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Abstract: This study aimed at discriminating carcinogens on the basis of hepatic transcript profiling in the rats administrated with a 
variety of carcinogens and non-carcinogens. We conducted 28-day toxicity tests in male F344 rats with 47 carcinogens and 26 non-
carcinogens, and then investigated periodically the hepatic gene expression profiles using custom microarrays. By hierarchical cluster 
analysis based on significantly altered genes, carcinogens were clustered into three major groups (Group 1 to 3). The formation of these 
groups was not affected by the gene sets used as well as the administration period, indicating that the grouping of carcinogens was uni-
versal independent of the conditions of both statistical analysis and toxicity testing. Seventeen carcinogens belonging to Group 1 were 
composed of mainly rat hepatocarcinogens, most of them being mutagenic ones. Group 2 was formed by three subgroups, which were 
composed of 23 carcinogens exhibiting distinct properties in terms of genotoxicity and target tissues, namely nonmutagenic hepatocar-
cinogens, and mutagenic and nonmutagenic carcinogens both of which are targeted to other tissues. Group 3 contained 6 carcinogens 
including 4 estrogenic substances, implying the group of estrogenic carcinogens. Gene network analyses revealed that the significantly 
altered genes in Group 1 included Bax, Tnfrsf6, Btg2, Mgmt and Abcb1b, suggesting that p53-mediated signaling pathway involved in 
early pathologic alterations associated with preceding mutagenic carcinogenesis. Thus, the common transcriptional signatures for each 
group might reflect the early molecular events of carcinogenesis and hence would enable us to identify the biomarker genes, and then 
to develop a new assay for carcinogenesis prediction.
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Introduction
A two-year carcinogenicity study with rodents is the 
standard method to assess the carcinogenic poten-
tial of chemicals. However, this model bioassay is 
time-consuming and extremely expensive to conduct. 
Therefore, development of a low-cost and short-term 
prediction test has been strongly desired. Successful 
models of such prediction methods are the medium-
term liver bioassay established by Ito’s group1 and the 
carcinogenicity tests using transgenic or knock-out 
animals and others.2,3

Genotoxicity, which is one of important actions in 
the complex process of carcinogenesis, has been used 
as a useful marker to screen carcinogenicity of chem-
icals. However, the results of genotoxicity tests such 
as the Ames bacterial mutation assay do not always 
correlate with rodent carcinogenicities. Particularly 
in non-genotoxic carcinogens, the test results have 
shown significant differences in concordance with the 
rodent carcinogenicity results.4,5 Therefore, there has 
been a clear need to develop a novel assay for dis-
criminating between potential carcinogens and non-
carcinogens regardless of its genotoxicity.

Toxicogenomics has been expected to be a promis-
ing tool for investigation of toxicological properties 
of chemicals, because alteration of gene expression is 
the first event occurred in response to chemical expo-
sure and lead to phenotypic changes. As for carcino-
genicity, this tool enables us to obtain such properties 
of chemicals more precisely and precociously than 
the existing prediction methods. There have been pre-
vious reports on the prediction of potential carcino-
genicity of chemicals in a short term toxicity study.6,7 
For example, Nie et al reported that the carcinoge-
nicity of nongenotoxic carcinogens can be predicted 
with 88.5% precision based on the expression data of 
6 genes in male rats treated for 24 hours.6 Ellinger-
Ziegelbauer et al also developed a prediction method 
of carcinogens with up to 88% accuracy using toxi-
cogenomics analysis of short-term in vivo studies.7 
However, those prediction methods were specialized 
in non-genotoxic carcinogen6 or developed within a 
small set of compounds.7

In general, it is possible that the gene expression 
profiles induced by chemical administration vary 
considerably among the mode of action of chemicals 
as well as the experimental conditions such as the 
dosage and duration. Since a number of mechanisms 

have been proposed for chemical carcinogenesis,8 it is 
presumed that carcinogenic chemicals are divided 
into more than one group based on the gene expres-
sion profiles relevant to their respective mechanism. 
Therefore, it is essential to use a suitable experimen-
tal procedure to find characteristic gene profiles for 
each group of carcinogens, regardless of toxicity test 
conditions.

The final goal of this study is to develop a short 
term, highly accurate and wide applicable predic-
tion method of chemical carcinogenicity based 
on the hepatic gene expression profiles of rats 
treated with chemicals. Therefore, we conducted a 
research project in order to establish the optimized 
test protocol for toxicogenomics study,9,10 and then 
develop a database of the gene expression profiles 
of 85 carcinogens or non-carcinogens collected 
using the optimized protocol. In the present paper, 
as a part of the development of a prediction method 
for chemical carcinogenicity, we statistically ana-
lyzed the hepatic gene expression data of the rats in 
a large scale toxicity studies with 73 chemicals, and 
found to be classified in three major groups based 
on the information about genotoxicity and target 
tissues.

Methods
Test chemicals
At the beginning of our project, 85 test chemicals were 
selected by considering their chemical and toxicologi-
cal diversity in order to find the universal gene expres-
sion profile for carcinogens from the US National 
Toxicology Program (NTP) database (http://ntp.niehs.
nih.gov/) and the Chemical Carcinogenesis Research 
Information System (CCRIS) database (http://toxnet.
nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS). In this study, 
73 test chemicals were used (Table 1). The remaining 
12 chemicals (tannic acid, quercetin, 2-nitro-p-phenyl-
enediamine, 4-aminoazobenzene, DDT, 1-nitropyrene, 
dieldrin, 1-nitropropane, acetaminophen, 4-acetylami-
nofluorene, carbon tetrachloride and glutaraldehyde) 
were reserved for the validation of the developed pre-
diction method in further study. The results of the vali-
dation study will be reported elsewhere (Matsumoto 
et al in preparation).

Seventy-three test chemicals are composed by 
21 mutagenic carcinogens (test No. C01 to C21 in 
Table 1), 26 non-mutagenic carcinogens (C22 to C47), 
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12 mutagenic non-carcinogens (NC01 to NC12), 
12 non-mutagenic non-carcinogens (NC13 to NC24) 
and others (two non-carcinogens; NC25 and NC26, 
with unidentified mutagenicity). Eleven of 21 muta-
genic carcinogens and 12 of 26 non-mutagenic car-
cinogens are hepato-carcinogens. Seventy-three test 
chemicals include six nitroso compounds (C01 to 
C06), two nitro compounds (C07 and C08), ten chlori-
nated organic compounds (C37 to C46), two heterocy-
clic amines (C12 and C13), two azocompounds (C09 
and C10) and four polycyclic aromatic hydrocarbons 
(C16 to C19), all of which have chemical structure rel-
evant to carcinogenesis, and three peroxisome prolif-
erators (C22 to C24), nine cytotoxic compounds (C14 
and C15, C30 to C36), two steroidal estrogens (C27 
and C28), two enzyme inducers (C25 and C26), all of 
which induce the known biological process relevant to 
carcinogens. The purity of test chemicals was 95%.

Animals and treatment
Five-weeks-old male Fischer 344 (F344) rats were 
obtained from Charles River Laboratories Japan, Inc. 
(Atsugi, Japan) and allowed to acclimatise for 7 days 
prior to use. Rats were kept with pelleted chow food 
(CRF-1, Oriental Yeast, Co., Ltd) and tap water, ad 
libitum. Rats were randomly assigned to the two 
groups (treatment and control groups), and were 
administrated with each test chemical dissolved in 
the suitable vehicle by oral gavages once a day. Each 
of the groups was composed of 4 rats. The concur-
rent vehicle control groups were also prepared and 
treated as in the same manner with the test groups. 
The administration dose for each chemical was set 
around their minimum carcinogenic doses for carcin-
ogens or maximum tolerable doses based on the infor-
mation in NTP and CCRIS database as well as other 
literatures for non-carcinogens. As for 18 substances 
selected from carcinogens and non-carcinogens, they 
were administrated at four dosages to examine the 
dose dependency on the expression of the character-
istic genes (Table 1). The maximum dose was set at 
half of LD50 and the remaining three doses were set 
up in a geometric ratio of 5. Rats were humanly sac-
rificed with CO2-O2 (4:1) gas inhalation at 3, 14 or 
28 days after administration. The livers were imme-
diately excised and weighed. Then, the liver samples 
from the left lateral lobe were sliced and immediately 

placed into RNAlater® (Ambion,Austin, TX, USA) 
for RNA extraction and thereafter gene expression 
analysis. A portion of the left lateral lobe was also 
taken for histopathology. Tissues were fixed in 10% 
neutral-buffered formalin, and subsequently sectioned 
and stained with hematoxylin and eosin.

Oligo microarray
An oligo microarray, NEDO-ToxArray III, consisted 
of 6,709 unique genes and control genes was used 
for this study. The details of this custom array have 
been described previously11 and can also be seen on 
the project web site (http://www.nedo.go.jp/english/
activities/2_sinenergy/1/p01004e.html).

gene expression data analysis
Gene expression data analysis was performed accord-
ing to our previous study11 with a slight modification. 
In the present study, the cut-off value of each microar-
ray data was determined by the mean signal intensity 
plus 2 standard deviations of three negative control 
probes (jojG, bioD and cre), and then the lowess 
normalization was done by the Statistical Microar-
ray Analysis package of the R (http://www.r-project.
org/).12,13 The mean signal intensities were calculated 
for four or three replicates (if the treated animal died) 
at each time point, and then subjected to characteris-
tic gene selection.

In order to determine the signal log2ratio with sta-
tistically significant difference in the gene expression 
level between the control and treatment groups, the 
variations of the signal intensity for four or three rep-
licates at each time point were examined using the 
microarray data on 28-day treated rats with all sam-
ples. In more details, the coefficients of variation (CV) 
of the normalized signal intensity were calculated for 
all genes in the vehicle controls, which of the signal 
intensity were above the cut-off value for each micro-
array data. Selection criteria of significantly changed 
genes were determined by power analysis.14 Power 
analysis was calculated using the mean CV of all 
samples by the following formula (1). Effective gene 
sets were selected the genes which were significantly 
changed in more than two carcinogens.

 
1 1 96- = ≥ - ×





β P Z

n

c
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1-β: power, Z: criterion variable, n: sample size, 
∆x:difference of signal ratio. c: coefficient of 
variation, 1.96 is rejection region at level of signifi-
cance 5%.

Cluster analysis for grouping  
of carcinogens
In order to divide carcinogens into groups, hierar-
chical cluster analysis was applied to the follow-
ing selected gene data set. At first, differentially 
expressed genes in rat livers after treatment of 
between carcinogens and non-carcinogens were 
selected on the basis of Welch’s t-value15 as fol-
lows; gene data sets were selected from the signifi-
cantly altered genes at each time point in the toxicity 
study using four different Welch’s t-values. Welch’s 
t-values were determined within a range of 2.0 to 3.3 
at each time point so that the number of significantly 
changed genes was selected from 10 to 100. Then, 
reliability of the selected gene sets was confirmed 
by estimating the false discovery rate.16 Four gene 
data sets at each time point (total 12 gene data sets) 
were used in the analysis to examine the consistency 
of clustering of carcinogens. Using the gene data 
sets, hierarchical cluster analysis was performed for 
discriminating among different classes of carcino-
gens by Gene Maths (Applied Maths, Saint-Martens-
Latem, Belgium). Classification of the chemicals 
was based on the shapes of the vicinity of the root 
of the dendrograms, and test chemical was defined 
as a carcinogen if it was clustered in the same clus-
ter with other carcinogens in more than half of four 
cluster analyses with varied gene sets and was deter-
mined for each of 3rd, 14th and 28th day-analyses. 
Carcinogen groups were defined as the similar clus-
ter belonging carcinogens in more than two analy-
ses among 4 different gene sets at each of 3rd, 14th 
and 28th day-analyses. Hierarchical cluster analysis 
revealed two groups of carcinogens with clearly dis-
tinct gene expression profiles and a mixture group of 
several carcinogens and non-carcinogens, regardless 
of the administration period. Therefore, further clus-
ter analysis was performed using these carcinogens 
and all non-carcinogens. Classification of the chemi-
cals was also confirmed using the self-organizing 
map (SOM) method by the som package of the R 
and the principal component analysis (PCA) method 

by Gene Maths that were one of the unsupervised 
classification methods.

selection and functional analysis  
of the characteristic genes in each 
carcinogen group
The characteristic genes in each carcinogen group 
(Group 1 to 3) were selected by 3.5 of Welch’s t-value 
between of the carcinogens in each group and 27 non-
carcinogens at each administration period. Then, func-
tional analysis of the characteristic genes in each group 
was performed with IPA(http://www.ingenuity.com/), 
a web-delivered software for discovering, visualizing, 
and exploring relevant functions, pathways and 
networks. The characteristic genes at 28-day analy-
ses were uploaded into IPA. LocusID of each gene 
was mapped to its corresponding gene object in the 
IPA Knowledge Base. Top 10 genes based on Welch’s 
t-values in each group were eligible for IPA analysis. 
These genes were then used as the starting point 
for generating biological functions, pathways and 
networks. Biological functions were calculated and 
assigned to different networks.

Results
In vivo toxicity studies
Male F344 rats were dosed daily via gavage for up 
to 28 days with 73 test chemicals including 23 hepa-
tocarcinogens doses of which were documented to 
induce liver tumors in rats. In order to assess for path-
ological lesions induced during this subacute study, 
the livers were examined histopathologically. We 
found that 15 out of 23 hepatocarcinogens induced 
histological abnormalities such as modest hypertro-
phy and nuclear enlargement at 28 day post-treatment 
(Table 1). For example, dimethylnitrosamine treat-
ment resulted in increasing necrosis in addition to the 
above findings. Also, cell infiltration was observed in 
some centrilobular areas, which was likely respon-
sible for the weak reactive inflammation. In general, 
the modest histopathological lesions observed at the 
doses tested correspond to observations expected for 
genotoxic carcinogens. Together with the literature 
backed doses used, these pathological findings sup-
port the assumption that the animals would develop 
hepatic tumors if continued for further 20–24 months 
administration. However, the dose (0.5 mg/kg/day) 
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of MMNG (C03) might not be adequate to identify a 
characteristic gene profile induced by the administra-
tion, because the number of genes significantly altered 
was extremely fewer than those of other carcinogens. 
This may be one of the factors that MNNG was not 
clustered with other test carcinogens (Fig. 1).

Microarray data analysis
Following the background subtraction, a total of 5,664 
to 6,683 genes were available for analysis on each of 
the microarray data at 28-day post-treatment. Over-
all, 5,292 genes were selected as common effective 
ones in all samples, and the mean CV values 10%, 

Figure 1. A) result of hierarchical clustering using carcinogens (47) and non-carcinogens (26) in day 28. B) result of hierarchical clustering using 
remaining carcinogens (7) and non-carcinogens (26) in day 28.
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10%–30%, 30%–50%, 50% in 17%, 61%, 16% and 
6% of the genes for the samples with four replicates 
(69 samples), respectively. Similarly, the mean CV 
values 10%, 10%–30%, 30%–50%, 50% in 30%, 
62%, 6% and 2% of the genes for triplicates samples 
(clofibrate, d-mannitol, lithocholic acid and penta-
chloroethane), respectively. As a result, the mean CV 
values of almost effective genes (94%) were 50% 
for the samples with four replicates, and those of 92% 
of the effective genes were 30% for ones with trip-
licates. From these results, the maximum values of 
potential variances of the signal intensity were esti-
mated at 50% (n = 4) and 30% (n = 3), and then the 
power analysis was performed as follows: As for the 
four replicates samples, when ∆x was 0.8 or more, 
power (1-β) was shown to be 80% or more which 
was statistically significant. Therefore, signal log2 
ratio with a statistically significant difference was 
determined at ±0.8 (i.e. 1.8 or 1/1.8 by signal ratio). 
In case of the three replicates samples, 90% or more 
power was obtained by applying the ∆x = 0.8. There-
fore, it was considered that 0.8 of the signal log2ratio 
was statistically significant in both three and four 
replicates samples. The selection criteria of the genes 
were determined as log2 ratio 0.8 or -0.8 to select 
robust changed genes in this study.

grouping of carcinogens
The primary gene sets at 3-, 14- and 28-day analyses 
were 392, 523 and 1,359, respectively, which were 
selected from significantly altered genes in at least two 
of 47 carcinogens in each of 3-, 14- and 28-day data. 
Then, the number of the genes was reduced using 2 
of Welch’s t-value. With increasing Welch’s t-value, 
the differentially expressed genes between carcino-
gens and noncarcinogens were fewer and more sta-
tistically significant (Table 2A). For example, when 
Welch’s t-values of 2.3, 2.5, 2.8, and 3.0 were applied, 
169, 116, 37, and 18 genes were selected for 28-day 
data. False discovery rate of each gene was estimated 
to be less than 0.05 in all gene sets. Therefore, cluster 
analysis was performed using all gene sets.

Figure 1(A) shows the hierarchical clustering 
of 73 chemicals against the expression data set of 
37 genes selected with Welch’s t-value of 3.0 at 28-day 
analyses. Three clusters were formed as follows: 
The first cluster (cluster-1) was composed of 21 car-
cinogens and 2 non-carcinogens (NC01 and NC13). 

Especially, many hepatocarcinogens were included in 
this cluster. The second (cluster-2) was also formed 
both by 21 carcinogens and 7 non-carcinogens. This 
group contains both non-mutagenic hepatocarcino-
gens and carcinogens which target tissues are except 
for rat liver. The third (cluster-3) showed a mixture 
of 17 non-carcinogens and 5 carcinogens. In order 
to test the consistency of clusters, cluster analysis 
was performed on relevant subsets of the character-
istic genes selected by different t-values. The similar 
results were obtained with the other gene sets of 165, 
116, and 33 genes (data not shown). Collectively, 20 
and 22 carcinogens in cluster-1 and cluster-2 were 
categorized into the same cluster group in more than 
three times among four cluster analyses with different 
gene sets of 168 to 18 genes. As for the remaining 5 
carcinogens, however, they were not classified into an 
independent cluster in all gene sets, and were always 
clustered with many non-carcinogens. With regards 
to 3- and 14-day data, similar results were observed 
in cluster analyses (data not shown). Consequently, 
17 (36%) and 23 (49%) of 47 carcinogens belonged 
to the first and second cluster carcinogens in more 
than two analyses among 3rd, 14th and 28th day-
analyses and referred to Group 1 and Group 2 in this 
paper, respectively (Table 1). Twelve of 17 carcino-
gens in Group 1 and 19 of 23 in Group 2 were selected 

Table 2A–B. number of differentially expressed genes 
in rat liver after treatment between carcinogens and non- 
carcinogens.
A.
t-value Days after treatment

3 14 28
2.0 50 – –
2.3 33 – 169
2.5 24 76 116
2.8 15 52 37
3.0 – 42 18
3.3 – 19 –

B.
2.0 28 54 72
2.3 16 33 42
2.5 11 22 25
2.8 6 – 16
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in all of 3rd and 14th day analyses. The remaining 
7 of 47 carcinogens did not form a consistent cluster. 
For example, ethinylestradiol (C28) and diethylstil-
bestrol (C27) were clustered into the first cluster in 
28-day analysis, but not in 3- and 14-day analyses.

In order to examine whether these 7 carcinogens 
have the common gene expression profile or not, 
the gene set was newly selected by Welch’s t-value 
between 7 carcinogens and 26 non-carcinogens 
(Table 2B), and then hierarchical cluster analysis was 
retried. Figure 1(B) shows the hierarchical cluster 
analysis with 25 genes selected by Welch’s t-value of 

2.5 between the 7 carcinogens and 26 non-carcinogens 
on 28-day data. The dendrogram was more complex 
compared to that in Figure 1(A), but 6 carcinogens 
except for MNNG (C03) belonged to the same cluster 
(cluster-4) with 3 non-carcinogens (NC09, 11 and 25). 
As the same results were obtained form all of 3-, 14- 
and 28-day analyses, these five carcinogens were 
referred to Group 3 in this paper. As for MNNG, it did 
not make cluster with Group 3 carcinogens. Further 
validation was pursued using methods of PCA and 
SOM, and the similar clustering of carcinogens was 
observed by these methods (data not shown).

Table 3. Top 10 characteristic genes of group 1 carcinogens at 28th day.

Gene name Unigene ID Description Gene ontology 
(Biological process)

Welch’s 
t-value

Mean of 
log2 ratio

ATP-binding cassette, 
sub-family B (MDrTAP), 
member 1B

rn.144554 member of the ATP-binding 
cassette (ABC) protein 
superfamily; may play a 
role in drug disposition

response to ionizing 
radiation, response to 
arsenic, drug transport

7.27 3.88

Cytochrome P450 2c13 rn.2586 polymorphic cytochrome 
P450 isozyme with male 
specific expression

electron transport 7.25 1.27

Transcribed locus rn.167075 – – 5.27 1.44
B-cell translocation 
gene 2, anti-proliferative

rn.27923 an anti-proliferative protein; 
interacts with Pick1 and 
may have a role in PKC-
mediated extracellular 
signal transduction and 
cellular differentiation

protein amino acid 
methylation, negative 
regulation of apoptosis, 
neuron differentiation

5.26 0.44

Bcl2-associated X 
protein

rn.10668 Bcl2-related gene; involved 
in the regulation of 
apoptotic cell death

negative regulation of 
fibroblast proliferation, 
outer mitochondrial 
membrane organization 
and biogenesis, induction 
of apoptosis

5.26 0.72

Transcribed locus rn.34330 – – 5.23 0.88
O-6-methylguanine-
DnA methyltransferase

rn.9836 enzyme involved in 
DnA repair of O(6)-
alkylguanine which is 
the major mutagenic and 
carcinogenic lesion in DnA

DnA ligation, DnA repair, 
regulation of caspase 
activity

5.18 1.50

similar to 
indolethylamine 
n-methyltransferase

rn.19133 – – 5.08 -1.59

similar to Deoxyuridine 
5-triphosphate 
nucleotidohydrolase

rn.169011 – – 4.89 0.49

Tumor necrosis factor 
receptor superfamily, 
member 6

rn.162521 Tnfsf6/Fasl receptor induction of apoptosis, 
apoptosis, activated T cell 
apoptosis

4.89 0.47
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Characteristic genes in the three 
carcinogen groups
The number of the characteristic genes in Group 1, 2 
and 3, were 7, 16 and 4 in 3-day analysis, 38, 15 and 
13 in 14-day analysis, and 102, 10 and 31 in 28-day 
analysis, respectively, when they were selected by 3.5 
of Welch’s t-value. These genes did not overlap each 
other among three groups in 3- and 14-day analyses, and 
only one gene overlapped between Group 1 and 3 and 
between Group 2 and 3 in 28-day analysis (Fig. 2).

Figure 3(A) and (B) show time-course gene 
expression profiles of top 10 genes in Group 1 (Table 3) 
in male rat livers treated with thioacetamide (C35), 
and lithocholic acid (NC19). The up- and down-
regulation of the characteristic genes was observed in 
nine and one out of them with treatment duration, and 
their expression changes reached a plateau at 3-day 
after administration of thioacetamide (Fig. 3A). On 
the other hand, such gene expression changes were not 
observed in the specimen treated with lithocholic acid. 
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Figure 2. Overlap among the characteristic genes of three groups. Characteristic genes were selected by Welch’s t-value of 3.5.
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In thioacetamide treatment, the expression of the genes 
was also increased or decreased in a dose-dependent 
manner, but they were not changed dynamically by 
treatment with lithocholic acid (Fig. 3(C) and (D)). 
Similar findings were observed in other carcinogens in 
Group 1 carcinogens and non-carcinogens, though the 
fold change and time to reach a plateau varied in gene 

and dosage. The fold changes of top 10 genes in other 
groups were smaller than those of Group 1 carcinogens 
and the profiles were different from those of Group 1. 
As to Group 2 carcinogens, the expressions of eight 
and two in top 10 genes were increased and decreased 
with time, respectively (Table 4). The fold changes 
of them at 28-day post-administration were less and 

Table 4. Top 10 characteristic genes of group 2 carcinogens at 28th day.

Gene name Unigene ID Description Gene ontology 
(Biological process)

Welch’s 
t-value

Mean of 
log2 ratio

glutamyl-prolyl-trnA 
synthetase

rn.21240 – prolyl-trnA 
aminoacylation, protein 
complex assembly, 
trnA aminoacylation for 
protein translation

4.28 0.74

CCAATenhancer binding 
protein (CeBP), beta

rn.6479 transcription factor that binds 
to CCAATT motif on DnA and 
may facilitate IL-6 induced 
transcriptional activation

transcription from rnA 
polymerase II promoter, 
neuron differentiation, 
fat cell differentiation

4.16 0.23

CD63 antigen rn.11068 human homolog facilitates 
endocytosis of h,K-ATPase 
beta-subunit; may play a role 
in protein trafficking

positive regulation of 
endocytosis

3.87 -0.38

Lymphotoxin B receptor rn.19329 – lymph node 
development, signal 
transduction, positive 
regulation of I-kappaB 
kinase/nF-kappaB 
cascade

3.86 0.66

similar to putative 
protein, with at least 6 
transmembrane domains, 
of ancient origin (58.5 kD) 
(3n884) (predicted)

rn.152690 – metabolism 3.80 0.15

Alpha-fetoprotein rn.9174 plasma protein expressed in 
the fetal liver and yolk sac

progesterone 
metabolism, sexual 
reproduction, ovulation 
(sensu Mammalia)

3.69 0.28

AFg3(ATPase family 
gene 3)-like 1 (yeast) 
(predicted)

rn.41391 – – 3.67 0.64

Transcribed locus rn.120914 – – 3.61 -0.25
selenocysteine lyase rn.23954 mouse homolog catalyzes 

the decomposition of L-
selenocysteine to produce 
L-alanine and selenium; may 
function to deliver elemental 
selenium to selenophosphate 
synthetase for selenoprotein 
biosynthesis

metabolic process, 
amino acid metabolism, 
selenocysteine 
catabolism

3.54 0.54

Transcribed locus rn.166039 – – 3.51 0.50
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times to reach a plateau were faster compared to those 
of Group 1 carcinogens. As for Group 3 carcinogens, 
the expressions of four and six genes in top 10 
genes were increased and decreased, respectively 

(Table 5). The fold changes of these genes at 28-day 
were comparable to those of Group 1 carcinogens, 
though the times to plateau were delayed and some 
genes did not reached to a plateau even after 28-day 

Table 5. Top 10 characteristic genes of group 3 carcinogens at 28th day.

Gene name Unigene ID Description Gene ontology 
(Biological process)

Welch’s 
t-value

Mean of 
log2 ratio

Transcribed locus rn.164817 – – 5.88 1.11
probasin rn.9862 displays androgen dependent 

expression in prostate epithelial 
cells

– 5.57 -1.68

cd36 antigen rn.102418 fatty acid translocase; involved 
in long-chain fatty acid (LCFA) 
transport; important in fatty acid 
metabolism and insulin function

blood coagulation, fatty 
acid transport, long-chain 
fatty acid transport

4.98 1.97

Transcribed locus rn.164639 – – 4.60 -0.21
glial cell 
line derived 
neurotrophic 
factor family 
receptor alpha 1

rn.88489 binds glial cell line-derived 
neurotrophic factor (gDnF) and 
mediates ret protein-tyrosine 
kinase receptor phosphorylation 
and activation

transmembrane receptor 
protein tyrosine kinase 
signaling pathway, nervous 
system development, cell 
surface receptor linked 
signal transduction

4.57 -0.73

rT1 class II, 
locus Ba

rn.25717 may play a role in antigen 
presentation

antigen processing and 
presentation of peptide or 
polysaccharide antigen 
via MhC class II, immune 
response

4.46 -0.54

Dehydrogena-
sereductase 
(sDr family) 
member 7

rn.119024 exhibits oxidoreductase activity; 
involved in metabolic process 
(inferred)

metabolic process 4.46 -2.46

PYD and CArD 
domain containing

rn.7817 may play a role in apoptosis induction of apoptosis, 
regulation of caspase 
activity, positive regulation 
of interleukin-1 beta 
secretion

4.45 -0.45

steroid 5 alpha-
reductase 1

rn.4620 catalyzes the conversion 
of testosterone to 
dihydrotestosterone; required for 
male sex differentiation

sex determination, 
androgen biosynthesis, 
male sex differentiation

4.43 1.07

Prolactin receptor rn.9757 high affinity receptor for prolactin 
(PrL); may mediate prolactin 
functions in brain including 
reproduction, sexual behavior, 
feeding behavior, and maternal 
behavior; may play a role in 
regulation of GnRH secretion, firing 
rate of hypothalamic neurons, 
metabolism of neurotransmitters 
and neuropeptides, oxytocin 
release, enzyme activities in 
neurons, and glial cell proliferation

embryo implantation, 
regulation of epithelial cell 
differentiation, regulation 
of cell adhesion

4.38 2.01
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post-treatment. The expression of characteristic genes 
for Group 2 and 3 carcinogens was altered by admin-
istration of some other group carcinogens and non-
carcinogens, but the expression pattern was different 
from the relevant group carcinogens.

The top 10 characteristic genes in Group 1 had no 
a common point in their genes function (e.g. biologi-
cal process in Gene Ontology) in spite of high score 
of Welch’s t-value compared with other two groups 
(Tables 4, 5, and 6). When biological networks of 
characteristic genes of Group 1 were analyzed using 
Ingenuity software, almost all the annotated genes 
except for Cyp2c40 were formed one network related 
with p53 gene which plays key role in carcinogenesis 
(Fig. 4(A)). As for Group 2, the characteristic genes 
did not connect with each other in network analysis. 
The top 10 characteristic genes of carcinogens clus-
tered to Group 3 were formed a network via other 
non-characteristic genes such as NF-kB (Fig. 4(C)).

Discussion
The present study showed that 47 carcinogens were 
clustered into three major groups by unsupervised 
hierarchical clustering. The first group was composed 
of 17 carcinogens, which were mainly genotoxic rat 
hepatocarcinogens. The second was formed by three 
subgroups, which were composed of 23 carcinogens 
exhibiting distinct properties in terms of genotoxic-
ity and carcinogen-specific targeting, namely non-
genotoxic rat hepatocarcinogens, and (non-)genotoxic 
carcinogens which the target were other tissues. The 
third consisted of 6 carcinogens including 4 estrogenic 
compounds (C16; benz[a]anthracene, C27; diethyl-
stilbestrol, C28; ethinylestradiol, C40; 1,4-dichloro-
benzene). The remaining one (MMNG, C03) was not 

clustered with other carcinogens. These clustering 
patterns were very consistent in analyzing with various 
gene data sets selected by different Welch’s t-values 
(2.3 to 3.0) or administration periods (3 to 28 days post-
treatment). Furthermore, similar results were obtained 
using the other unsupervised classification analyses 
(i.e. SOM and PCA), confirming that these were nei-
ther accidental nor artificial by a specific statistical 
method, but were derived from common feature of 
the transcript profiling throughout the administration 
period. Overall, these results provide reproducible evi-
dence for grouping of carcinogens based on the hepatic 
gene expression profiles of treated animals, suggesting 
that this classification was universal wide range of car-
cinogens with different chemical structure and biologi-
cal process as well as administration period.

The test substances used in this study included 
a wide variety of carcinogens in terms of the target 
organ and biological activities relevant to carcinoge-
nicity (e.g. mutagenicity). Therefore, we investigated 
the relationship between these features of the test 
chemicals and the grouping of them by unsupervised 
hierarchical clustering analysis. The hepatic gene 
expression profiles of the treated rat clearly discrimi-
nated the Group 1 from other groups. In this study, 
11 of 47 test carcinogens are mutagenic rat hepato-
carcinogens, and all of them were classified into the 
Group 1, indicating that this group was characterized 
by rat hepatocarcinogens with mutagenic activity. 
Although 6 carcinogens belonging to this group were 
Ames test negative, possible metabolites of acet-
amide (C30) and methyl carbamate (C34) have been 
reported to be mutagenic (IARC monographs vol71/
mono71-59; http://monographs.iarc.fr.,),17 or verified 
positive responses in other mutagenicity assays have 
been obtained for methapyrilene HCl (C29), urethane 
(C36) and 1,4-dioxane (C32) from the NTP reports 
and the CCRIS database. In addition, as for some 
nonmutagenic chemicals, it is known that indirectly 
induced oxidative base modifications could contrib-
ute to induction of DNA mutations.18 Therefore, these 
chemicals or their metabolites might exert genotoxic 
activity to the liver of treated rats through an indi-
rect mechanism. In this group, two non-carcinogens 
(NC01 and NC13) were also classified. Unsupervised 
hierarchical clustering analysis revealed that 4-(chl
oroacetyl)acetanilide (NC01) which contains a car-
boxamide functional group was located adjacent to 

Figure 4. A) Connectivity map of the responses in the characteristic 
genes of carcinogens clustered to group I by Ingenuity Pathway assis-
tant analysis. B) explanation of the symbols, the edges, and their labels.
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2-AAF (C11), which is also a carboxamide compound. 
Therefore, the structural similarity between them 
exerted analogous effects on the hepatic gene expres-
sion of the administrated rats. On the other hand, the 
reasons why 3-Chloro-p-toluidine (NC13) was classi-
fied into Group 1 are unknown. Overall, these indicate 
that Group 1 consists of mainly mutagenic hepatocar-
cinogens, suggesting that the gene expression profiles 
clearly delineate the early response to administration 
of mutagenic hepatocarcinogens.

Chemically induced rat liver cancer proceeds 
through multiple, distinct initiation-promotion-
progression stages and mutation of the suppressor 
p53 gene has been found in relatively early preneo-
plastic lesions in the rat liver.19 In the present study, 
gene network analysis using the characteristic genes 
in Group 1 revealed that almost all the annotated 
genes were formed one network related with p53 
gene (Fig. 4(A)). The p53 network contained several 
key genes as follows: The Bax gene encodes the pro-
apoptotic Bax protein that has p53-binding element in 
their promoter region which is capable of p53-depen-
dent transcriptional activation.20 The Abcb1b gene is 
reported that a membrane-associated protein encoded 
by this gene is a member of the superfamily of ATP-
binding cassette (ABC) transporters, and this gene 
have p53-binding site spanning from base pairs -199 
to -180 in the rat Abcb1b promoter that is essential for 
basal and xenobiotics-inducible promoter activities.21 
The Btg2 protein is a member of the BTG/Tob family 
which has structurally related proteins that appear to 
have antiproliferative properties and involved in the 
regulation of the G1/S transition of the cell cycle,22 
and this gene is up-regulated by p53 protein.23 DNA 
repair gene, Mgmt, is regulated by p73-dependent 
transcriptional activation which related with p53 
pathway.24 The Tnfrs6 (Fas) protein is a member of 
the TNF-receptor superfamily and contains a death 
domain. It has been shown to play a central role in the 
physiological regulation of programmed cell death, 
and has been implicated in the pathogenesis of vari-
ous malignancies and diseases of the immune system 
(reviewed in).25 In this pathway, Tnfrs6 is interacted 
with Btg2, Bax, and p53 via Cdc2 (Fig. 4(A)). These 
results show that most of characteristic genes in the 
carcinogens belong to the Group 1 are formed net-
work related with p53, suggesting that they induced 
various biological process such as cell cycle arrest, 

DNA repair, apoptosis, immune response, and drug 
metabolism, which are defensive responses to car-
cinogenesis. Histological abnormalities which were 
frequently observed in the livers of rat treated with 
Group 1 carcinogens support this hypothesis.

The Group 2 was divided into two large groups, 
one consisting of nonmutagenic (Group 2A), and the 
other of mutagenic ones (Group 2B). Additionally, 
the nonmutagenic carcinogens in the Group 2A were 
largely separated into two subgroups, rat hepatocar-
cinogens and others. The first subgroup (Group 2A-1) 
comprised three rat hepatocarcinogens (clofibrate; 
C22, di(2-ethylhexyl)phthalate; C24, alpha-hexachlo-
rocyclohexane; C42), whereas the other (sub)group 
also contained several nonmutagenic hepatocarcino-
gens. The second (Group 2A-2) consisted of five 
nonmutagenic carcinogens (d-Limonene; C33, 
Di(2-ethylhexyl)adipate; C23, 1,4-Dichlorobenzene; 
C40, Aldrin; C37, Benzo[a]pyrene; C17, Trichloro-
ethylene; C44), though several nonmutagenic carcin-
ogens were classified in other clusters. In this study, 
unlike the mutagenic rat hepatocarcinogens, nonmu-
tagenic ones were incorrectly classified in some clus-
tering conditions. van Delft et al26 examined the gene 
expression patterns of HepG2 cells exposed to both 
genotoxic and non-genotoxic carcinogens. Then they 
reported that clustering analysis almost perfectly sepa-
rated genotoxic carcinogens from nongenotoxic ones, 
but a few nongenotoxic carcinogens were placed in 
the wrong clusters (i.e. in between genotoxic carcino-
gens). It has been reported that modulation of gene 
expression profiles by nonmutagenic carcinogens are 
extremely complicated, because the modes of action 
of carcinogenesis are numerous and very diverse.27 
Gene network analysis in the present study did not 
reveal the distinct network underlying early responses 
of rat livers induced by nonmutagenic carcinogens. 
Thus, the discrimination of nonmutagenic carcino-
gens based on the gene expression profiles could be 
feasible, but some chemicals might be ambiguously 
classified dependent on the analysis conditions.

Another subgroup (2B) was comprised of 5 muta-
genic carcinogens (PhIP; C13, 3-Methylcholan-
threne; C19, 7,12-Dimethylbenz [a]anthracene; C18, 
4-Nitroquinoline-1-oxide; C08, N-Ethyl-N-nitrosourea; 
C02), which the target tissue was not livers. Regarding 
mutagenicity of the test chemicals, the Group 1 car-
cinogens were also Ames test positive. The separation 
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between Group 2B and Group 1 could be explained 
by the poor induction of carcinogenesis-related gene 
expression in the non-target tissue (i.e. livers) by 
Group 2B chemicals, whereas Group 1 chemicals were 
all strong inducers of them (Fig. 1). Several reports 
showed that renal carcinogen treatment produced more 
significant alteration of gene expression in kidney 
(target tissue) than in liver (non-target tissue) of rats, 
suggesting that these differential alterations could be the 
underlying mechanisms for the tissue-specific carcino-
genicity of chemicals.28,29 Therefore, the present study, 
which examined the hepatic gene expression changes of 
rats treated with carcinogens, could distinguish the early 
responses to administration of  hepatocarcinogens as well 
as the other ones, although less profound alteration was 
observed in case that the livers were non-target tissues.

Six carcinogens in the last group (Group 3) were 
grouped in clusters not by the first analysis but the 
second one of hierarchical clustering. Therefore, the 
transcriptional similarities of significantly altered 
genes in the treated rats were lower than those of 
other groups. Yet, four out of these six chemicals 
(benz[a]anthracene; C16, diethylstilbestrol; C27, 
ethinylestradiol; C28, 1,4-dichlorobenzene; C40) 
have an estrogenic activity, implying the group of 
estrogenic carcinogens. The evidence is strong that 
estrogen-modulating effects are closely related to 
carcinogenicity or mutagenicity.30 With regards to the 
expression altered genes, significant down-regulation 
of steroid 5 alpha-reductase gene, which catalyzes 
the conversion of testosterone to dihydrotestosterone, 
was observed in the list of top 10 genes. Although 
the molecular mechanisms responsible for estrogen 
carcinogenicity are not well understood, this might 
partly show the molecular mechanisms underlying 
estrogen-associated carcinogenesis. Further work 
needs to be done to confirm this assumption.

This study provides proof-in-principle that carcin-
ogens could be classified into three large groups based 
on the hepatic gene expression profiles of rats follow-
ing the administration, based on their genotoxic prop-
erties or target tissues. In regulatory toxicology, this 
finding can be help to understand the mode of action 
for carcinogenicity of a wide variety of chemicals, 
especially nongenotoxic ones. Moreover, by applying 
to the current in vivo toxicity test using rats, this find-
ing will pave the way for use of gene transcription 
biomarker signatures for screening of carcinogenic 

potential of test chemicals. Especially if a subset of 
genes which were selected in this study could be char-
acterized as robust predictor genes, this may lead to 
the development of a new screening assay for screen-
ing chemicals on their carcinogenetic properties with 
higher predictability and broader applicability.

In short, 47 carcinogens were clustered into three 
major groups based on their mutagenicity and target 
tissues by unsupervised hierarchical clustering using 
the hepatic gene expression profiles of rats treated for 
28 days. The common transcriptional signatures for 
each carcinogen group might reflect the early molec-
ular events of carcinogenesis and hence would enable 
us to identify the biomarker genes for carcinogenic 
chemicals, and then to develop a new assay for carci-
nogenesis prediction.
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