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Abstract: Melanoma antigen family (MAGE) genes are widely expressed in various tumor types but silent in normal cells except 
germ-line cells lacking human leukocyte antigen (HLA) expression. Over 25 MAGE genes have been identified in different 
tissues, mostly located in Xq28 of human chromosome and some of them in chromosome 3 and 15, containing either single or 
multiple-exons. This in silico study predicted the genes on hTERT location and identified a distant relative of MAGE gene located on 
chromosome 5. The study identified a single exon coding ∼850 residues polypeptide sharing ∼30% homology with Macfa-MAGE E1 
and hMAGE-E1. dbEST search of the predicted transcript matches 5' and 3' flanking ESTs. The predicted protein showed sequence 
homology within the MAGE homology domain 2 (MHD2). UCSC genome annotation of CpG Island around the coding region reveals 
that this gene could be silent by methylation. Affymetrix all-exon track indicates the gene could be expressed in different tissues 
particularly in cancer cells as they widely undergo a genome wide demethylation process.
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Introduction
Human telomerase, a cellular reverse transcriptase, 
is a ribonucleoprotein enzyme that catalyzes the syn-
thesis and extension of telomeric DNA.1 Telomerase 
activity appears to be associated with cell immortal-
ization and malignant progression.2 Usually human 
telomerase is found in hemopoietic and in germ cells 
but not in normal somatic cells. Active telomerase is 
one of the key factors that enable malignant cells to 
proliferate indefinitely.3 However, molecular mecha-
nisms triggering various telomerase activities still 
remain elusive.

In this post-genomic era, in silico techniques 
for gene finding process or identifying the loca-
tion of the protein-coding regions (ORF), within 
uncharacterized genomic DNA sequences, consti-
tute a central issue in the field of bioinformatics4 
and are of much interest to biologists. A number 
of computational techniques for the prediction of 
distinctive features of protein-coding regions have 
been proposed along with the standard molecular 
methods. In general, the two main approaches of 
structural gene prediction are intrinsic (based on 
statistical properties of exons, splice sites, and 
other signals) and extrinsic (based on homology 
with known genes).5

In this study, the human chromosome 5p13.1–p15.33 
region containing the telomerase (hTERT) gene was 
investigated by using both intrinsic and extrinsic 
method of gene prediction. In addition to hTERT ORF, 
two additional ORFs named gene2 and gene3 were 
identified. Interestingly, predicted gene2 revealed sig-
nificant sequence homology with human tumor specific 
antigen, melanoma antigen family gene (MAGE), E1.

Materials and Methods
Complete sequence of human telomerase reverse 
transcriptase (hTERT) was retrieved from NCBI 
(gi:82399156, Accession no. DQ264729.1).

In silico identification of ORFs
The coding sequences of hTERT were identified 
using NCBI’s ORF Finder (http://www.ncbi.nlm.nih.
gov/gorf). The sequence (DQ264729.1) was further 
analyzed using various ab initio gene finding programs 
(GENSCAN, FGENESH and AUGUSTUS) and by 
comparative gene prediction (TWINSCAN) methods. 
The genomic location of the hTERT was studied 

using the UCSC Genome browser (http://genome.
ucsc.edu/cgibin/hgGateway). This browser was also 
used to identify the CpG Island track and EST’s 
around the predicted ORF. The 5'-UTR of the 
predicted transcription start site (TSS), the start codon 
and the 3'-UTR, 1000 bp downstream from the stop 
codon were searched using BLASTn, against the EST 
database (dbEST).

homology study of the predicted oRFs
The homologous sequences of the predicted genes 
were identified from successive iterations using 
PSI-BLAST. Multiple sequences were aligned using 
ClustalW (1.83) (http://www.ebi.ac.uk/tools/clustalw). 
Secondary structure of the predicted gene2 was 
analyzed using the program Hierarchical Neural 
Network (HNN: http://www.expasy.org/tools/). The 
repeated pattern motifs were analyzed using the 
program Rapid Automatic Detection and Alignment 
of Repeats RADAR (http://ebi.ac.uk/radar/).

Comparative genomics analysis  
of the predicted gene2
Global alignment of the coding sequence of gene2 
with Chimpanzee (Pan troglodytes) and Orangutan 
(Pongo pygmaeus-abelii) genomic sequence was 
performed with the program AVID using a window 
size of 100 bp and a conservation level of 70%. Results 
were viewed with the program VISTA.6 Finally, 
the nucleotide sequence of the Chimpanzee TERT 
(Pan troglodytes chromosome 5 genomic contig, 
reference assembly, Accession no. NW_001235370, 
region: 211936-253254) was further analysed by using 
GENSCAN to confirm the presence of conserved 
gene2 in Chimpanzee genome.

prediction of the function of the gene2
The function of gene2 was predicted using two protein 
function prediction program PFP7 and SVMProt.8 For 
comparative analysis, function of MAGE-E1 was also 
predicted using these two programs.

Result and Discussion
Table 1 showed the gene prediction analysis of hTERT 
by different programs. GENSCAN9 had predicted 
4 genes within the same hTERT location. Interestingly, 
apart from the known hTERT splice variant (gene1 
and gene4 on the +strand), this program also predicted 
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Table 1. summary of the gene prediction analysis result of gene2 and gene3.

Gene prediction  
Program

predicted  
Genes

strand Features start end

GenscAn gene2 Complement promoter 9515 9476
Initial exon 9155 9102
Internal exon 7861 5671
Terminal exon 5518 5064
poly A site 4718 4713

gene3 Complement promoter 16734 16116
Initial exon 16386 16116
Internal exon 14465 13849
Terminal exon 13831 12458
poly A site 9749 9744

AUGUsTUs gene2 Complement CDs 7869 5617
gene3 Complement CDs-1 14225 13860

CDs-2 13689 12469
FGENESH gene2 Complement Tss 9618 9618

exon-1 7858 5606
poly A site 4723 4723

gene3 Complement Tss 16699 16699
exon-1 16195 16116
exon-2 13907 12458
poly A site 11428 11428

TWInscAn gene2 Complement exon-1 7858 5606
gene3 Complement Initial exon 16386 16116

Internal exon 14465 13849
Terminal exon 13831 12458

ORF Finder gene2 Complement oRF in  
Frame-2

7858 5606

gene3 Complement oRF in  
Frame-3

13122 12106

two additional genes in the reverse strand, namely 
gene2 (9155–5064 bp) and gene3 (16386–12458 bp) 
both of which consists of 3 exons. AUGUSTUS10 also 
identified two genes in the reverse strand at a slightly 
different location- gene2 (7869–5617 bp) consists of 
a single exon whereas gene3 (14225–12469 bp) con-
sists of two exons. The predicted genes in the reverse 
strand were confirmed by the FGENESH and ORF 
Finder. Homology-based program TWINSCAN11 also 
predicted two reverse strand genes in the same way as 
FGENESH and ORF Finder (Table 1).

In UCSC genome browser, two different gene pre-
diction tracks NSCAN and GeneID also predicted 

the location of the gene2 and gene3 (Fig. 1). 
Tissue-specific expression pattern of the predicted 
genes was hypothesized by observing Affyme-
trix all-exon track. The genome browser also pre-
dicted the CpG island around the predicted genes. 
A good number of ESTs were identified at the 5' 
and 3' flanking regions for both the predicted gene2 
and gene3. The predicted ESTs showed different 
expression profiles in different tissue types. Interest-
ingly for the predicted gene2 it has been found that 
in some tissue types the gene is expressed in devel-
opmental stages and in others expressed in different 
cancer cell lines (Fig. 1). Similar patterns were also 
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observed for the predicted gene3 and revealed that it 
shares good 5' flanking region (∼99% identity) with 
the clone collection from IMAGE cDNA, mRNA 
database sequences (Supplementary data).

VISTA plot of the AVID alignment (Fig. 2) 
indicated that majority of the region in gene2 is highly 

conserved (92% identity) in Chimpanzee and 
Orangutan genome. No larger repeats (LINE, SINE, 
and LTR) were observed within that region. Further 
GENSCAN analysis of the corresponding TERT 
region on Chimpanzee chromosome 5 indicated that 
this region also contain a putative gene encoding 

Figure 1. UCSC Genome Browser analysis showing the location of the predicted genes. Affymetrix All Exon Chip-Array tracks are used for tissue specific 
gene expression. CpG Island is also observed around the predicted gene.
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Figure 2. Conservation of gene2 in Chimpanzee (Pan troglodytes) and orangutan (Pongo pygmaeus-abelii) on VIsTA browser.
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Table 2. summary of the homologous sequences of predicted gene2.

GI no. Accession no. name of the protein Length (aa) Identity (%) similarity (%) e-value
67604778 Xp_666642.1 Cell surface protein that 

may regulate cell wall 
beta-glucan synthesis 
and bud site selection 
[Cryptosporidium 
hominis TU502]

999 27.76 48.53 2e-28

88602575 yp_502753.1 Mucin 2, intestinal/trac
heal[Methanospirillum 
hungatei JF-1]

2353 27.69 36.69 6e-26

66363458 Xp_628695.1 serine/threonine rich 
low complexity protein 
[Cryptosporidium parvum 
Iowa II]

951 27.25 51.0 8e-23

71402846 Xp_804287.1 Cellulosomal scaffoldin 
anchoring protein 
[Trypanosoma cruzi 
strain CL Brener]

928 40.67 44.33 2e-08

114771991 Zp_01449380.1 Fibronectin type III 
domain protein [alpha 
proteobacterium 
hTCC2255]

2282 25.0 38.33 2e-08

52144448 yp_082380.1 Collagen-binding surface 
protein [Bacillus cereus 
e33L]

913 25.38 30.85 4e-08

50401145 Q9Be18 Melanoma-associated 
antigen e1 (MAGe-e1 
antigen) Macfa

957 28.0 41.0 5e-08

89095693 Zp_01168587.1 RTX toxins and related 
Ca2+-binding protein 
[Bacillus sp. NRRL 
B-14911]

1415 23.33 38.0 1e-04

29792032 AAh50588.1 Melanoma antigen  
family e, 1 [Homo 
sapiens]

957 28.0 41.67 6e-04

118716717 Zp_01569254.1 hemagluttinin domain 
protein [Burkholderia 
multivorans ATCC 
17616]

1487 25.4 50.0 0.004

748 amino acids protein which is very much 
similar (82% identity and 84% similarity) to the 
predicted gene2 of hTERT region (Supplementary 
data). Identification of the blocks of genes with 
evolutionary conserved order in multiple genomes is 
an important issue in comparative genomics. These 
synteny blocks help in tracing back the evolution of 
genomes in terms of rearrangement event. Presence 
of conserved blocks of genes in multiple genomes 
may indicate functional relatedness of their products 
or presence of functionally important conserved 

non-coding regions.12 Through comparative genomics 
analysis of our predicted gene2, we have found that 
this gene is conserved in different genomes in terms 
of gene order.

BLAST results indicated that gene2 shared some 
homology (∼38%–41%) with the MAGE E1, a 
member of type II melanoma antigen family (Table 2). 
MAGE family is a large family which comprises over 
25 members identified in human. Most members of 
the MAGE family are clustered at the Xq28 region 
of human chromosome.13 The overall structure of 
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MAGE-E1, and Macfa MAGE-E1 are larger proteins 
with extended N or C-termini. The N-terminal 
domain of MAGE-E1, contains a loosely conserved 
region of ∼220 amino acids, termed MHD2 domain.14 
Global alignment in ClustalW showed loosely 
conserved regions for both amino-terminal and 
carboxy-terminal domain of gene2 with human 
MAGE family E1 (accession no.AAH50588.1) and 
MAGE1_Macfa, Melanoma associated antigenE1 
(accession no.Q9BE18) (Fig. 3).

Identification of the novel members of a large 
protein family is very difficult as the similarity 
searching programs are designed to highlight the most 
similar sequences. As a result, about 5% of the novel 
protein family members may remain unrecognized.15 

In an example by Retief et al,15 the large family of 
known glutathione transferase proteins was first 
subjected to multiple sequence alignment, and a 
phylogenetic tree was made by distance methods to 
identify classes of proteins within the family. These 
proteins represented a broad range of phylogenetic 
context and included classes with sometimes less 
than 20% identity.16 Thus, in spite of having ∼40% 
sequence homology with MAGE-E1, predicted gene2 
may be a novel member of melanoma antigen family 
(MAGE).

Expression pattern of different members of the 
MAGE family genes are different and tissue specific, 
some encodes tumor specific antigens and some are 
expressed in normal cells.17,18 Besides, co-expression 

Figure 3. Global alignment of gene2 with MAGe homology domain (MhD).

http://www.la-press.com


Cancer-associated gene identification in silico

Cancer Informatics 2009:7 177

Table 3. Repeated sequence motif of the predicted gene2 
analyzed by RADAR.

pattern of some tumour associated antigen (TAA) 
including 5 MAGE-A genes with human telomerase 
reverse transcriptase was observed in non-small cell 
lung carcinoma (NSCLC) such as adenocarcinoma, 
squamous cell carcinoma and bronchiolocarinomas.19 
5' flanking EST analysis of predicted gene2 revealed 
that most of the ESTs are expressed in several cancer 
cells. As human telomerase activity is observed only 
in germline and cancer cells2 and its co-expression 
patterns was observed with some MAGE gene, our 
predicted gene2 may be co-expressed with telomer-
ase in cancer cells.

Transcriptional regulation of MAGE gene family is 
dependent on various factors. Promoter methylation is 
one of these factors. Methylated CpG point in the pro-
moter region is responsible for transcriptional silencing 
of the MAGE gene.20 Demethylation of the MAGE1 
promoter appears to be sufficient to activate this gene 
in tumor cell lines.21 From UCSC genome browser, we 
have observed the presence of CpG island around our 
predicted gene2. That’s why, it can be inferred that the 
hypermethylation of this CpG island is responsible for 
silencing of gene2 in normal cells and this gene may 
be activated through transformation dependent loss of 
DNA methylation in cancer cells.22–24

Repeated insertion appears to have played a major 
role during evolution of MAGE family. For instance, 
the long C-terminal domain of MAGE-D3 was most 
probably formed by serial duplications of decapeptide 
repeats. Also the N-terminal domains of MAGE-C1 
and MAGE-D1, are highly repetitive, must have under-
gone sequential duplication events.13,25 29 repeated 
short peptides containing ∼12 amino acids were 
identified in gene2 protein by using the program 
RADAR26 (Table 3). Although, function of these 
repeats is unknown, it revealed that gene2 may be 
evolved from repeated insertion as found in MAGE 
family. To compare the repetitive pattern of gene2 with 
MAGE family protein, we have analyzed the repeats 
of MAGE-E1, MAGE-D1 and MAGE-D3 proteins 
(supplementary data). It was found that the repeats 
in these MAGE family members are not identical 
and in some cases several variations in amino acids 
are found. The pattern of MAGE-D1 repeat is WQX-
PXX14 which is completely different from MAGE-D 
and MAGE-E1. However, these MAGE family mem-
bers are univocal in that sense that they all contain 
repeats (may be identical or different). On the other 

hand, our predicted gene2 contains TPG repeat which 
is found at several position of MAGE-E1.

The predicted secondary structure of gene2 showed 
more extensive β-strands (∼44%) and coil region 
(∼55%) distributed along the sequence (Fig. 4). From 
the secondary structure of entire MAGE-E1, it was 
found that N-terminal MHD2 domain contains exten-
sive coil and some β-stranded region but C-terminal 
MHD1 domain contains more a-helical regions along 
with some β-stranded regions. We have further ana-
lyzed the secondary structure pattern of repeats on 
MAGE-E1, MAGE-D1 and MAGE-D3 (supplemen-
tary data). Overall secondary structure pattern within 
the repeat region of these three family members was 
coil followed by β-strands but no a-helices which are 
very much likely to the secondary structure pattern of 
gene2 repeats although the amino acid composition 
of the repeats is slightly different.

To understand the functional association between 
gene2 and MAGE-E1, we have analyzed the protein 
function prediction result using two programs SVMProt 
and PFP. SVMProt results indicated that both gene2 
and MAGE-E1 belong to Zinc-binding protein family 
(Table 4). PFP result classified the function of pro-
tein according to the GO annotation categories. In the 
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Figure 4. secondary structure prediction of gene2 using hNN.

biological process categories, MAGE-E1 belongs to 
glia cell migration, nerve growth factor receptor sig-
naling pathway, neuronal migration, brain develop-
ment etc (Table 5) and gene2 belongs to neurogenesis 
whose specific outcome is the progression of nervous 

tissue over time, from its formation to its mature 
state which is very much likely to MAGE-E1. In 
the molecular function categories, gene2 matches 
with MAGE-E1 in exo-alpha-sialidase activity 
and inositol-polyphosphate 5-phosphatase activity. 

Table 4. Comparative function prediction of MAGe-e1 and gene2 using sVMprot.

MAGe-e1 Gene2
Function p Value (%) Function p Value (%)
Zinc-binding 73.8 Zinc-binding 58.6
Nuclear receptors 65.4 Metal-binding 58.6

eC 3.4 hydrolases—Acting 
on peptide bonds 
(peptidases)

58.6

Calcium-binding 58.6
TC 1.B. 
Channels/pores—Beta-Barrel
porins 58.6
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Table 5. Comparative function prediction of MAGe-e1 and Gene2 using pFp.

MAGe-e1 Gene2
Biological process score Biological process score

Go.0008347 glia cell migration 2907203.66 Go.0009405 pathogenesis 760364.22

Go.0048011 nerve growth 
factor receptor

1164048.92 Go.0008380 RNA splicing 539421.38

signaling pathway

Go.0019233 perception 
of pain

961041.64 Go.0000398 nuclear mRNA 
splicing, via spliceosome

380866.18

Go.0001764 neuronal 
migration

868699.27 Go.0007520 myoblast 
fusion

365931.67

Go.0042060 wound healing 500313.41 Go.0007399 neurogenesis 222373.08

Go.0000074 regulation of cell 
cycle

473884.91 Go.0006512 ubiquitin cycle 205861.13

Go.0001558 regulation of cell 
growth

367704.56 Go.0016574 histone 
ubiquitination

205248.68

Go.0007585 respiratory 
gaseous exchange

316119.23 Go.0006816 calcium ion 
transport

187647.36

Go.0009062 fatty acid 
catabolism

263724.05 Go.0008104 protein 
localization

177700.20

Go.0007420 brain 
development

263045.24 Go.0042110 T-cell activation 171905.85

Molecular function score Molecular function score

Go.0043015 gamma-tubulin 
binding

550081.62 Go.0004308 
exo-alpha-sialidase activity

285616.06

Go.0016798 hydrolase activity, 
acting on glycosyl bonds

462333.96 Go.0046982 protein 
heterodimerization activity

258717.67

Go.0004308 
exo-alpha-sialidase activity

451789.12 Go.0008332 low voltage-
gated calcium channel 
activity

205987.38

Go.0004445 
inositol-polyphosphate 
5-phosphatase activity

222224.77 Go.0016874 ligase activity 190741.51

Go.0005515 protein binding 154771.23 Go.0030215 semaphorin 
receptor binding

161852.12

Go.0004674 protein serine/
threonine kinase activity

132065.84 Go.0008168 
methyltransferase activity

125300.40

Go.0003968 RNA-directed 
RNA polymerase activity

126483.06 Go.0004568 chitinase 
activity

112219.51

Go.0008289 lipid binding 119001.75 Go.0042809 vitamin D 
receptor binding

90949.14

Go.0017016 Ras interactor 
activity

106852.28 Go.0004842 ubiquitin-
protein ligase activity

87944.78

(Continued)
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Table 5. (Continued)
MAGe-e1 Gene2

Go.0004806 triacylglycerol lipase activity 105189.12 Go.0004445 inositol-polyphosphate 
5-phosphatase activity

73545.05

cellular component score cellular component score

Go.0045211 postsynaptic membrane 1992254.90 Go.0030425 dendrite 561550.58

Go.0030425 dendrite 811128.08 Go.0009986 cell surface 229447.45

Go.0016010 dystrophin-associated 
glycoprotein complex

493386.26 Go.0005 891 voltage-gated calcium 
channel complex

220997.24

Go.0005813 centrosome 380800.79 Go.0005681 spliceosome complex 151073.10

Go.0048471 perinuclear region 276406.16 Go.0015629 actin cytoskeleton 125368.18

Go.0015629 actin cytoskeleton 178410.28 Go.0005737 cytoplasm 63162.21

Go.0046581 intercellular canaliculus 172680.03 Go.0016010 dystrophin-associated 
glycoprotein complex

58828.49

Go.0005634 nucleus 150265.62 Go.0005615 extracellular space 53737.16

Go.0005925 focal adhesion 136189.60 Go.0005643 nuclear pore 47225.56

In the cellular component categories, both gene2 and 
MAGE-E1 belong to dendrite, dystrophin-associated 
glycoprotein complex, actin cytoskeleton and nuclear 
region. Some differences in the prediction categories 
between gene2 and MAGE-E1 are observed. This may 
be due to the limited functional analysis on MAGE 
family protein and still now we don’t know enough 
about the expression and function of MAGE family 
proteins.14 From these analyses, it can be inferred 
that as a distant member, there are some functional 
alliance of gene2 with MAGE family protein.

However, low amino acid sequence homology was 
found for gene3 protein. But it showed high homology 
(99% identity) with some human ESTs (Supplementary 
data). For this reason, we are predicting that this gene 
is a novel one or it may have functions in regulation 
rather than coding.

conclusion
Even though these predicted genes should be further 
characterized by laboratory means before their 
existence can be conclusively affirmed, the results 
presented in this study suggested and identified the 
location of a structurally similar gene of MAGE family 
on human chromosome 5. The findings can provide 

new insight in transcriptional activation of novel genes 
during malignant melanoma.
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