKN1A (○) and BBC3 (▲) mRNA were quantified as described in the Methods, and fold increase was calculated using the values of unex-
posed samples with 2 hours incubation. Blood volume used for each analysis was 150 µl (50 µl in triplicate), and each gene was amplified individually by 
TaqMan (CDKN1A and BBC3) or sYBr green (ACTB), respectively. symbols are the mean value from each subject.
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3 individuals were excluded, it was statistically significant 
(p = 0.005). Interestingly, more than 2 fold increase of 
0.1 Gy-induced CDKN1A was found in 3 (3/21 = 14.3%) 
and 4 (4/20 = 20%) individuals in SP and UC, respec-
tively, whereas such population was significantly higher 
in MP (12/21 = 57.1%) (p = 0.004 (MP vs. SP), p = 0.01 
(MP vs. UC) by χ2 test, respectively) (Fig. 3). Similarly 
at 1 Gy, 4 (SP) and 3 (UC) individuals showed more 
than 5 fold increase of CDKN1A mRNA, whereas it 
was 10 in MP (p = 0.05 (MP vs. SP), p = 0.02 (MP vs. 
UC), respectively) (Fig. 3). At 10 Gy, only 2 (SP) and 
3 (UC) individuals showed more than 10 fold increase 
of CDKN1A mRNA, whereas it was 9 in MP (p = 0.01 

(MP vs. SP), p = 0.05 (MP vs. UC), respectively) (Fig. 3). 
The immediate effect of chemotherapy may be excluded 
because blood was withdrawn at drug free period, and 
there was no significant difference between SP and UC 
at all doses of radiation (Fig. 3).

Furthermore, the data of 0.1 Gy of radiation were 
correlated with those of 10 Gy for both CDKN1A 
(r2 = 0.5801, n = 62) and BBC3 (r2 = 0.7147, n = 62), 
respectively (Fig. 4). Correlation between CDKN1A 
and BBC3 (Fig. 2) and 0.1 Gy and 10 Gy (Fig. 4) 
suggest that the variation of data are more likely to be 
derived from individual-to-individual variation, not 
assay techniques.
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Figure 2. CDKN1A versus BBC3. heparinized human whole blood samples from MP (n = 21), sP (n = 21), and Uc (n = 20) were stimulated with 0.1 (•), 
1 (×), and 10 Gy (○) of radiation in quadruplicate, and incubated at 37 °c for 2 hours. CDKN1A (x-axis) and BBC3 (y-axis) mRNA were then quantified and 
fold increase was calculated as described in the Methods. symbols are the mean value from each subject, and dashed line shows 45° angle.
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Figure 3. Mp versus sp versus Uc. The same data shown in Figure 2 were expressed differently by comparing MP, SP, and UC for each dose of 
radiation for both CDKN1A A) and BBC3 B), respectively. symbols are the mean value from each subject, and the bars indicate mean ± standard error of 
each group. statistical differences (t-test) were also shown.
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Discussion
Radiation-induced CDKN1A and BBC3 mRNA were 
well-known evidence, not new to this study. The 
uniqueness of this study was to characterize individual-
to-individual variation of this response quantita-
tively, and found that MP showed higher induction of 
CDKN1A mRNA than SP and UC. This was confirmed 
by both t-test and non-parametric χ2 test. Although a 
variety of parameters is available for the assessment 
of cancer susceptibility or cancer risk, which includes 
family history, environmental exposure, diet, smok-
ing, etc., we thought in this study that the patients 
having multiple primary cancers (not metastasis) 
(MP) in their life time would be considered as the 
cases of cancer susceptibility, especially when blood 
was tested after second or third cancers. The number 
of subjects in this study was limited, however, such 
small number was justified by the fact that we only 
found 38 MP in local cancer registry, and 21 subjects 
(21/38 = 55%) were successfully recruited. It was not 
easy to expand the territory beyond our local cancer 
registry, because we had to dispatch nurses to their 
home, and bring blood samples back to our laboratory 
on the same day for subsequent 2 hours’ incubation as 
described in Methods.

The measurement of mRNA from human whole 
blood requires multiple labor-intensive steps including 
leukocyte isolation, mRNA purification, and cDNA 

synthesis, and tiny variation in any step introduces a 
huge variation after exponential amplification of the 
target genes. Thus, the technical fluctuation of the assay 
itself must be substantially smaller than that of indi-
vidual human variation. Although many studies in RT-
PCR and DNA microarray demonstrated the results in 
duplicate or triplicate, the starting materials were often 
derived from a single source of blood. In order to draw 
statistical conclusion in each stimulation, the starting 
materials in our assay were triplicate-quadruplicate 
whole blood samples for both untreated control and 
treated samples.14–18 Our platform demonstrated much 
smaller variation than other conventional methods, 
leading to identify as small as 50% changes as signifi-
cant results (see Fig. 3).15 As shown in Figure 1 and 
previous studies,14,18 synthetic poly(A)+RNA spiked 
into lysis buffer (external control) and reference gene 
β-actin (internal control) were rarely induced in our 
system, sugegsting that the false positive results are 
quite unlikely. Moreover, because each single blood 
sample becomes 16 aliquots (4 radiation doses × 
quadruplicate), high throughput 96-well format was 
fit nicely to manipulate 992 (62 subjects × 16) RNA 
preparations and cDNA syntheses, and 1,984 PCR 
(992 × 2 mRNAs).

Although the number of mRNA was limited 
to CDKN1A and BBC3 in this study, these 2 were 
selected as the most prominent and universal markers 
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Figure 4. 0.1 Gy versus 10 Gy. The data of CDKN1A and BBC3 at 0.1 gy were compared with those of 10 gy. A) CDKN1A, B) BBC3. •: MP, ∆: SP, ×: 
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Table 1. Demographic and tumor characteristics of recruited participants.

Mp*1 (n = 21) sp*2 (n = 21) Uc*31 (n = 20)
n (%) n (%) n (%)

Race/ethnicity
 nh White 20 (95.2%) 18 (85.7%) 20 (100.0%)
 hispanic 0 (0.0%) 3 (14.3%) 0 (0.0%)
 Asian 1 (4.8%) 0 (0.0%) 0 (0.0%)
Age now
 40–49.9 2 (9.5%) 1 (4.8%) 3 (15.0%)
 50–59.9 6 (28.6%) 8 (38.1%) 9 (45.0%)
 60–69.9 10 (47.6%) 10 (47.6%) 3 (15.0%)
 70–79.9 3 (14.3%) 2 (9.5%) 5 (25.0%)
Age @ Invasive Breast ca
 40–49.9 3 (14.3%) 4 (19.0%)
 50–59.9 7 (33.3%) 13 (61.9%)
 60–69.9 8 (38.1%) 4 (19.0%)
 70–79.9 3 (14.3%) 0 (0.0%)
stage of Invasive Breast ca
 Localized 13 (61.9%) 14 (66.7%)
 Lymph nodes 6 (28.6%) 7 (33.3%)
 Unknown 2 (9.5%) 0 (0.0%)
Histology of Invasive Breast ca
 Papillary ca 1 (4.8%) 0 (0.0%)
 Infiltrating Duct Ca 12 (57.1%) 17 (81.0%)
 Lobular ca 2 (9.5%) 2 (9.5%)
 Duct./Lob. ca 3 (14.3%) 2 (9.5%)
 Infilt Duct W/Other Ca 3 (14.3%) 0 (0.0%)
Years bet Invasive Breast and Other ca
 0–4.9 7 (33.3%)
 5–9.9 5 (23.8%)
 10–14.9 8 (38.1%)
 15–19.9 1 (4.8%)
Type Other ca (5 have 1 other ca)
 Ovary 2 (7.7%)
 Lung 2 (7.7%)
 Breast 4 (15.4%)
 endometrium 5 (19.2%)
 Thyroid 1 (3.8%)
 rectum 4 (15.4%)
 Melanoma 5 (19.2%)
 Lymph nodes 2 (7.7%)
 Kidney 1 (3.8%)

*1Multiple primary, *2single primary, *3Unaffected control.
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after screening experiments of 16 apoptosis-related 
mRNAs, including BAX, BAK1, BOK, BCL2L1, BAD, 
BID, BIK, BCL2L11, HRK, PMAIP1, BCL2, APAF1, 
SUMO1, DDIT3, BBC3, and CDKN1A.15 Further-
more, in addition to radiation, CDKN1A and BBC3 
were used as chemosensitivity markers for aclaru-
bicin, cytarabine, bleomycin, carboplatin, cisplatin, 
cyclophosphamide, daunorubicin, doxorubicin, fluda-
rabine, idarubicin, methotrexate, pirarubicin, vinblas-
tine, vincristine, vindesine, and etoposide.15,16

One of technical arguments regarding blood 
mRNA analysis was the stability of blood samples 
after blood draw. This is particularly important when 
blood is stimulated in vitro. In our previous study,14 
we reported that the levels of mRNA were quite stable 
whenever blood samples were stored at 4 °C. As shown 
in Figure 1, we also confirmed that in vitro functional-
ity in regard to radiation-induced CDKN1A and BBC3 
mRNA was maintained for at least 1 day whenever 
blood was stored at 4 °C. Whole blood stimulation 
without isolation of mononuclear lymphocytes also 
made this epidemiological study practically feasible.

We initially hypothesized that cancer susceptibility 
represented by MP might be linked to hypo-functions 
of CDKN1A and/or BBC3, because of the knowl-
edge of ataxia telangiectasia.1 However, surprisingly, 
the results were opposite as shown in Figure 3, and 
suggested that MP might be related to over-reaction 
of CDKN1A mRNA, not BBC3. Since CDKN1A is 
responsive for cell cycle arrest, which is a founda-
tion of various DNA repair mechanisms, such over-
reaction of CDKN1A may increase the chance of 
false reaction, whereas BBC3-inducing cells will die 
by apoptosis without carrying damaged DNA to the 
daughter cells. Both CDKN1A and BBC3 mRNA are 
controlled by the transcription factor TP53,1,21 and in 
fact, the fold increase of these 2 mRNA was correlated 
to each other. The discrepancy of CDKN1A and BBC3 
shown in MP may indicate an additional consideration 
into the TP53- CDKN1A- BBC3 axis. Our mRNA 
expression analysis should be supplemented in future 
studies by various downstream assays, such as pro-
tein synthesis of CDKN1A and BBC3, and detection 
of nuclear foci of the phosphorylated forms of histone 
H2AX (H2A histone family, member X) and ATM 
(ataxia telangiectasia mutated) kinase at sites of DNA 
double-strand breaks,22 although these assays are not 
immediately applicable to epidemiological studies.

Hyper-function of CDKN1A mRNA found in this 
study may be derived from SNP or epigenetic changes 
at the promoter regions of CDKN1A itself, TP53, or 
other related genes. Alternatively, it may be related 
to the strength or weakness of each individual’s anti-
oxidant activity. Cancer susceptibility represented in 
MP may be developed secondarily by previous che-
motherapy, not congenital factors. Thus, the pres-
ent study is an interesting screening tool for various 
downstream molecular and biochemical pathways, 
and is applicable to both inherited and acquired status. 
SNP is not curable, however, we found that the results 
of this functional assay might be modified by exercise, 
dietary supplements, experimental drugs, etc. (data not 
shown). Although we do not know whether a couple of 
individuals in UC and SP who show hyper-function of 
CDKN1A will develop new or another cancer in their 
lifetime, the present study will be a clue for future 
cancer susceptibility research and prevention as well 
as radiation sensitivity.
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