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Abstract: Microarrays are becoming a widely used tool to study gene expression evolution. A recent paper by Wang and Rekaya 
describes a comprehensive study of gene expression evolution by microarray.1 The work provides a perspective to study gene expression 
evolution in terms of functional enrichment and promoter conservation. It was found that gene expression patterns are highly conserved 
in some biological processes, but the correlation between promoter and gene expression is insignificant. This scope of this work and 
future improvement to study gene expression evolution will be discussed in this article.

Keywords: microarray, data analysis, gene expression evolution, normalization, function enrichment

http://www.la-press.com
http://www.la-press.com
http://www.la-press.com


Lin

212 Gene Regulation and Systems Biology 2009:3

The advance of microarray technology enables scientists 
to monitor the expression profile of thousands of genes 
simultaneously, making it a possible tool to study trans
criptome evolution. Microarrays have been widely 
used to study expression relationship between humans 
and other organisms.2–6 The rationale behind these 
studies is that orthologous tissues carry out similar 
physiological functions, which suggests that they are 
likely to have similar expression profiles. In partic
ular, the expression profile should be conserved for 
functionally important genes.

A recent paper by Wang and Rekaya describes a 
comprehensive study of gene expression evolution 
between humans and mice.1 Two human/mouse gene 
expression data sets2,7 and one yeast expression data 
set8 were analyzed. The expression similarity was 
measured by two methods, relative abundance (RA)5 
and all onetoone ortholog pairs.9 Significant expres
sion conservation was observed between functional 
related genes in terms of gene ontology (GO). Such 
conservation could be found in both related species 
(human vs. mouse) and distant species (human vs. 
yeast). The authors proposed that events like gene 
duplication and speciation might result in conservation 
loss. Expression conservation is not solely dependent 
on the degree of sequence identity or evolutionary 

divergence time.1,9 Similar results were also observed 
in previous studies.4–6 It should be noted that GO is 
not always be the only or most appropriate source of 
gene functional annotation. Knowledge from other 
sources, such as DAVID,10 Pfam,11 and UniProt,12 
might be adopted in the future study.

Wang and Rekaya also investigated the correlation 
between promoter sequences and gene expression 
based on global alignment, local alignment and 
motifcount. Weak correlation was observed between 
humans and mice. Such correlation, however, was 
not observed between humans and yeast, suggesting 
different regulatory mechanisms might be involved 
in these two species.1 Moreover, promoter function is 
highly context dependent, which limits the capability 
of homology search for functional annotation.13 
Duplication and transposition of DNA motifs might 
also result in promoter mutations together with 
nucleotide mutations.1

The expression divergence between species is 
likely to be overestimated due to various factors. The 
expression of each gene is usually interrogated by 
multiple probes called a probeset. The intensity signals 
from each probe in a probeset are then summarized 
to obtain the overall expression measurement for 
the gene.14–16 Different probesets for the same gene 
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Figure 1. A flowchart of typical steps involving in microarray data analysis of gene expression evolution.

http://www.la-press.com


Analysis of gene expression evolution

Gene Regulation and Systems Biology 2009:3 213

in different species might have different sensitivity, 
which might result in low correlation of expression 
profiles for between-species comparison.5 It was esti
mated that the measurement error is likely to be 
attributable to the majority of expression divergence 
observed in microarray data.5 Liao et al. introduced 
relative abundance (RA) to measure the relative 
expression level of a gene in a given tissue among the 
sampled tissues, which showed better performance 
than using gene measurement alone.5 The method 
was also adopted in Wang and Rekaya’s study, and 
succeeded in identifying highly conserved functional 
groups. Other factors, such as DNA methylation, 
RNA alternative splicing, and transcription factor 
coevolution, could also affect gene expression.13,17 
Crosshybridization is another cause attributable to the 
inaccurate signal measurement. Some studies found 
that excluding suboptimal probesets would reduce the 
effects of crosshybridization,18 although its signifi
cance is still controversial.5 Gene expression profiling 
is usually studied under different experimental con
ditions, cell types, and development stages, resulting 
in divergent sets of genes expressed. A subset, such 
as a pathway, could be studied, instead of the whole 
sets of unrelated microarray data, to avoid the overall 
complexity.4,19

Systematic bias might be introduced during the 
preparation of sample libraries, hybridization, or 
image scanning. Proper normalization is thus an essen
tial step in gene expression evolution study. The sim
plest normalization method is to adjust array signals 
according to the global signal median, which would, 
on the other hand, result in local intensity bias. 
Lowes normalization is a widely used normalization 
method. It applies a locally weighted linear regres
sion to eliminate intensitydependent local biases, 
making it robust to outliers.20 Quantile method nor
malizes the distribution of probe intensities across 
different arrays to a baseline, usually the sample with 
median intensities. In practice, quantile normaliza
tion is recommended to be used for gene expression 
evolution due to its low variance and bias.21 A flow
chart of typical steps involving in microarray data 
analysis of gene expression evolution is shown in 
Figure 1.

Overall, the work by Wang and Rekaya provides 
a functional significance approach to investigating 
gene expression evolution between humans and mice. 

Coupled with technologies to alleviate the negative 
effects from experimental variation, cross hybridiza
tion and systematic bias, microarray would become a 
powerful tool to study gene expression evolution.
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