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Abstract: Hereditary inclusion body myopathy type 2 (HIBM2) is a myopathy characterized by progressive muscle weakness with early 
adult onset. The disease is the result of a recessive mutation in the Glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine 
kinase gene (GNE), which results in reduced enzyme function and sialic acid levels. A majority of individuals with HIBM2 are from 
Iranian-Jewish or Japanese decent, but isolated cases have been identified world wide. This article reviews the diagnostic criteria for 
HIBM2. Current research with a highlight on the biology of the disease and the role of GNE in the sialic acid pathway are assessed. 
Finally, therapeutic investigations and animal models are discussed with a focus on future studies to better understand the pathology of 
Hereditary Inclusion Body Myopathy and move therapeutic agents towards clinical trials.

Keywords: HIBM2, GNE, sialic acid, myopathy, neuromuscular

http://www.la-press.com
http://www.creativecommons.org/licenses/by/2.0
http://www.la-press.com
http://www.la-press.com
mailto:jnemunaitis@marycrowley.org


Jay et al

182 Gene Regulation and Systems Biology 2009:3

Introduction to HIBM2
HIBM2 is a myopathy that was first recognized in 
individuals of Iranian-Jewish decent that is clinically 
manifest by progressive muscle weakness and geneti-
cally transmitted in an autosomal-recessive manner. 
There are a number of myopathies which cause pro-
gressive muscle weakness. HIBM2 is unique in that it 
is clinically characterized by early adult onset, ethnic 
predisposition, and quadriceps sparing. HIBM2 is 
histologically characterized by atrophic muscle fibers 
with rimmed vacuoles and filamentous inclusions in 
the absence of inflammatory cells.1–3

Only 220 (http://www.ncbi.nlm.nih.gov/bookshelf/
br.fcgi?book=gene&part=ibm) cases of HIBM2 have 
been reported worldwide, although more cases may 
be undiagnosed. The vast majority are from Iranian-
Jewish decent. In the Iranian-Jewish population the 
frequency is greater than 1 in every 1500 individuals. 
This syndrome has also been described in Japan where 
the disorder is often referred to as Distal Myopathy 
with Rimmed Vacuoles (DMRV).4

Patients of American, Afghanistan, Iraqui-Kurdish, 
Irish, German, Mexican, African-American, possibly 
Egyptian communities, and Italian descents have also 
been identified.2,5,6

HIBM2 is an autosomal recessive disorder and, 
therefore, an affected allele must be inherited from 
both parents in order for a child to phenotypically 
develop the syndrome. These mutated genes (either 
homozygous or heterozygous mutations) are then 
expressed as the hypofunctional enzyme, Glucosamine 
(UDP-N-acetyl)-2-epimerase/N-acetylmannosamine 
kinase (GNE), which catalyzes the first two reactions 
in the production of sialic acid. HIBM-associated 
GNE mutations have been shown to reduce sialic acid 
production.7,8 The pathologic mechanism for muscle 
degeneration in HIBM2 remains unknown but evi-
dence suggests, that proper folding, stabilization, 
and function of skeletal muscle glycoproteins require 
muscle fiber sialylation.9–12 GNE mutations resulting 
in hyposialyation of muscle glycoproteins appear to 
contribute to myofibrillar degeneration and loss of 
normal muscle function.9,11,13–16

The most prevalent mutation in HIBM2 patients 
of Middle Eastern descent is the missense mutation, 
M712T, located on exon 12 of the GNE gene.17,18 
However, novel mutations (such as the D176V 
[exon 3] and V572L [exon 9] mutation which is 

more common in Japanese patients) have also been 
discovered in both the epimerase and kinase domains 
of the GNE gene in HIBM2 patients of other ethnic 
backgrounds.2,4–6

This review will summarize diagnostic, molecular, 
and therapeutic results related to HIBM2.

Diagnosis
The most common criteria used for identifying 
HIBM2 are as follows: 1) distal skeletal muscle 
weakness beginning in the lower legs; 2) selective 
sparing of the quadriceps; 3) onset in the third to forth 
decade of life; 4) a familial history of muscle wasting 
disorder is not obligatory for the diagnosis; 5) mini-
mal to no elevation in serum creatine kinase (CK); 
6) the histologic presence of rimmed vacuoles within 
muscle fibers in the absence of inflammatory cells; 
and 7) tubofilamentous inclusions in muscle by elec-
tron microscopy. Exceptions have been described; 
however, they are generally applicable to less than 
10% of patients.18

One unscrutinized criteria for diagnosis of HIBM2 
is the onset in early adulthood. Generally, the disor-
der becomes apparent anywhere from 20 to 40 years 
of age. After 2–3 decades, almost complete muscle 
function is lost in the patient with sparing of the 
facial, extraocular, bulbar, intercostal and diaphragm 
muscles.19 The progressive deterioration of the axial 
muscles will often leave the patient wheel-chair 
bound and unable to perform the basic functions of 
everyday life.

Molecular Biology
Underproduction of skeletal muscle sialic acid related 
to dysfunctional GNE gene product is the hallmark 
of HIBM2.5,9,13,18,20 Sialic acid is the only sugar that 
bears a net negative charge.21 This charged sugar 
provides the terminal carbohydrate on a variety of 
N-linked and O-linked glycoproteins that mediate 
cell-cell and protein-protein interactions. Thus, the 
role as cell surface macromolecules may not be easily 
mimicked by other biologically available oligosac-
charide moieties. More than 40 different sialic acid 
compounds have been identified with various biolog-
ical functions. Sialic acids can be found as part of cell 
surface glycoproteins, glycolipids, gangliosides, and 
polysaccharides. The sialic acid modifications of cell 
surface glycoproteins are crucial for cell adhesion 
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and signal transduction and may result in muscle fiber 
degeneration.22,23

UDP-GlcNAc 2-epimerase activity is rate-limiting 
for the biosynthesis of sialic acid. The activity of the 
enzyme can be controlled by allosteric regulation of 
the downstream product, CMP-sialic acid (Fig. 1).24 
In cardiac muscle, removal of sialic acid produces a large 
specific increase in sarcolemmal calcium permeability 
without perturbation of potassium permeability.12,25,26 
Sialic acid accounts for a component of negatively 
charged sites which, with other acidic mucopolysac-
charides, contributes to cationic binding at the surface 
of the cell. Calcium bound at the surface seems to 
be of importance in the excitation-contraction (EC) 
coupling sequence whether as a source of “trigger” 
calcium for the sarcotubular system or as a direct acti-
vator of the myofilaments. The bound Ca++ appears to 
be in rapid equilibrium with free Ca++ in the vascular 
and interstitial spaces and is the probable immediate 
source of the Ca++ that crosses the sarcolemma. The 
integrity of the glycocalyx appears to be necessary 
in the prevention of uncontrolled entry of Ca++ into 
the cell.12,27

In skeletal muscle, most transmembrane proteins, 
including voltage-gated sodium channels, are post-
translationally modified. Channels are heavily gly-
cosylated, with up to 40% of the molecular weight 
of the functional sodium channel comprised of sugar 
molecules. It has been shown that as the sugar resi-
dues are removed, sodium channel activity is changed 
such that a greater depolarization is needed to activate 
the channel. Thus, channels with lowered glycosyl-
ation levels will be less active at a given membrane 
potential, and the cell likely will be hypo-excitable.28

Loss of GNE activity in HIBM2 is thought to 
impair sialic acid production and interfere with proper 
sialylation of glycoconjugates. Sialylation of the 
voltage-gated sodium channels is critical to main-
tain proper gating of sodium for effective initiation 
and propagation of action potentials in nerve and 
muscle.29–35 Voltage-gated sodium channels are com-
plex membrane proteins composed of an α subunit and 
one or more smaller β subunits.36–38 Estimates indicate 
that 15%–40% of the total sodium channel molecular 
weight is carbohydrate.39–41 Approximately 40%–45% 
of the added carbohydrate residues are sialic acid.40,41 
The terminal sialic acid residues are attached to α and 
β subunits and in the absence of sialic acid the channel 

gating is in the depolarized position.42–46 The lack of 
effective action potential transmission results in the 
failure of nerve and muscle activation.

Voltage-gated sodium channels (Nav) are respon-
sible for initiation and propagation of nerve, skeletal 
muscle, and cardiac action potentials. Nav are com-
posed of a pore-forming α-subunit and often one 
to several modulating β-subunits. Previous work 
showed that terminal sialic acid residues are attached 
to α-subunits and affect channel gating.28 Under con-
ditions of reduced sialylation, the β1-induced gating 
effect is eliminated. Consistent with this, mutation 
of β1 N-glycosylation sites abolish all effects of β1 
on channel gating. Data also suggest an interaction 
between the cis effect of α-sialic acids and the trans 
effect of β1 sialic acids on channel gating. β1 sialic 
acids have no effect on gating of the heavily glyco-
sylated skeletal muscle α-subunit. However, when 
glycosylation of the skeletal muscle α-subunit was 
reduced through chimeragenesis such that α-sialic 
acids did not impact gating, β1 sialic acids caused 
a significant hyperpolarizing shift in channel gating. 
Together, the data indicate that β1 N-linked sialic 
acids can modulate Nav gating through an apparent 
saturating electrostatic mechanism.46

Previous studies have shown that the subunits 
of the Na+ channel are modified by glycosylation 
and the β1, β2, brain, and muscle α-subunits are 
heavily glycosylated, with up to 40% (eel electroplax 
α-subunit)47 of the mass being carbohydrate. In con-
trast, the cardiac subunit is only 5% sugar by weight.48 
Sialic acid is a prominent component of the N-linked 
carbohydrate of the Na+ channel. The addition of 
such a highly charged carbohydrate has predictable 
effects on the voltage dependence of gating through 
alteration of the surface charge of the channel protein. 
Neuraminidase treatment to remove cell surface 
sialic acid from skeletal muscle channels produced 
a depolarizing shift of steady-state inactivation.43 
Local surface charge is also significantly influenced 
by charged amino acid residues which stud the outer 
mouth of the pore, although the predominant effects 
in this case are on permeation rather than gating.49,50

Co-translational glycosylation is essential for 
the maintenance of cell surface expression of the 
Na+ channel in neurons and Schwann cells.51,52 
Inhibition of glycosylation by tunicamycin revers-
ibly decreases the number of STX binding sites on 

http://www.la-press.com


Jay et al

184 Gene Regulation and Systems Biology 2009:3

neuroblastoma cells.53 Tunicamycin also inhibits 
palmitation, sulphation, and disulphide attachment 
of the β2 subunit, preventing the assembly of func-
tional Na+ channels.39

Studies of HIBM2 patients reveal mutations in the 
GNE gene associated with glycosylation deficien-
cies which may lead to defective muscle function. 
Reduced GNE activity is thought to impair sialic 
acid production and interfere with proper sialylation 
of glycoconjugates.12 The reactivities to lectins are 
also variable in some myofibers, suggesting that 
hyposialylation in muscles may contribute to the 
focal accumulations of autophagic vacuoles and/or 
amyloid deposits in affected muscle tissue. Although 
sialic acid dysregulation is likely primary to disease 
pathogenesis, recent assessments of myoblast cellu-
lar sialylation patterns,14,15 suggest the possible role 
of other GNE-related contributing mechanisms.54,55 
Eisenberg et al looked at the role of GNE gene and 
other neighboring genes, such as, clathrin light chainA 
(CLTA)56 which is a regulatory element in clathrin gene 
function, known to be involved in several pathways 
of lysosomal proteolysis, and, reversion-inducing 
cysteine-rich protein with Kazal motifs (RECK)57 
which is a membrane-anchored glycoprotein with 
transformation suppressor activity both located close 
to the GNE gene.58 Sequencing of the coding regions 
of these genes, and LOC64148 and FLJ21343, which 
also could not be excluded as possible functional can-
didate genes in HIBM, revealed no disease causing 
alleles in any of these genes in HIBM families. 
Although RECK and CLTA are located close to GNE 
on chromosome 9p12, there was no evidence that 
these genes contributed to HIBM2.

Neprilysin, also known as neutral endopeptidase 
(NEP), CD10, and common acute lymphoblastic 
leukemia antigen (CALLA), is a zinc-dependent 
metalloprotease enzyme that degrades a number 
of small secreted peptides, most notably the amyloid 
beta peptide whose abnormal misfolding and aggre-
gation in neural tissue has been implicated as a 
cause of Alzheimer’s disease. One study found that 
Neprilysin participates in skeletal muscle regenera-
tion and is accumulated in abnormal muscle fibres of 
inclusion body myositis.59 NEP may play an impor-
tant role during muscle cell differentiation, possibly 
through regulation, either directly or indirectly, 
of the insulin-like growth factor I-driven myogenic 

programme. However, IGF-1 does not appear to be a 
contributing factor in HIBM2.59

Although sialic acid dysregulation is key to disease 
pathogenesis, recent assessment of myoblast cellu-
lar sialylation in patients suggests the role of other 
GNE related mechanisms including that of α-actinin 
1. α-Actinin 1 is one in a group of four α-actinins and 
they all play key roles in cell-cell contact sites as well 
as stress fiber dense regions. There is a direct kinetic 
relationship between the GNE gene and α-actinin 1 
which could also lead to muscle deterioration along 
with sialic acid. Calcium has been shown to have a 
positive effect on α-actinin.60

To investigate the role of mutated GNE enzyme, 
tissue derived cell cultures from biopsies carrying 
either kinase or epimerase mutations were created.14,15 
All mutations in the GNE gene caused a reduc-
tion in epimerase activity but only the homozygous 
epimerase mutation actually showed a reduction in 
sialic acid. However, Penner et al found that recom-
binant expressed GNE mutants containing either 
epimerase or kinase mutations had reduced epimer-
ase enzyme activity, with the exception of the most 
common mutation, M712T, which had normal epim-
erase activity, but reduced kinase activity.8 There-
fore, the mutations in the two domains do not have 
the same effect on enzyme activity or sialylation of 
muscle cells. The sialic acid modifications of cell sur-
face glycoproteins are crucial for cell adhesion and 
signal transduction and may result in muscle fiber 
degeneration.22,23

Although GNE mutations are widely accepted 
as the root cause of HIBM2, there are some discus-
sions that GNE plays a role in functions beyond 
sialic acid synthesis. Upon nocodazole treatment to 
inhibit intracellular trafficking, GNE was redistrib-
uted from the Golgi to the cytoplasm. This suggests 
that GNE may play a role as a nucleo-cytoplasmic 
shuttling protein.61 Salama et al demonstrated in vitro 
that myoblasts and lymphoblastoid cell lines derived 
from HIBM2 patients containing the M712T muta-
tion had reduced epimerase activities, but did not dis-
play reduced membrane bound sialic acid. However, 
clinical samples from HIBM2 patients demonstrated 
clear reduction in sialic acid levels from muscle 
tissues.9,11 Savelkoul may have described it best that 
HIBM2 defects in sialylation may appear gradually 
and tissues such as muscle, which normally express 
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low levels of GNE protein, are more sensitive to 
disruptions in the GNE enzyme and hence reduced 
sialic acid expression.62

GNE is ubiquitously expressed in all tissues, 
although at relatively different levels in each specific 
tissue. GNE is expressed at high levels in the liver, 
and by comparison at relatively low levels in skeletal 
muscle. Krause et al found that GNE protein is 
expressed in skeletal muscle at equal levels in HIBM 
patients and normal control subjects. Furthermore, 
immunofluorescence detection of GNE did not reveal 
any mislocalization of GNE in skeletal muscle of 
HIBM patients. Thus, most in the field conclude that 
impaired GNE function, not lack of expression, is the 
key pathogenic factor in HIBM.63 In fact, Penner et al 
characterized several different GNE mutations and 
demonstrated that unique mutations altered activity 
of GNE enzyme to varying degrees of severity, as 
assessed by downstream enzyme kinetics of ManNAc 
phosphorylation using a radiolabeled phosphate assay.8 
Interestingly, all mutations did retain a minimal amount 
of activity relative to the wild type GNE enzyme.

Role of Gne in the sialic Acid 
pathway
The GNE gene encodes the bifunctional enzyme 
UDP-GlcNAc 2 Epimerase/ManNAc Kinase (GNE/
MNK). This enzyme is the rate-limiting step which 

catalyzes two sequential reactions committed towards 
sialic acid biosynthesis (Fig. 1). The product of the path-
way, cytidine monophosphate-N-Acetylneuraminic 
Acid (CMP-sialic acid), binds to the allosteric site of 
the GNE enzyme and inhibits the rate limiting epim-
erase reaction.

The sialic pathway begins with the glycolysis 
cycle, which produces UDP-GlcNAc. The GNE/MNK 
bifunctional enzyme converts the UDP-GlcNAc into 
ManNAc and then ManNAc-6-P. This sugar is then 
converted into sialic acid via NeuAc-9-P synthase/ 
phosphatase and transported into the nucleus, where 
CMP-sialic acid synthase adds CMP to Neu5Ac.

CMP-sialic acid leaves the nucleus and is trans-
ported to the golgi where sialyltransferase binds sialic 
acid and glycans to create sialoglycoconjugates. CMP 
is released during this step and recycled back to the 
nucleus. Any excess CMP-sialic acid in the cytosol 
will bind to the regulatory domain of GNE and block 
further conversion of UDP-GlcNAc into ManNAc. 
Therefore, the downstream product CMP-sialic acid 
is able to bind to the auto-regulatory domain of GNE 
and prevent the overexpression of sialic acid and 
sialoglycoconjugates.

Therapeutic Investigation
Currently there is no known effective therapy for the 
treatment of HIBM2. While other myopathies such 

Golgi + Glycans Sialoglycoconjugates

Glycolysis CMP-Sialic Acid
Nucleus

UDP-GlcNAc

Feed back
Inhibition
of GNE 

CMP-Sialic Acid Sialic Acid

ManNAc

GNE/MNK

Neu5Ac
(Sialic Acid) 

ManNAc-6-P
Figure 1. Sialic acid pathway. GNe/MNK is the rate limiting step in the pathway. The downstream product, CMP-sialic acid regulates the activity of GNe 
by allosteric inhibition.
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as polymyositis and dermatomyositis respond at least 
partially to corticosteroids, plasmaphoresis/filtration, 
or other immunosuppressive therapies, there is no or 
limited evidence of efficacy with these approaches in 
HIBM2.64,65 Review of the literature failed to iden-
tify clinical trials using steroids and plasmaphoresis 
for the treatment of persons with HIBM2, however 
the use of intravenous immunoglobulins (IVIG) has 
been studied. In a double-blind, placebo-controlled 
trial involving 19 individuals with HIBM2 treated 
with IVIG conducted in 1997, results suggested that 
this treatment may have a very short term affect on 
some patients.66 In a more recent study conducted in 
2007, four HIBM patients were treated with IVIG and 
each showed improved muscle function throughout 
the study.67 However, while these patients showed 
improved muscle function, there was no evidence to 
suggest that glycoprotein sialylation was positively 
effect by the immune globulins. It was postulated that 
the IVIG would supply sialic acid (IVIG being sialic 
acid rich). No direct evidence was given to support 
this. It was not thought that the IVIG was mediating 
some immune mediated issue. There was no functional 
benefit observed when the IVIG was combined with 
prednisone in another study involving 36 patients.68

Sialic Acid, ManNAC, or NeuAc replacements, 
which bypass the defective epimerase and/or kinase 
related to the GNE mutation, are currently being 
explored in murine and in vitro experiments and pre-
liminary results show potential improvement in GNE 
mutated fibroblast function.7,22,69

A study conducted in early 2007 provided evi-
dence that a GNE knockout mouse which expressed 
the human mutated GNE gene with D176V mutation 
(Gne(−/−) hGNED176V-Tg) developed similar features 
to human HIBM2 patients. The mice began with just 
the addition of a Neo cassette that replaced 1.4 kb 
upstream of exon 3, through 1.4 kb downstream of 
exon 3, thereby deleting exon 3. However, using this 
procedure only wild type (WT) and GNE(+/−) mice 
survived. However, when GNE(+/−) mice were crossed 
with a transgenic mouse that expressed the human 
mutated GNE with D176V (which is one of the most 
common mutations), 9% of the offspring were of the 
desired Gne(−/−) hGNED176V-Tg.70

The sialic acid levels of both the Gne(−/−) 
hGNED176V-Tg mice and the WT mice were mea-
sured using high-performance liquid chromatography. 

Sialic acid levels were measured in the liver, spleen, 
brain, kidney, muscle, and heart. For WT mice, levels 
were highest in the liver, spleen, and brain, but the 
sialic acid levels of the Gne(−/−) hGNED176V-Tg mice 
were much lower. In fact, in the liver and kidney, WT 
mice showed more than five times the amount of 
sialic acid. Gne(−/−) hGNED176V-Tg had a third less 
sialic acid than WT species in the spleen. Overall, 
it is clear that the Gne(−/−) hGNED176V-Tg have an 
overall decrease in sialic acid.70

Progression of the disease also seemed to be notice-
ably similar in the Gne(−/−) hGNED176V-Tg to human 
HIBM2 patients. At birth, the Gne(−/−) hGNED176V-Tg 
mice were not distinguishable from the other mice, 
but after 30 weeks of age these mice weighed less 
than the WT mice. Thirty weeks in the lifetime of a 
mouse is comparable to the second to third decade 
onset in human patients. When 12 of the Gne(−/−) 
hGNED176V-Tg mice died, 5 (41%) mice had rimmed 
vacuoles (RVs) in their skeletal muscles which is a 
key histological characteristic of HIBM2.70

Given this finding, characteristic pathological 
features were then tracked in new litters of Gne(−/−) 

hGNED176V-Tg mice. Again, before 30 weeks of 
age, there was almost no difference observed between 
the Gne(−/−) hGNED176V-Tg and their littermates. 
By 40 weeks of age, fibers begin to appear atrophic 
and RVs are spotted in scattered fibers. On occa-
sion, inclusion bodies were found in the fibers with 
or without RVs. Similar to humans, these RVs have 
been intensely stained with acid phosphatase, indicat-
ing that autophagic process is activated.70

From these studies, it is quite clear that the Gne(−/−) 

hGNED176V-Tg is the closest model to date that 
resembles human HIBM2 patients both histologi-
cally and pathologically. However, there are several 
differences in the D176V-Tg mouse compared with 
HIBM2 patients. The mice had a high GNE D176V-Tg 
mRNA expression in the muscle, possibly due to the 
promoter used in the study. Also, the quadriceps were 
preferentially involved in the mice, whereas HIBM2 
patients are characterized by quadriceps sparing until 
late into the disease progression. Finally, some of the 
GNE D176V-Tg mice died sooner than their litter-
mates for unknown reasons. Studies conducted before 
had failed to produce a mouse that could actually be 
tested for treatment because the animals were embry-
onic lethal.34
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A research article published in summer 2007 
outlines the creation of a GneM712T/M712T knockin 
mouse that was then actually treated using ManNAc 
feeding as an exploratory therapeutic measure. The 
mouse was created using a murine targeting vector 
for homologous recombination in C57BL/6J embry-
onic stem cells which included the M712T mutation. 
The neomycin phosphotransferase and thymidine 
kinase genes were each respectively introduced into 
the vector as positive and negative selection markers. 
This entire vector was sequence verified.71

As with the previous study, there were non-HIBM2 
phenotypes present in the M712T mouse model, 
along with indicators that these mice showed similar 
pathology to human HIBM2 patients. Untreated 
GneM712T/M712T pups died by day 3 due to severe glo-
merular proteinuria. High-magnification examina-
tion of the GneM712T/M712T kidneys indicated that red 
blood cell infiltrates in the proximal and distal convo-
luted tubules and collecting ducts were present in the 
mutated mice. This renal phenotype is not present in 
HIBM2 patients.

The second portion of this M712T mouse study 
was to administer ManNAc to drinking water of 
pregnant females during gestation and early postnatal 
nursing of mutant mice. ManNAc is situated in the 
sialic acid pathway after the regulated rate-limiting 
GNE step so its metabolism is not subject to feedback 
inhibition. Given at a concentration of 1 mg/mL, 
the ManNAc produced no surviving homozygous 
Gne M712T/M712T mice out of 51 total offspring. However, 
when the concentration was increased to 5 mg/ml, 
12 GneM712T/M712T mice (12%) survived beyond P3 out 
of a total of 102. Of the pups that survived beyond 
day 3,17% survived beyond weaning (day 21), when 
ManNAc treatment was stopped. These surviving 
mice continued to grow until 3.5 months, but remained 
smaller than their littermates. No side affects were 
observed due to the treatment and upon ManNAc treat-
ment. There were less cystic tubular dilations in the 
cortex and medulla supporting histological improve-
ment in these mice as well. Biochemical analysis also 
demonstrated improvement in GNE protein expres-
sion, PSA-NCAM, and podocalyxin. These results 
support the evaluation of ManNAc therapy for the 
treatment of HIBM2.71

In another study, GNE gene replacement demon-
strated the safety of GNE-lipoplexes administered to 

normal mice.72 A GNE-wt-DNA vector using human 
GNE cDNA and the pUMVC3 expression vector was 
constructed and placed in an extensively character-
ized cationic liposome.73,74 This vector produced high 
levels of recombinant GNE protein and subsequent 
sialic acid in transfected CHO-Lec3 (GNE deficient 
cell line) cells that produced low levels of sialic acid.73 
The lipoplexes were injected intramuscularly (IM) 
or intravenously (IV) into BALB/c mice. Single IM 
injections of the GNE-lipoplex at 40 µg DNA did not 
produce overt toxicity or deaths, indicating that the 
maximum tolerated dose for IM injection was 40 
µg DNA. In fact, mice administered with either 10 µg 
or 40 µg GNE-lipoplex survived without demonstrat-
ing overt signs of toxicity for the observation period 
of 2 weeks. These findings were supported by 100% 
survival in IM injected mice and the lack of hema-
tology, blood chemistry, or histological abnormalities 
since the maximum tested dose was 40 µg. Single 
intravenous (IV) injections of GNE-lipoplex was 
lethal in 33% of animals at 100 µg dose, while mice 
injected at 40 µg exhibited no toxicity or pathology. 
This indicates that the maximum tolerated IV dose 
is somewhere between 40–100 µg.

Real-time RT-qPCR analysis demonstrated recom-
binant human GNE mRNA expression in all muscle 
tissues that received IM injection of 40 µg GNE 
DNA-lipoplex at 2 weeks post-injection. These results 
indicate that GNE-lipoplex gene transfer is safe and 
can produce durable transgene expression in treated 
muscles.72

Another investigation provided evidence that 
sialylation is essential for the early development 
of mice and that the inactivation of UDP-GlcNAc 
2-epimerase via gene therapy results in early embry-
onic lethality in mice.75 This early lethality in the 
GNE deficient mice is most likely explained by the 
loss of protection from proteolytic processes or by 
disturbed cell-cell adhesion because almost all cell 
adhesion molecules are sialylated glycoproteins.75 
This is evidence that functional GNE enzyme and 
sialic acid are both necessary for mice and humans.

The same investigators then looked at how the 
GNE deficient mice differed from wild-type species. 
Previous evidence showed that GNE–deficiency, on 
average, was lethal at day 8.5 of embryonic devel-
opment.76 Similar to Malicdan, the sialic acid levels 
of  key organs were taken to differentiate between the 
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sialylation of GNE-deficient and wild-type species.76 
Again, wild type mice had a greater expression of 
sialic acid in every organ except the kidney. Overall, 
in GNE-deficient mice, there was a 25% reduction 
in membrane-bound sialic acids.76 Studies involving 
HIBM2 patients demonstrated reduced sialylation 
on neural cell adhesion molecule (NCAM)11 and 
α-dystroglycan9 in muscle tissues.

Discussion
Until recently, little hope for recovery of muscle func-
tion has existed for patients with HIBM2. However 
with the advent of molecular biology and character-
ization of etiologic pathology, particularly involving 
the GNE gene; GNE gene replacement may provide 
an opportunity to better characterize the pathology of 
this rare disease and to provide possible therapeutic 
value to patients. Continued development of relevant 
animal models may facilitate such studies. Clinical 
investigation of intravenous administration of GNE 
plasmid—lipoplex product is a fruitful area of research. 
The rarity of this syndrome and the lack of exist-
ing therapeutics allow for the pursuit of an orphan 
drug development program if safety and evidence of 
benefit to afflicted patients are demonstrated. Other 
delivery vehicles may also be considered and tested to 
enhance activity. Furthermore, once functional GNE 
expression is augmented in patients (and muscle func-
tion improved), it may provide further insight into 
involvement of other downstream effector pathways. 
Exploring the expression of molecular signaling 
patterns of skeletal muscles in parents of early stage 
and late stage HIBM2 patients to better understand 
the mechanism of the onset of this disease may enable 
early preventive approaches to be implemented.
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